

Chapman-Kolmogorov Relation Based Median String
Algorithm for DNA Consensus Classification

Mohammad Shibli Kaysar
Deptartment of Computer Science and Engineering

Chittagong University of Engineering and Technology
Chittagong, Bangladesh

*shibli.kaysar@gmail.com

Mohammad Ibrahim Khan
Deptartment of Computer Science and Engineering

Chittagong University of Engineering and Technology
Chittagong, Bangladesh

muhammad_ikhancuet@yahoo.com
Abstract—Consensus string is the most frequent common

pattern in a set of string. Consensus string is an important
feature of DNA sequence. Many algorithm have been introduced
to discover consensus string. Among them, median string
algorithm is the most popular one. Basically, that is a brute force
algorithm.DNA sequence is composed of a series of four letter
alphabet ∑={a,c,g,t}. If the size of the consensus string is l, then
the algorithm generates all the 4l number of l length strings
called motifs or l-mer. Then try to fit the motifs one by one with
the sequence. In this paper we have discovered a way to reduce
the search space using chapman kolmogorov relation. We found
that, the proposed system can find the same consensus string
within a shorter period of time than the time taken by the median
string algorithm. As the l-mer size increases, the proposed system
takes much less time than the median string algorithm. For l-mer
size 7, we found the proposed system is 47 times faster than the
median string algorithm.

Keywords—DNA,consensus, motif,chapman-kolmogorov

I. INTRODUCTION
Gene regulatory binding motifs are short DNA sequences

that control gene expression. The length of these motifs, are 6-
15 base pare long. These motifs do not contain any specific
starting and end point. Gene regulatory binding motifs can
start from anywhere within the DNA sequence. Since the
starting point is unknown, the end point also is unknown. The
only difference between regulatory motif and random
sequence of an equivalent length is that, regulatory motifs
occur more frequently than random sequence. The location of
regulatory motif may vary from sample to sample. Frequency
of these motifs, also vary from sequence to sequence. To
discover such regulatory motif from a DNA sequence involves
finding such a continuation of pattern [1]. This can be
illustrated in Fig. 1.

Any DNA sequence is a sequence of four symbol like a, c,
g, and t. Searching for a particular motif in a DNA sequence
involves searching a short pattern over the alphabet
∑={a,c,g,t}. The main idea of motif search can be divided into
two parts a) exploitation of appropriate model for
representation of motif sequence b) formulation of algorithm
for motif search. The most widely used motif models are
position weight metrics[2] and consensus sequence[3].Position
weight metric typically use statistical method, report in a short
time but there is no guarantee about a global optimum[4,5,6].
Exact algorithms use consensus model.

Fig. 1. Consensus string.

Most of the exact algorithms takes all string patterns of
length l over alphabet ∑ as candidate motifs, and output the
common pattern in all input sequences. In case exact
algorithms, initially the search space is O(|Ʃ |l), that grows
dramatically with the rise of | Ʃ | . As a result, most exact
algorithms are developed for sequences where |∑|=4. But in
case of protein data set where |∑|=20, these algorithms cannot
find a low conserved motif within a reasonable time.

The idea of motif stem increased the potency of exact
algorithms over large alphabet[7]. Consensus string (or closest
string or center string) issues are to search out a representative
string of a given set S of strings. The consensus issues are
major issues in multiple string comparison and have been
researched extensively [8,9,10,11,12,13,14,15] to unravel
several issues arising in computational biology like motif
finding, PCR primer style, and genetic probe style. Since most
of the consensus issues are NP-complete, researchers even
have designed fixed-parameter algorithms [10,16,17,18]
approximation algorithms [13,17,19,20,21,22,23] and
algorithms for a short range of strings [10,24,25].

