
Divide-and-Conquer Method
Ratul Bhowmick, Md Ibrahim Sadek Bhuiyan, Md. Sabir Hossain,

Muhammad Kamal Hossen
Ahsan Sadee Tanim

Department of Computer Science and Engineering
Chittagong University of Engineering and Technology (CUET)

Chittagong-4349, Bangladesh
Email: u1604038@student.cuet.ac.bd, u1604036@student.cuet.ac.bd,

sabir.cse@cuet.ac.bd, kamalcsecuet@gmail.com

Department of Computer Science and
Engineering

The International University of Scholars
Dhaka-1212, Bangladesh

Email: ahsansadeecuet@gmail.com

Abstract—The general algorithms which are followed to solve
the Longest Common Subsequence (LCS) problems have both
time complexity and space complexity of O(m * n). To reduce
this complexity, two ways are proposed in this work. One is the
use of Divide and Conquer approach, and another one is
changing the data structure from two-dimensional array to
queue. By using these approaches, an algorithm has been
developed and implemented for the long length string in this
paper. The time complexity after using these approaches

becomes a function of logarithm which has been
shown with proper explanation and the space complexity after
using queue data structure becomes linear O(n).

Keywords—Longest Common Subsequence, Queue, Divide
and conquer, Dynamic Programming, Recursion

I. INTRODUCTION

Longest Common Subsequence (LCS) is a popular
algorithm to find the longest subsequence which is a
common group of sequences. Normally, two sequences are
given and from that, LCS has been found out. A
subsequence is gained from another sequence by removing
some elements but can't change the series of the other
elements. There are many other algorithms to find common
subsequence. Most of them follow the greedy approach. But
LCS follows the dynamic approach. It can be decided in
polynomial time.

The general LCS algorithm takes O(m*n) time. In this
paper, there has been proposed an algorithm which finds the
solution by following an optimal infrastructure. The
problem which is given is broken into subproblems which is
smaller and simple, which will be broken into yet further
smaller subproblems until we find the final answer. For this
approach, time and space complexity is optimal. The time

complexity becomes for the best case and

f or the average case. But the space
complexity becomes linear by using data structure queue

instead of two-dimensional array and it is in both best
and worst cases. Although this algorithm is not unique, it
can become really complex for a very bigger length. But for
most of the cases of finding common subsequence, it finds
the solution in optimum time.

Many researchers have researched about LCS over a
period of time. They have given many results. But still it is
very complex and there is a huge area left to research on this
topic. The time and space needed to solve a problem by

using LCS are still high. The main objectives of this research
are:

1. To reduce the time complexity and find an optimum a
bigger length string.
2. To reduce the space complexity by changing the data
structure.
3. To use a new approach (Divide and Conquer) and to see
the effects of using this approach.
 The remainder of this paper is organized as follows.
Section II provides a brief review of related work. In section
III, we discuss in detail the proposed algorithm. Section IV
contains experimental results and analysis. Finally, we
conclude and sketch future research directions in Section V.

II. RELATED RESEARCH

J. Liu and S. Wu show that it is possible to find out the
Longest Common Subsequence in linear time using a 2D
array [1]. The result lies between in the diagonal line of the
two-dimensional array. They used for them theorems
provided in [2], [3]. Paper [3] has also shown that the space
complexity can be linear in the longest common
subsequence. This paper merges two algorithms to reduce
the space complexity.

 K. Kwarciak and P. Formanowicz propose a DNA
sequencing technique using a greedy approach. In their
algorithm, the greedy method is applied to two different
sequences at the same time. That's why this greedy
algorithm is much faster than the dynamic approach. This
approach can be used as the longest common subsequence.
J. F. Myoupo and D. Semé used a parallel algorithm to
minimize time complexity [5]. This algorithm runs in
O(logN*logM) which is much smaller than the existing LCS
algorithm. In [6], this problem is solved in O(log m*log n)
with O(n*m/log m) processors. The CRCW bound is
O(log(n(log*log m)2)) time where the processors are
O(m*n/log* log m).
 In paper [7], X. Tang et al. used a block system by which
the process become faster than before. The idea of a B+ tree
and O tree is used in this algorithm which has less run time
than other algorithms. For that reason, they get a result
which takes only 36.5 mm^s. Paper [8] proposes a data-
structure that helps to improve the competence of suffix
array in the algorithm by storing in external memory model.
The authors of this research paper also propose and
implement two parallel algorithms (Index Partitioning and

