International Conference on Electrical, Computer and Communication Engineering (ECCE), February 16-18, 2017, Cox’ s Bazar, Bangladesh

Design of an IoT Based Autonomous
Vehicle with the Aid of Computer Vision

Mohammad Rubaiyat Tanvir Hossain*, Md. Asif Shahjalalf, Nowroz Farhan Nur?
Department of Electrical and Electronic Engineering
Chittagong University of Engineering and Technology
Chittagong-4349, Bangladesh
Email: *mrthossain @cuet.ac.bd, fasif.cuetd3@gmail.com, fnowroz97@gmail.com

Abstract—A web controlled and partially autonomous vehicle
system is presented in this paper. It highlights the idea to develop
a remote controlled car which can be driven from anywhere
using internet over a secured server. This car will also have
limited automation features like traffic light detection, obstacle
avoidance system and lane detection system so that it can drive
itself safely in case of connectivity failure. The main goal here
is to minimize the risk of human life and ensure highest safety
during driving. At the same time the car will assure comfort
and convenience to the controller. A miniature car including
the above features has been developed which showed optimum
performance in a simulated environment. The system mainly
consists of a Raspberry Pi, an Arduino, a Picamera, a sonar
module, a web interface and internet modem. The Raspberry Pi
was mainly used for the Computer Vision algorithms and for
streaming video through internet. The proposed system is very
cheap and very efficient in terms of automation.

Index Terms—Internet of Things(IoT), Raspberry PI, Arduino
Uno, Computer Vision, OpenCV, Sonar Module, Picamera, Ma-
chine Learning, Python, Apache Web Server.

I. INTRODUCTION

With the ever-growing technological advancement, human
civilization is looking for automation in every sphere of
life. Automated car is one of the latest trends which has
been massively recognized by people all around the world
as they want maximum security and comfort during driving.
Nowadays, road accident is one of the prime concerns for the
people. It became very frequent and uncertain. Most of the
road accidents occur due to lack of abidance of the traffic rules.
Most of the time, the drivers become drowsy or distracted
during driving and eventually hit objects ahead of them. If
the driving process can be handled with the aid of Computer
Vision and efficient sensors then the risk of human mistakes
can be highly reduced. Besides, sometimes it gets necessary
to access the car from a remote location in order to reduce
hassles. In this case, it would be a lot more convenient if
the car could be viewed from a remote computer and driven
by interaction through the computer keyboard. This could be
as easy as playing a computer game. Our work is based
on Internet of Things technology and Computer Vision to
remotely control our vehicle and automation features.

Since 1920 the research for vehicle automation has been
conducted on, although first promising trials took place around

978-1-5090-5627-9/17/$31.00 ©2017 IEEE

1950s. During 1980 with Carnegie Mellon University's Navlab
and ALV [1], [2] the first ever autonomous car has been seen.
This has paved the way for the companies to work on au-
tonomous vehicle research. In July 2013, Vislab demonstrated
BRAIVE a vehicle that moved autonomously on a mixed
traffic route. Cities like Belgium, France, Italy and the UK
are planning to operate transport systems for driver less cars.
Germany, Netherlands and Spain have allowed testing robotic
cars in traffic.

Google self-driving car is a recent trend. Sebastian Thrun,
professor of Stanford University and his team have developed
the algorithm and led the development of the Google self-
driving car [3]. Google self-driving cars are designed to nav-
igate safely through city streets. They have sensors designed
to detect objects as far as two football fields away in all
directions, including human and vehicles. It will be marketed
by 2020. Tesla motors will be fully driver less within two years
and will compete with the Google car. So far these prototypes
also have a live driver inside them to acquire test data. If a
live driver can be substituted with an online driver then the
risk of human life damage can be avoided.

Society of Automotive Engineers (SAE) has classified au-
tomated vehicles into six categories from level-0 (No au-
tomation) to level-5 (Full automation). In this paper we have
worked with the level-3 (Conditional automation). In this level
the driver can safely turn their attention in a familiar place and
good weather condition. This is by far the most secure driving
system as we can not put confidence into fully automated
vehicles yet. Besides the cost behind Google car or Tesla
wheels is supposed to be out of reach for most people.

The driving becomes a lot boring during traffic jam. In this
situation traffic light detection system and obstacle detection
comes in handy. Researches have been done regarding traffic
light detection using heuristic models and color segmentation
[4], [S]. However in this paper a Haar Cascade Classifier is
developed with respect to the working environment which
can easily be extended to work in real life environment by
collecting a lot more frames from the environment and by
using powerful computer.