II. MEDIAN STRING ALGORITHM FOR MOTIF SEARCH
Median string algorithm takes as input a set of t DNA

sequences. It then generates all possible l-mers of length l.
Since there are only 4 types of nucleotides in a DNA
sequence, the number of all possible l-mers is 4l. Then it starts
from the start of each sequence, goes to the end by placing
each l-mer and calculate distance. In this way for each l-mer ,

1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT 2019)

425

the minimum distance between the l-mer and each row is
calculated. The sum of minimum distance of all the rows for a
particular l-mer is the minimum distance of the l-mer with
the DNA sample. In this way, the minimum distance for all
the l-mers is calculated. The l-mer with lowest distance is the
consensus string. The algorithm is listed below:

Median_string_search()

{inputs: DNA,t,n,l
 output: bestword
 procedure:
 MedianStringSearch (DNA, t, n, l)

bestWord AAA…A
bestDistance ∞
 for each l-mer s from AAA…A to TTT…T

if TotalDistance(s, DNA) < bestDistance
 bestDistanceTotalDistance(s, DNA)
 bestWord  s
 return bestWord

}

In median string algorithm, all the 4l combination of l-
mers need to be examined. When the length of l increases, the
number of candidate l-mers increase according to 4l the
execution time also increases. But all the 4l l-mers are not
significant. A significant amount of the generated 4l l-mers,
will not be the consensus. Even some candidate motifs can be
found in no sequence. Those motifs got generated as a result
of permutation and combination. For those motifs too, median
string still perform calculation and contribute to the time
complexity. In this paper, we introduced chapman-
kolmogorov relation to exclude insignificant candidate motifs
and reduce the time complexity of median string algorithm.

III. CHAPMAN-KOLMOGOROV RELATION
 A time series of random variables is said to be a markov
chain if it has the following property:

It is said to be homogeneous or stationary if it also satisfies

 In other words, the time series of random variable is
markovian if the future value of the random variable depend
only on the value of random variable has at the present time.
The value of the random variable in the future must be
independent of the values that it had in the past. We showed
that one time series of random variables have these property
their behavior can be represented by a graph like the one
shown in Fig. 2.:

 The possible values that the random variables can have
are shown in circles, so in this example the random variables
can have the values A, B and C. Instead of talking about the

values that the random variables can have though, we state the
circles represents the states the system can be in.

Fig. 2. Markov chain

 The circles that represent states are connected by arrows
and above these arrows numbers between 0 and 1 appear that
represents the probability of moving between the states in a
single time step. In this example the probability of moving
from state c to state a is 0.8 in a single time step. Alternatively
we might state the probability that a random variable has value
c followed by a is equal to 0.8. From this markov chain, we
can construct a transition probability matrix. We said that the
rows in the matrix represent the initial states the system is in
and the columns represents the states where the system moves
at the next step. The position (a,b) in the matrix shows the
probability of moving from state a to state b.

Fig. 3. One step transition

 We now know how to obtain probability of T2 being equal
to a,b,c if T1 =a. We can read this information either from the
transition graph or from the one step transition probability
matrix. What we would like now is to determine the
conditional probability that T3 takes on these three different
values. In other words we would like to know, whether or not
we can make prediction about the state of the system after two

426

or more time steps rather than after a single step. To see how,
let us first consider the probability to the following happens in
the future. We start with T1 =a, then move to T2 =c then again
move to T3=b. We know that we can get the probability of a
single step from a to c from the transition matrix. Once we
arrive in state c , i.e T2=c, the system immediately forgets that
T1 was equal to a. The process is after all markovian and the
state of the system was in the past do not affect the probability
of the states in the future. Once we have moved from T1=a to
T2=c, T2=c becomes the present state of the system. As a
consequence of this, we can also get the probability of the
second transition T2=c to T3=b from the one step transition
probability matrix. Because of the markov property, the event
of moving from state T1=a to T2=c is independent of the event
of moving from state T2=c to T3=b. The markov property
ensures that the system immediately forget everything that
happened in the past as soon as that is happened. Thus two
adjacent transition are completely independent of each other.
The only thing that affect the value of T3 is the value of T2.
Now remember that we can obtain the probability that two
independent event occur by multiplying the individual
probability. Consequently for this particular problem, we can
calculate the probability that the system will be moving from
T1=a to T2=c then from T2=c to T3=b by multiplying the
conditional probability T3=b given T2=c.

