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Abstract—Consensus string is the most frequent common 

pattern in a set of string. Consensus string is an important 
feature of DNA sequence. Many algorithm have been introduced 
to discover consensus string. Among them, median string 
algorithm is the most popular one. Basically, that is a brute force 
algorithm.DNA sequence is composed of a series of four letter 
alphabet ∑={a,c,g,t}. If the size of the consensus string is l, then 
the algorithm generates all the 4l number of l length strings 
called motifs or l-mer. Then try to fit the motifs one by one with 
the sequence. In this paper we have discovered a way to reduce 
the search space using chapman kolmogorov relation. We found 
that, the proposed system can find the same consensus string 
within a shorter period of time than the time taken by the median 
string algorithm. As the l-mer size increases, the proposed system 
takes much less time than the median string algorithm. For l-mer 
size 7, we found the proposed system is 47 times faster than the 
median string algorithm.   
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I. INTRODUCTION  
Gene regulatory binding motifs are short DNA sequences 

that control gene expression. The length of these motifs, are 6-
15 base pare long. These motifs do not contain any specific 
starting and end point. Gene regulatory binding motifs can 
start from anywhere within the DNA sequence. Since the 
starting point is unknown, the end point also is unknown.  The 
only difference between regulatory motif and random 
sequence of an equivalent length is that, regulatory motifs 
occur more frequently than random sequence. The location of 
regulatory motif may vary from sample to sample. Frequency 
of these motifs, also vary from sequence to sequence.  To 
discover such regulatory motif from a DNA sequence involves 
finding such a continuation of pattern [1]. This can be 
illustrated in Fig. 1. 

Any DNA sequence is a sequence of four symbol like a, c, 
g, and t. Searching for a particular motif in a DNA sequence 
involves searching a short pattern over the alphabet 
∑={a,c,g,t}. The main idea of motif search can be divided into 
two parts a) exploitation of appropriate model for 
representation of motif sequence b) formulation of algorithm 
for motif search. The most widely used motif models are 
position weight metrics[2] and consensus sequence[3].Position 
weight metric typically use statistical method, report in a short 
time but there is no guarantee about a global optimum[4,5,6].  
Exact algorithms use consensus model. 

 

Fig. 1. Consensus string. 

Most of the exact algorithms takes all string patterns of 
length l over alphabet ∑ as candidate motifs, and output the 
common pattern in all input sequences. In case exact 
algorithms, initially the search space is O(|Ʃ |l), that grows 
dramatically with the rise of | Ʃ | . As a result, most exact 
algorithms are developed for sequences where |∑|=4. But in 
case of protein data set where |∑|=20, these algorithms cannot 
find a low conserved motif within a reasonable time.  

The idea of motif stem increased the potency of exact 
algorithms over large alphabet[7]. Consensus string (or closest 
string or center string) issues are to search out a representative 
string of a given set S of strings. The consensus issues are 
major issues in multiple string comparison and have been 
researched extensively [8,9,10,11,12,13,14,15] to unravel 
several issues arising in computational biology like motif 
finding, PCR primer style, and genetic probe style. Since most 
of the consensus issues are NP-complete, researchers even 
have designed fixed-parameter algorithms [10,16,17,18] 
approximation algorithms [13,17,19,20,21,22,23] and 
algorithms for a short range of strings [10,24,25]. 

II. MEDIAN STRING ALGORITHM FOR MOTIF SEARCH 
Median string algorithm takes as input a set of t DNA 

sequences. It then generates all possible l-mers of length l. 
Since there are only 4 types of nucleotides in a DNA 
sequence, the number of all possible l-mers is 4l. Then it starts 
from the start of each sequence, goes to the end by placing 
each l-mer and calculate distance. In this way for each l-mer , 
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the minimum distance between the l-mer and each row is 
calculated. The sum of minimum  distance of all the rows for a 
particular l-mer  is the minimum distance of the l-mer  with 
the DNA sample. In this way, the minimum distance for all 
the l-mers  is calculated. The l-mer  with lowest distance is the 
consensus string. The algorithm is listed below: 

 
Median_string_search() 
 
{inputs: DNA,t,n,l 
 output: bestword 
 procedure: 
 MedianStringSearch (DNA, t, n, l) 

bestWord AAA…A 
bestDistance ∞ 
    for each l-mer s from AAA…A to TTT…T  

if TotalDistance(s, DNA) < bestDistance 
      bestDistanceTotalDistance(s, DNA)  
      bestWord  s 
  return bestWord 

} 

In median string algorithm, all the 4l combination of l-
mers need to be examined. When the length of l increases, the 
number of candidate l-mers increase according to 4l the 
execution time also increases. But all the 4l  l-mers are not 
significant. A significant amount of the generated 4l  l-mers, 
will not be the consensus. Even some candidate motifs can be 
found in no sequence. Those motifs got generated as a result 
of permutation and combination. For those motifs too, median 
string still perform calculation and contribute to the time 
complexity. In this paper, we introduced chapman-
kolmogorov relation to exclude insignificant candidate motifs 
and reduce the time complexity of median string algorithm. 