Various lane detection techniques have been observed.
Lane detection techniques using OpenCV based on Receiver
Operating Characteristic curve and Detection Error Trade-off

752

curve [6] and using perspective image [7] have already
been worked on. In this paper lane detection is done using
canny edge algorithm and Hough line transformation which
has shown good rate of success in the working condition.
So far many related works are done involving remote
controlling an autonomous car using Bluetooth with android
or iPhone. Several papers [8], [9] have been published
regarding autonomous car and obstacle avoidance system
which lack either versatile control over internet or live
video streaming. Concepts from papers [10], [11], [12]
like home surveillance system, automatic toll collection,
obstacle avoidance system are combined to further develop
the idea. A sample car was built for the purpose of testing in
a created environment. This car successfully achieved its goal.

II. PROPOSED METHOD

The overall work can be divided into two major categories.
The methodology is briefly shown in Fig. 1.

RASPBERRY [WEB

ARDUINO ‘7 o ' SERVER ./
/7 MOTOR g
_ DRIVER /
et i == =i
ULTRASONIC CAMERA 2 &
SENSOR S
MOTOR

Fig. 1. Working procedure

Firstly the car can be remotely controlled through Internet
using a web browser. In case of connectivity failure it can
act autonomously in a good weather condition. The proposal
consists of complex Computer Vision algorithms and video
transmission with Internet. Raspberry pi and Arduino are
the main devices to implement the prototype. The Raspberry
Pi streams the video to internet. A user can access the
streaming using a web browser. It takes a lot of processing
power for simultaneously working on video streaming and
running Computer Vision. The Raspberry Pi 2 model B is
a single-board computer with a powerful processing unit and
serial and camera interface (CSI). The Raspberry Pi camera
module can be used to take high-definition video. It can be
accessed through the V4L (Video for Linux) APIs, and there
are numerous third-party libraries built for it, including the
Picamera Python library which will be beneficial to the live
streaming purpose. Apache is a popular web server application
that was installed on the Raspberry Pi to allow it to serve
web pages. Apache can serve HTML files over HTTP, and
with additional modules can serve dynamic web pages using
scripting languages such as python. A web page was hosted

that shows the video streaming sent from the Picamera. To
access into the web page one only need to know the IP address
of the Raspberry Pi and a user name and password to log in.
From the web page the car can be fully driven.

For the connectivity failure the car needs to work on its
own. It needs to keep itself safe from collision and abide
by the traffic rules. The Arduino controls the motor driver
circuit. It is connected with sonar, an ultrasonic sensor which
evaluates the attributes of a target by interpreting the echoes
from radio waves. It is used to detect the distance of obstacles
from the car. If an obstacle is detected then the Arduino
stops the motor from running operation. Meanwhile the
Raspberry Pi uses computer vision algorithms to detect the
lane and traffic light signals. Python Open Source Computer
Vision (OpenCV) is a library of programming functions
mainly aimed at real-time computer vision. It has over 2500
optimized algorithms which can be used for image processing,
detection, object identification, classification of actions, traces
and other functions. The Raspberry Pi is interfaced with the
Arduino with serial communication. It controls the Arduino
to run the car accordingly.

A. Streaming Video and Remote Access

The Raspberry Pi works on Linux operating system. It
can host web pages through Apache server. It responds to
requests to serve up web pages, which can be simple HTML
or sophisticated web-based apps. To make the Pi capable of
hosting websites Apache is installed on it. Apache is a free,
open-source HTTP (Hypertext Transfer Protocol) web server
application. A website was built for hosting the streamed video
and for controlling the car remotely.

MIJPG streamer was used to stream video from Raspberry
Pi. The easiest way to install it is by using subversion. There
is a facility in linux operating system named daemon which
runs the selected programs automatically during system boot
up. The scripts for MIPG streamer,traffic light detector and
lane detector are all run through daemon. So whenever the
Raspberry Pi is powered up it automatically keeps streaming
the video from its camera to its web server. Now if we
type http://(Raspberry Pi’s IP address):port number then the
streaming data can be viewed from any web browser.

The web page hosting the video streaming was developed
using python flask framework. From the web page, a python
script is used to handle keyboard interruption from the user.
This keyboard interruption can be processed and sent through
the internet to the remote Raspberry Pi which is located inside
the car. The Pi in turn sends signal to Arduino to control the
motor through serial communication.

B. Obstacle Avoidance

A sonar sensor (HC-SR04) has been used for this purpose.
It emits very high frequency (40 KHz) of sound. It has two
transducers - a transmitter and a receiver. The “Transmit”
transducer sends out a short burst of (8 cycles) of pulse train.
The sonar module timing diagram is shown in Fig. 2[13].

753

10us trigger signal

| Hi

Trigger
Signal
Send Eight
40KHz Pulse
Signal Repeatly
Module
Internal
Signal
The return length
of the TTL is
propertional te
Qutput the distance
Eche
Signal

Fig. 2. Timing diagram of a sonar module

The “Receive” transducer in turns wait for an echo. If an
object exists on its perimeter an echo bounces back to the
“Receive” transducer. Distance of the object is calculated from
the following equation.

d=wvx(t/2) ey

Here d is the distance from object, t is the total time from
transmission to reception and v is the velocity of sound which
is typically 340 m/s in room temperature.