Let’s now suppose, we want to calculate the probability for
moving from state a to state b over two steps. There are three
ways that can happen. We can go from state a to state c then
on to state b. We can go from state a to state b then remain in
state b. We can remain in state a for one step and then transfer
to state b. The probability of each of the paths is shown in fig.

Fig. 4. Two step transition

 Each of these pathway is mutually exclusive. As the
random variable T2 can only have one value, it cannot have
two value simultaneously. We can thus obtain the total
probability of moving from step a to step b over the course of
two step by adding the probabilities of each of the paths. If we
have only three steps, we can write everything explicitly. If we

have more than three steps we can write that as a series
notation like Eq
 .

 This sum here rounds up all the possible value that the
random variable T2 can take. This sum of product is nothing
more than the definition of the matrix product. Because the
markov chain is homogeneous, the first matrix and second
matrix are identical. We can thus obtain the two step
probability matrix by multiplying the one step probability
matrix by itself. In general,

This is what is called chapman kolmogorov relation.

IV. CHAPMAN KOLMOGOROV RELATION BASED
MEDIAN STRING ALGORITHM

 Consider a database with 10 data samples
(S1,S2,……,S10). Each sample is compose of 80 nucleotides.

TABLE I. DNA DATA SET

SID Sample

S1 tagtggtcttttgagtgtagatctggagggaaagtatttccaccagttcggggtcacccagcag
ggcagggtgacttaat

S2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttggatccgaaactgg
agtttaatcggagtcctt

S3 gttacttgtgagcctggttagacccgaaatataattgttggctgcatagcggagctgacatacg
agtaggggaaatgcgt

S4 aacatcaggctttgattaaacaatttaagcacgtaaatccgaattgacctggtgacaatacgga
acatgccggctccggg

S5 accaccggataggctggttattaggtccaaaaggtagtatcgtaataatggctcagccatgtca
atgtgcggcattccac

S6 tagattcgaatcgatcgtgtttctccctctggtggttaacgaggggtccgaccttgctcgcatgt
gccgaacttgtaccc

S7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgcagatccgaacgtctctg
gaggggtcgtgcgcta

S8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggcta
ctggtgtgatccgta

S9 ttcttacacccttctttagatccaaacctgttggcgccatcttcttttcgagtccttgtacctccattt
gctctggtgac

S10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctggtctgccctaacctacaggt
cgatccgaaattcg

 From this database we can construct a transition matrix
like the following:

Fig. 5. Transition matrix

 The transition matrix contains the number of occurance
of each of the sixteen possible digrams in the database. For

427

example Transistion(1,1)=49, that means there are 49 aa in
the database. Similarly, Transition(4,4)=59, which means
there are 59 tt in the data base. There are total 790 digrams in
the database. Dividing all the elements of the matrix by sum of
element, produces transition probability matrix like Fig. 6.
A[i,j] represents the probability of transition from position i to
position j.

Fig. 6. Transition probability matrix

 In this matrix A(1,1) indicates the probability of finding
an a after a, A(2,3) indicates the probability of finding a g
after c etc. If we multiply A by itself, we will have a matrix
that indicates the probability of occurance of a particular
nucleotide at the second step after a particular nucleotide. let
us suppose, we are searching for 5 nucleotide sequence i.e our
l-mer size is 5. In this case, if we multiply A by itself by 4
times, we will have a matrix like Fig. 7. This matrix contains
the probability at fifth position.

Fig. 7. Transition probability matrix after five step.