III. CHAPMAN-KOLMOGOROV RELATION 
       A time series of random variables is said to be a markov 
chain if it has the following property: 
 

 
 
It is said to be homogeneous or stationary if it also satisfies 
 

       

         In other words, the time series of random variable is 
markovian if the future value of the random variable depend 
only on the value of random variable has at the present time. 
The value of the random variable in the future must be 
independent of the values that it had in the past. We showed 
that one time series of random variables have these property 
their behavior can be represented by a graph like the one 
shown in Fig. 2.: 

         The possible values that the random variables can have 
are shown in circles, so in this example the random variables 
can have the values A, B and C. Instead of talking about the 

values that the random variables can have though, we state the 
circles represents the states the system can be in. 
 

 

Fig. 2. Markov chain 

       The circles that represent states are connected by arrows 
and above these arrows numbers between 0 and 1 appear that 
represents the probability of moving between the states in a 
single time step. In this example the probability of moving 
from state c to state a is 0.8 in a single time step. Alternatively 
we might state the probability that a random variable has value 
c followed by a is equal to 0.8. From this markov chain, we 
can construct a transition probability matrix.  We said that the 
rows in the matrix represent the initial states the system is in 
and the columns represents the states where the system moves 
at the next step. The position (a,b) in the matrix shows the 
probability of moving from state a to state b. 

 

Fig. 3. One step transition 

      We now know how to obtain probability of T2 being equal 
to a,b,c if T1 =a. We can read this information either from the 
transition graph or from the one step transition probability 
matrix. What we would like now is to determine the 
conditional probability that T3 takes on these three different 
values. In other words we would like to know, whether or not 
we can make prediction about the state of the system after two 
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or more time steps rather than after a single step. To see how, 
let us first consider the probability to the following happens in 
the future. We start with T1 =a, then move to T2 =c then again 
move to T3=b. We know that we can get the probability of a 
single step from a to c from the transition matrix. Once we 
arrive in state c , i.e T2=c, the system  immediately forgets that 
T1 was equal to a. The process is after all  markovian and the 
state of the system was in the past do not affect the probability 
of the states in the future. Once we have moved from T1=a to 
T2=c, T2=c becomes the present state of the system. As a 
consequence of this, we can also get the probability of the 
second transition T2=c to T3=b from the one step transition 
probability matrix. Because of the markov property, the event 
of moving from state T1=a to T2=c is independent of the event 
of moving from state T2=c to T3=b. The markov property 
ensures that the system immediately forget everything that 
happened in the past as soon as that is happened. Thus two 
adjacent transition are completely independent of each other. 
The only thing that affect the value of T3 is the value of T2. 
Now remember that we can obtain the probability that two 
independent event occur by multiplying the individual 
probability. Consequently for this particular problem, we can 
calculate the probability that the system will be moving from 
T1=a to T2=c then from T2=c to T3=b by multiplying the 
conditional probability T3=b given T2=c. 

Let’s now suppose, we want to calculate the probability for 
moving from state a to state b over two steps. There are three 
ways that can happen. We can go from state a to state c then 
on to state b. We can go from state a to state b then remain in 
state b. We can remain in state a for one step and then transfer 
to state b. The probability of each of the paths is shown in fig. 

 

Fig. 4. Two step transition 

      Each of these pathway is mutually exclusive. As the 
random variable T2 can only have one value, it cannot have 
two value simultaneously. We can thus obtain the total 
probability of moving from step a to step b over the course of 
two step by adding the probabilities of each of the paths. If we 
have only three steps, we can write everything explicitly. If we 

have more than three steps we can write that as a series 
notation like Eq 
 . 

 
 
         This sum here rounds up all the possible value that the 
random variable T2 can take. This sum of product is nothing 
more than the definition of the matrix product. Because the 
markov chain is homogeneous, the first matrix and second 
matrix are identical. We can thus obtain the two step 
probability matrix by multiplying the one step probability 
matrix by itself. In general, 

 

This is what is called chapman kolmogorov relation. 