The sonar is connected with an Arduino which calculates
the distance and controls the motor rotation accordingly. The
sonar is placed in front of the vehicle and is mounted on a
servo motor which can rotate upto 180 degrees. This way if
an obstacle comes ahead, then it rotates the sonar and check
if the road is clear around. If no obstacle is found then it turns
the car and picks an alternative way.

C. Traffic Light Detection

The traffic light detection procedure can be briefly described
with Fig. 3.

| Preprocessing \

| Haar Feature Based Cascade Classifier I

l Gaussian Filter I

l Color Detection I

Fig. 3. Traffic light detection process

1) Preprocessing: The image frames captured from the
video were converted into gray scale images.

2) Haar Feature-Based Cascade Classifier: Haar feature-
based cascade classifier was chosen for traffic light detection.
This feature was highly popular for its success on face detec-
tion. It has two parts-training and detection. We can generate
both using OpenCV. To build a Haar Cascade it was needed
to generate some positive images and some negative images.
The result is better as much as sample image is generated.
However for the processing power limitation of Raspberry Pi
only 1000 positive samples and 1000 negative samples were
taken.

The positive samples were the images of different traffic
light signals in different angle. The negative samples were
collected from the related environment where no traffic signals
were present. With the utilization of OpenCV_createsamples
command many other positive samples were randomly gener-
ated superimposing on the negatives. A vector file was created
merging all the positive samples. This training part was done
using OpenCV_traincascade command. This cascade classifier
is used to detect the traffic light post that is the region of
interest.

3) Gaussian Filter: To reduce the image noises gaussian
blur filter was used.

4) Color Detection: The BGR image was converted to
HSV, because it gets much easier to represent the colors in
HSV. Then the threshold value for green and red colors were
selected individually for the image. And finally the green or
red part was extracted.

D. Lane Detection

For the lane detection technique the popular canny edge
detection and Hough line transform was used. This algorithm
is highly efficient for a road with clearly visible lane marker.
In edge detection algorithm the boundaries of an image are
generally detected. Canny algorithm is selected for its very
low error rate, good localization and minimal response that
is only one detector response per edge. For good efficiency
several steps are needed to be maintained. Figure. 4. shows
the process in a nutshell.

1) Gaussian Filter: Suitable masking was done to filter out
the noise from the original image using gaussian filter.

2) Finding Intensity Gradient: After smoothing was done
Sobel kernel was used in both horizontal and vertical direction
to get the first derivative in both directions. Gradient is the
change of brightness in a series of pixels.

3) Removing non Edge: Pixels that were not part of an edge
were removed. Thus an image with thin edge is observed.

4) Hysteresis: Canny uses two thresholds. If a pixel gra-
dient is higher than the upper threshold, it is accepted as an
edge. Otherwise it is rejected. If a pixel gradient is between
the thresholds then it is only accepted if it is connected with
a pixel of upper threshold.

5) Hough Line Transformation: After canny edge detection
Hough line transformation is applied. Hough transformation is
very efficient for detecting any shape if it can be mathemati-
cally expressed even if it is a little distorted. To determine the
Hough line two parameters are needed- p, the perpendicular

754

[Gaussian Filter I

| Finding Intensity Gradient \

| Removing non-edge \

[Hysteresis I

l Hough Line Transform I

Fig. 4. Lane detection process

distance from origin to the line and 0, the angle formed by this
perpendicular line and horizontal axis measured in counter-
clockwise. These can form the parametric line equation.

p = xcost + ysinb 2)

There exists an OpenCV function for doing this named
cv2.HoughLines(). This function takes the p,f as argument. It
also takes an extra argument which determines the threshold
for allowing a pixel as a line. From the perspective of
Bangladesh the drivers always drive through the left side of
the road. So it needs to detect the left lane marker.

III. RESULT

A miniature car including the above features has been
developed which showed optimum performance in a simulated
environment. The sonar sensor is set up in front of the car. The
camera is fixed on the window of the car and the processing
units are set within. Fig. 5. shows the implemented model.

Whenever an obstacle was placed in front of the car it
reduced its speed and stopped. Some echoes were overlapped
and gave back garbage values for a very few time. For
better performance multiple sonars can be used. For real life
application much efficient and powerful sensor can certainly
minimize the hassle.

Python Flask framework was used to host the video sent
from the Raspberry Pi. A web page was developed to show the
video stream and to provide user interface for supporting the
remote control from web page. The MJPG streamer streamed
data flawlessly except for that it suffered ms of delay. The
video data streamed was 100 ms slow and the commands

168112016 12:32

Fig. 5. Implemented model

sent from web page consumed another 200 ms. So it overall
suffered through 300 milliseconds of delay.