 This matrix indicates the probability of occurance of a
particular nucleotide after 5 step of a particular nucleotide. For
example, A(1,1) indicates the probability of occurance of an a
after five step of an a. There are 16 elements in the matrix.
Summing all the elements and then dividing that value by 16
we will get a threshold value. For the values that are greater
than the threshold value, placing a 1 at that location and
placing a 0 at other location we will have another matrix like
Fig. 8. We can call this a significant matrix S. This matrix
tells which transitions are significant and which transitions are
not. The significant matrix contains 0’s at some positions and
1’s at some positions. 0’s means insignificant, where as 1’s
mean significant.

Fig. 8. Significant matrix

 Having the significant matrix, we generate some rules acc
ording to the significant matrix. For example, S(2,4)=1 means
that the rule ct is significant, S(3,4)=1 means rule gt is sig
nificant, S(2,3)=0 means rule cc is insignificant etc. As per t
he significant matrix, generated rules are listed in table II.

TABLE II. GENERATED RULES

First element
(l1)

Second
element(l2)

Count Rule

c t 56 ct
g g 58 gg
g t 53 gt
t c 55 tc
t g 56 tg
t t 59 tt

 From these rules, we can generate some motif of length 5.
 Any motif must start either from a or c or g or t. We will have
 four trees for motifs starting with four nucleotide. For exampl
e one tree is depicted below in Fig. 9.

Fig. 9. Motif generation tree

 From all the four trees, we will have a short list of motifs
which is much shorter than 4l. We will now use this short set
of motifs as the search space of median string algorithm.

V. RESULT AND IMPLEMENTATION
 To check the idea behind this concept, we have used
Jupyter Notebook as Python programming language. The
system configuration is:

 Processor: Intel core i7 CPU
 Clock rate:3.6 GHz
 HardDisk:1000GB
  RAM:8GB

 Chapman Kolmogorov relation based median string
algorithm accelerates the whole process easy and faster. We
have compared the performance of Chapman Kolmogorov
relation based median string algorithm with the performance
of median string algorithm. In this demonstration we have
compared the number of motifs generated by Chapman
Kolmogorov relation based median string algorithm and
median string algorithms for different l-mer size. Since our
proposed system produces a only the significant motifs, for all
l-mer size the number of motifs generated by the proposed
system are found to be shorter than those produced by the

428

median string algorithms. The scenario is depicted in the table
III.

TABLE III. NUMBER OF GENERATED MOTIFS

l-mer Size Number of Motifs
(Chapman Kolmogorov

Relation Based)

Number of Motifs
(Median String)

2 6 16

3 14 64

4 31 256

5 70 1024

6 157 4096
7 353 16784

 The table narrates the results of both the methods used
here. The results are the number of motifs generated by both
the methods for different l-mer size. For l-mer size 2,
Chapman Kolmogorov relation based system generates 6
motifs whereas Median string algorithm generates 16 motifs.
So for l-mer size 2, Markov chain based system is (16-
6)/6=1.66=166% better than Median string based system.

 For l-mer size 3, Chapman Kolmogorov relation based
system produces 14 motifs and Median string produces 64
motifs. Hence Chapman Kolmogorov relation based systems
performance is (64-14)/14=3.57=357% better than median
string performance. For l-mer size 5 , Chapman Kolmogorov
relation produces 70 motifs and Median string produces 1024
motifs, as result Chapman Kolmogorov relation based system
is (1024-70)/70=13.62=1362% better than Median string. For
last data set the difference between two system reaches
4654%.So it is clear that, as the length of l-mer increases,
Chapman Kolmogorov relation based system will produce
comparatively more less number of motifs than the median
string algorithm. The graphical analysis in Fig. 10. also
reflects the same impact. The gray line is gradually in upward
trend for Median String outcome and the blue line is the
Chapman Kolmogorov relation based system outcome.

Fig. 10. Number of motifs generated

 Same datasets have been imposed on core i7 computer
with higher storage and RAM. In that case the processing time
of Chapman Kolmogorov relation based system are also less
than Median string based processing time.