IV. CHAPMAN KOLMOGOROV RELATION BASED                   
MEDIAN STRING ALGORITHM 

       Consider a database with 10 data samples 
(S1,S2,……,S10). Each sample is compose of 80 nucleotides. 

TABLE I.  DNA DATA SET 

SID Sample 

S1 tagtggtcttttgagtgtagatctggagggaaagtatttccaccagttcggggtcacccagcag
ggcagggtgacttaat 

S2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttggatccgaaactgg
agtttaatcggagtcctt 

S3 gttacttgtgagcctggttagacccgaaatataattgttggctgcatagcggagctgacatacg
agtaggggaaatgcgt 

S4 aacatcaggctttgattaaacaatttaagcacgtaaatccgaattgacctggtgacaatacgga
acatgccggctccggg 

S5 accaccggataggctggttattaggtccaaaaggtagtatcgtaataatggctcagccatgtca
atgtgcggcattccac 

S6 tagattcgaatcgatcgtgtttctccctctggtggttaacgaggggtccgaccttgctcgcatgt
gccgaacttgtaccc 

S7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgcagatccgaacgtctctg
gaggggtcgtgcgcta 

S8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggcta
ctggtgtgatccgta 

S9 ttcttacacccttctttagatccaaacctgttggcgccatcttcttttcgagtccttgtacctccattt
gctctggtgac 

S10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctggtctgccctaacctacaggt
cgatccgaaattcg 

       From this database we can construct a transition matrix 
like the following: 

 

Fig. 5. Transition matrix 

        The transition matrix contains the number of occurance 
of  each of the sixteen possible digrams in the database. For 
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example Transistion(1,1)=49, that means there are 49  aa in 
the database. Similarly, Transition(4,4)=59, which means 
there are 59 tt in the data base. There are total 790 digrams in 
the database. Dividing all the elements of the matrix by sum of 
element, produces transition probability matrix like Fig. 6. 
A[i,j] represents the probability of transition from position i to 
position j. 

 

Fig. 6. Transition probability matrix 

       In this matrix A(1,1) indicates the probability of finding 
an a after a, A(2,3) indicates the probability of finding a g 
after c etc. If we multiply A by itself, we will have a matrix 
that indicates the probability of occurance of a particular 
nucleotide at the second step after a particular nucleotide. let 
us suppose, we are searching for 5 nucleotide sequence i.e our 
l-mer size is 5. In this case, if we multiply A by itself by 4 
times, we will have a matrix like Fig. 7. This matrix contains 
the probability at fifth position. 

 

Fig. 7. Transition probability matrix after five step. 

     This matrix indicates the probability of occurance of a 
particular nucleotide after 5 step of a particular nucleotide. For 
example, A(1,1) indicates the probability of occurance of an a 
after five step of an a. There are 16 elements in the matrix. 
Summing all the elements and then dividing that value by 16 
we will get a threshold value. For the values that are greater 
than the threshold value, placing a 1 at that location and 
placing a 0 at other location we will have another matrix like 
Fig. 8. We can  call this a significant matrix S. This matrix 
tells which transitions are significant and which transitions are 
not. The significant matrix contains 0’s at some positions and 
1’s at some positions. 0’s means insignificant, where as 1’s 
mean significant. 

 

Fig. 8. Significant matrix 

       Having the significant matrix, we generate some rules acc
ording to the significant matrix. For example, S(2,4)=1 means 
that the rule ct is significant, S(3,4)=1 means rule gt is sig
nificant, S(2,3)=0 means rule cc is insignificant etc. As per t
he significant matrix, generated rules are listed in table II. 

TABLE II.  GENERATED RULES 

First element 
(l1) 

Second 
element(l2) 

Count Rule 

c t 56 ct 
g g 58 gg 
g t 53 gt 
t c 55 tc 
t g 56 tg 
t t 59 tt 

      From these rules, we can generate some motif  of length 5.
 Any motif must start either from a or c or g or t. We will have
 four trees for motifs starting with four nucleotide. For exampl
e one tree is depicted below in Fig. 9. 

 

Fig. 9. Motif generation tree 

      From all the four trees, we will have a short list of motifs 
which is much shorter than 4l. We will now use this short set 
of motifs as the search space of median string algorithm.  