The traffic light detection system was very accurate for the
given environment. Although to make it work in the real life
environment a lot more training data will be needed. Here 1000
positive and 1000 negative samples have been used to create
the classifier. The car could successfully detect the location
and interpretation of traffic signal. Fig. 6 shows the traffic
light detection obtained from our implemented model.

Fig. 6. Traffic light detection using Haar cascade classifier

The lane detection algorithm worked flawlessly and was
able to detect its lane without much of an error. It successfully
drove itself in a printed road. Fig. 7, Fig. 8, Fig. 9 show the
results of the image processing for detecting lane.

Fig. 7. Original image

755

Fig. 8. After canny edge detection

Fig. 9. After Hough transformation and drawing a Hough line

IV. CONCLUSION

In this paper a method to implement some automation
feature in a regular car is described. Utilizing this a small
prototype is designed and built. This prototype successfully
achieved the goals. However Raspberry Pi maybe powerful
but yet we need a much powerful computing machine if we
need to implement it on a real car. Or multiple Raspberry Pi
could be cascaded to perform different tasks.

As for the cascade classifier we have created for the traffic
light detection we need a lot more positive and negative
samples from different streets and different weather and light
condition if we want to implement it on real life. As the
whole system relies heavily on Internet so it would be very
convenient in a region where 4G data is available. A fast
Internet connection is one of the limitations of this project.

The implemented model is a Level-3 automated car.
However if it is to be provided with Level-5 automation a
lot more work is to be done. It can not navigate its way to a
given location. So a navigation system can be built on top of
it. A much better classifier for traffic light detection can be
designed to get better performance in a real life scenario.

REFERENCES

[1] T. Kanade, C. Thorpe, and W. Whittaker, “Autonomous land vehicle
project at cmu,” in Proceedings of the 1986 ACM fourteenth annual
conference on Computer science. ACM, 1986, pp. 71-80.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

756

R. Wallace, A. Stentz, C. E. Thorpe, H. Maravec, W. Whittaker, and
T. Kanade, “First results in robot road-following.” in IJCAI. Citeseer,
1985, pp. 1089-1095.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous
driving: Systems and algorithms,” in Intelligent Vehicles Symposium
(1V), 2011 IEEE. 1IEEE, 2011, pp. 163-168.

J. Gong, Y. Jiang, G. Xiong, C. Guan, G. Tao, and H. Chen, “The
recognition and tracking of traffic lights based on color segmentation
and camshift for intelligent vehicles.” in Intelligent Vehicles Symposium,
2010, pp. 431-435.

M. P. Philipsen, M. B. Jensen, A. Mggelmose, T. B. Moeslund, and
M. M. Trivedi, “Traffic light detection: A learning algorithm and
evaluations on challenging dataset,” in 2015 IEEE 18th International
Conference on Intelligent Transportation Systems. 1EEE, 2015, pp.
2341-2345.

S. K. Vishwakarma, D. S. Yadav et al., “Analysis of lane detection
techniques using opencv,” in 2015 Annual IEEE India Conference
(INDICON). 1IEEE, 2015, pp. 1-4.

M. P. Batista, P. Y. Shinzato, D. F. Wolf, and D. Gomes, “Lane
detection and estimation using perspective image,” in Robotics: SBR-
LARS Robotics Symposium and Robocontrol (SBR LARS Robocontrol),
2014 Joint Conference on. IEEE, 2014, pp. 25-30.

N. Ollukaren and K. McFall, “Low-cost platform for autonomous ground
vehicle research,” in Proceedings of the 14th Early Career Technical
Conference, vol. 13, 2014.

J. Borenstein and Y. Koren, “Obstacle avoidance with ultrasonic sen-
sors,” IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp.
213-218, 1988.

D. S. K. Dixit and M. S. Dhayagonde, “Design and implementation of
e-surveillance robot for video monitoring and living body detection,”
International Journal of Scientific and Research Publications, vol. 4,
no. 4, pp. 2250-3153, 2014.

A. Suryatali and V. Dharmadhikari, “Computer vision based vehicle
detection for toll collection system using embedded linux,” in Circuit,
Power and Computing Technologies (ICCPCT), 2015 International
Conference on. 1IEEE, 2015, pp. 1-7.

P. B. Rao and S. Uma, “Raspberry pi home automation with wireless
sensors using smart phone,” Int. J. Comput. Sci. Mob. Comput, vol. 4,
pp. 797-803, 2015.

E. Freaks, “Ultrasonic ranging module hc-sr04,” linea]. Disponible:
http://www. micropik. com/PDF/HCSRO4. pdf. Accedido, 2011.