 We have checked every level time consumed by both
methods. Median string method takes huge time for DNA
consensus. Time consumed by these two methods convey their
strengths

TABLE IV. TIME COMPARISION

l-mer Size Chapman Kolmogorov
relation Based Time(ms)

Median String
Time(ms)

2 2.57 6.6
3 6.86 30.4
4 16.8 135
5 41.4 590
6 97.4 2590
7 236 11100

 Every rows of the table IV demonstrates that Chapman
Kolmogorov relation based Median string algorithm
consumed less time than Median string orientation. For l-mer
size 2, the time difference is (6.6-2.57)ms=4.03 ms. It is about
4.03/6.6=61% of the estimated time. That indicates that,
Chapman Kolmogorov relation centric Median string finds
DNA consensus faster than ordinary Median string algorithm.
The time differences have been increased as the length of l-
mer size increased. From the last row, Chapman Kolmogorov
relation based analysis consumed 236 ms whereas ordinary
median string algorithm consumed 11100 ms. There are 10864
ms difference for l-mer size 7. However it can be applicable
for small l-mer size too. When l-mer size increases, we
should consider Chapman Kolmogorov relation based system.
In Fig. 11.we can see that, as the l-mer size increases, the time
taken by the proposed system is much less than the time taken
by the ordinary median string algorithm . Because the
proposed system only produces significant motifs.

Fig. 11. Time comparision

429

VI. CONCLUSION
Median string algorithm generates all the 4l number of l-

mers, then fits each l-mer with the database and calculate the
distance. In course of generating the l-mers, median string
algorithm, generates significant and insignificant l-mers.
Though this process takes much time but this is a certain
process. Since we can generate a markov chain from the DNA
data set, then also can find the chapman-kolmogorov relation.
From this relation we generated a set of rules. Using that rules
we produced a reduced set of significant motifs. Since the
search space has been reduced, the proposed system takes
much less time to find the consensus string. The way we have
applied chapman-kolmogorov relation, there might be some
other way of application. We believe that, further research
may find some other way of application of chapman
kolmogorov relation that may reduce the set of rules as well as
number of generated motifs. We are working on that ground.

REFERENCE
[1] M.Kellis, N.Patterson, B. Birren, B.Berger, and E. S. Lander, “Methods

in comparative genomics: Genome correspondence, gene identification
and regulatory motif discovery”. Journal of Computational
Biology,Vol.11,pp.319–355,2004.

[2] J. D.Thompson,D. G. Higgins, and T. J.Gibson,“CLUSTAL
W:Improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice”. Nucleic Acids Research, Vol.22, pp. 4673–4680,1994.

[3] T. D. Schneider, “Consensus sequence Zen”. Applied Bioinformatics,
Vol. 1. pp. 111–119, 2002.

[4] C.Lawrence, S.Altschul, M.Boguski, J.Liu, A.Neuwald, and J.Wootton ,
“Detecting subtle sequence signals: A gibb”s sampling strategy for
multiple alignment”. Science, Vol. 262, pp. 208–214, 1993.

[5] T.Bailey, and C.Elkan, “Fitting a mixture model by expectation
maximization to discover motifs in biopolymers”. 2nd International
Conference on Intelligent Systems for Molecular Biology, 14-17
August,Stanford,CA, pp. 28–36, 1994.

[6] Y.Zhang, H.Huo, and Q.Yu, “A heuristic cluster-based em algorithm for
the planted (l, d) problem”. Journal of Bioinformatics and
Computational Biology, Vol. 11, no. 4, pp. 1350009, 2013.

[7] P.Kuksa, and V.Pavlovic, “Efficient motif finding algorithms for large-
alphabet inputs”. BMC Bioinformatics, Vol. 11, no. Suppl 8, p. S1,
2010.

[8] S.Altschul, and D.Lipman, “Trees, stars, and multiple sequence
alignment”. SIAM Journal on Applied Mathematics, Vol.49, pp.197–
209, 1989.

[9] J.Gramm, F.Hüffner, and R.Niedermeier, “Closest strings, primer
design, and motif search”. Proceedings of the Sixth Annual International
Conference on Computational Biology, RECOMB 2002,18-21 April,
Washington, DC, USA,pp. 74–75, 2002.