V. RESULT AND IMPLEMENTATION  
       To check the idea behind this concept, we have used 
Jupyter Notebook as Python programming language. The 
system configuration is: 

 Processor: Intel core i7 CPU  
 Clock rate:3.6 GHz  
 HardDisk:1000GB  
  RAM:8GB 

       Chapman Kolmogorov relation  based median string 
algorithm accelerates the whole process easy and faster. We 
have compared the performance of Chapman Kolmogorov 
relation based median string algorithm with the performance 
of median string algorithm. In this demonstration we have 
compared the number of motifs generated by Chapman 
Kolmogorov relation based median string algorithm and 
median string algorithms for different l-mer size. Since our 
proposed system produces a only the significant motifs, for all 
l-mer size the number of motifs generated by the proposed 
system are found to be shorter than those produced by the 
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median string algorithms. The scenario is depicted in the table 
III.  

TABLE III.  NUMBER OF GENERATED MOTIFS 

l-mer Size Number of Motifs 
(Chapman Kolmogorov 

Relation Based) 

Number of Motifs 
(Median String) 

2 6 16 

3 14 64 

4 31 256 

5 70 1024 

6 157 4096 
7 353 16784 

       The table narrates the results of both the methods used 
here. The results are the number of motifs generated by both 
the methods for different l-mer size. For l-mer size 2, 
Chapman Kolmogorov relation based system generates 6 
motifs whereas Median string algorithm generates 16 motifs. 
So for l-mer  size 2, Markov chain based system is (16-
6)/6=1.66=166% better than Median string based system. 

       For l-mer size 3, Chapman Kolmogorov relation based 
system produces 14 motifs and Median string produces 64 
motifs. Hence Chapman Kolmogorov relation based systems 
performance is (64-14)/14=3.57=357% better than median 
string performance. For l-mer size 5 , Chapman Kolmogorov 
relation produces 70 motifs and Median string produces 1024 
motifs, as result Chapman Kolmogorov relation based system 
is (1024-70)/70=13.62=1362% better than Median string. For 
last data set the difference between two system reaches 
4654%.So it is clear that, as the length of l-mer increases, 
Chapman Kolmogorov relation based system will produce 
comparatively more less number of motifs than the median 
string algorithm. The graphical analysis in Fig. 10. also 
reflects the same impact. The gray line is gradually in upward 
trend for Median String outcome and the blue line is the 
Chapman Kolmogorov relation based system outcome. 

 

Fig. 10. Number of motifs generated 

       Same datasets have been imposed on core i7 computer 
with higher storage and RAM. In that case the processing time 
of Chapman Kolmogorov relation based system are also less 
than Median string based processing time. 

       We have checked every level time consumed by both 
methods. Median string method takes huge time for DNA 
consensus. Time consumed by these two methods convey their 
strengths  

TABLE IV.  TIME COMPARISION 

l-mer Size Chapman Kolmogorov 
relation Based Time(ms) 

Median String 
Time(ms) 

2 2.57 6.6 
3 6.86 30.4 
4 16.8 135 
5 41.4 590 
6 97.4 2590 
7 236 11100 

        Every rows of the table IV demonstrates that Chapman 
Kolmogorov relation based Median string algorithm 
consumed less time than Median string orientation. For l-mer 
size 2, the time difference is (6.6-2.57)ms=4.03 ms. It is about 
4.03/6.6=61% of the estimated time. That indicates that, 
Chapman Kolmogorov relation centric Median string  finds 
DNA consensus faster than ordinary Median string algorithm. 
The time differences have been increased as the length of l-
mer size increased. From the last row, Chapman Kolmogorov 
relation based analysis consumed 236 ms whereas ordinary 
median string algorithm consumed 11100 ms. There are 10864 
ms difference for l-mer  size 7.  However it can be applicable 
for small l-mer  size too. When l-mer size increases, we 
should consider Chapman Kolmogorov relation based system. 
In Fig. 11.we can see that, as the l-mer size increases, the time 
taken by the proposed system is much less than the time taken 
by the ordinary median string algorithm . Because the 
proposed system only produces significant motifs. 

 

Fig. 11. Time comparision 
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VI. CONCLUSION 
Median string algorithm generates all the 4l number of l-

mers, then fits each l-mer with the database and calculate the 
distance. In course of generating the l-mers, median string 
algorithm, generates significant and insignificant l-mers. 
Though this process takes much time but this is a certain 
process. Since we can generate a markov chain from the DNA 
data set, then also can find the chapman-kolmogorov relation. 
From this relation we generated a set of rules. Using that rules 
we produced a reduced set of significant motifs. Since the 
search space has been reduced, the proposed system takes 
much less time to find the consensus string. The way we have 
applied chapman-kolmogorov relation, there might be some 
other way of application. We believe that, further research 
may find some other way of application of chapman 
kolmogorov relation that may reduce the set of rules as well as 
number of generated motifs. We are working on that ground. 
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