[10] J.Gramm, R.Niedermeier, and P.Rossmanith, “Exact solutions for
closest string and related problems”. Proceedings of the 12th
International Symposium on Algorithms and Computation, 19-21
December,Christchurch,Newzealand, pp. 441–453, 2001.

[11] R.M.Karp, “Mapping the genome: some combinatorial problems arising
in molecular biology”.Proceedings of the 25th Annual ACM Symposium
on Theory of Computing, 16-18 May, San Diego,CA,USA,pp. 278–285,
2001.

[12] M.Li, B.Ma, and L.Wang, “On the closest string and substring
problems”. Journal of the ACM, Vol.49, no.2, pp.157–171, 2002.

[13] H.Mauch, M.J.Melzer, and J.S.Hu, “Genetic algorithm approach for the
closest string problem”. Proceedings of the 2nd IEEE Computer Society
Bioinformatics Conference,pp. 560–561, 2003.

[14] C.N.Meneses, Z.Lu, C.A.S.Oliveira, and P.M. Pardalos, “Optimal
solutions for the closest-string problem via integer programming”.
INFORMS Journal on Computing, Vol.16, no.4, pp.419–429, 2004.

[15] F.Nicolas, and E.rivals, “Complexities of the centre and median string
problems”. Proceedings of the 14th Symposium on Combinatorial
Pattern Matching, 25-27 June, Michoacan , Mexico, pp. 315–327, 2003.

[16] J.Gramm, R.Niedermeier, and P.Rossmanith, “Fixed-parameter
algorithms for closest string and related problems”. Algorithmica,
Vol.37, no.1, pp.25–42, 2003.

[17] B.Ma, and X.Sun, “More efficient algorithms for closest string and
substring problems”. Proceedings of the 12th Annual International
Conference on Research in Computational Molecular Biology,30
March-2 April, Singapore, pp. 396–409, 2008.

[18] N.Stojanovic, P.Berman, D.Gumucio, R.Hardison, and W.Miller, “A
linear-time algorithm for the 1-mismatch problem”. Proceedings of the
5th International Workshop on Algorithms and Data Structures, 6-8
August, Nova Scotia, Canada,pp. 126–135, 1997.

[19] A.Ben-Dor, G.Lancia, J.Perone, and R.Ravi, “Banishing bias from
consensus sequences”.Proceedings of the 8th Symposium on
Combinatorial Pattern Matching, Aarhus,Denmark, pp. 247–261, 1997.

[20] L.Gasieniec, J.Jansson, and A.Lingas, “Efficient approximation
algorithms for the Hamming center problem”. Proceedings of the 10th
ACM-SIAM Symposium on Discrete Algorithms, 17-19 January,
Baltimore, MD, USA, pp. 905–906,1999.

[21] L.Gasieniec, J.Jansson, and A.Lingas, “Approximation algorithms for
Hamming clustering problems”. Journal of Discrete Algorithms, Vol.2,
no.2, pp.289–301, (2004).

[22] K.Lanctot, M.Li, B.Ma, S.Wang, and L.Zhang, “Distinguishing string
selection problems”.Proceedings of the 10th ACM-SIAM Symposium on
Discrete Algorithms, 17-19 January, Baltimore, MD, USA, pp. 633–642,
1999.

[23] M.Li, B.Ma, and L. Wang, “Finding similar regions in many strings”.
Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, pp. 473–482, 1999.

[24] C.Boucher, D.Brown, and S.Durocher, “On the structure of small motif
recognition instances”.Proceedings of the 15th Symposium on String
Processing and Information Retrieval, pp. 269–281, 2008.

[25] S.Sze, S.Lu, and J.Chen, “Integrating sample-driven and pattern-driven
approaches in motif finding”. Proceedings of the 4th Workshop on
Algorithms in Bioinformatics, pp. 438–449, 2004.

430