Common Subsequence Problems using Queue and
An Approach for Improving Complexity of Longest

1414

1st International Conference on Advances in Science, Engineering and Robotics Technology 2019 (ICASERT 2019)

Data Partitioning) on a PC cluster. Here the ASM problem
is solved in DNA sequences with the help of suffix array
algorithms.
 R. L. Goldfeder et al. proposes a system where the DNA
sequence/String is divided into some small pieces, and it
will be reordered programmatically such that it can enable
fast and efficient sequencing for human genomes or for a
string [9]. In this paper, they divided the DNA or String
sequence in a small portion and get all data and then
merged.
 Paper [10] presents real-time sequencing and single
molecule data that is obtained from a DNA polymerase.
DNA polymerase is performed in a continuous template
directed fusion using four different fluorescently categorized
dNTPs. The data is reported directly used to reveal the
distinct polymerization states corresponding to DNA
structure. The paper shows 90% accuracy in medical
science. F. Chin and C.K. Poon demanded that there has L-
matrix on the dynamic approach in LCS [11]. They showed
the time complexity becomes O(ns+min(ds, lm)) and the
space complexity becomes O(ns+d). They used different
data structures to obtain variations of the basic algorithm.

III. THE PROPOSED ALGORITHM

 In the proposed algorithm, the existing Longest Common
Subsequence algorithm has just modified by using the queue
data structure and the divide-and-conquer method. The

existing general LCS algorithm works on time. It
can be made O(1) if the size of those strings is minimized.
Here this idea is used. Let, two string A(A1, A2,….., An)
and B(B1, B2,….Bn) are given and C(C1, C2,….., C k) is
the sequence of two string. If A >= B, then this algorithm
will divide the A string into small parts until the size of the
string becomes less than 4. Then these small string and the
B string will use in the second process. From the algorithm
in Fig. 2the largest string is divided into several small
strings (as shown in Fig.3). The small string and the second
string are applied in the second algorithm which is given in
Fig. 3. The whole algorithm runs in O(n*log(n)) time in the
best case. This algorithm takes linear space because of using
the queue instead of a two-dimensional array.

Fig.1 The proposed methodology

From Fig.1, it is clear that there have two steps. The first
step is the divide-and-conquer method and the second step is
DP.

A. Algorithm

In this algorithm, we have two phases. In the first phase, the
large string will be made into a small string by the divide
and conquer method. In the algorithm in Fig. 2, the
algorithm of the first phase is given.

Function making_a_short_string(start , end)
1. If(start – end <= 4)
2. return LCS(A[start … end] , B [0 …m])
3. end
4. mid = (start+end)/2
5. return making_a_short_string(start, mid) +

making_a_short_string(mid+1, end);
End

Fig.2 Pseudo code describing the divide-and-conquer method to short the
large string

 From string A, when the base case arrives in the first
phase, it will execute the second algorithm which is given in
Fig. 3. From this algorithm, we can get the sequence.

Function LCS(s1[0…n] , s2[0 …m])
Bool Array[0……….m)

1. Declare a queue data structure Q;
2. matching_number <- 0
3. for i:= 0 to n
4. for j:= temporary to m
5. if i == 0 or j == 0
6. if i == 0
7. Q<- 0
8. End
9. if j == 0
10. Q <- 0
11. End
12. End
13. Else
14. if s1[i-1] == s2[j-1]
15. diag <- Q.front and pop the front value
16. previous_value <- diag+1
17. Q <- previous_value
18. If prevous_value> matching_number
19. temporary <- j
20. Array[j]<- true
21. Matching_number = temporary
22. If j == n-1 return Matching_number
23. End
24. End
25. Else
26. diag <- Q.front
27. Pop the front value of Q
28. Vertical_value <- Q.front
29. Temp = max(previous_value,

Vertical_value)
30. Previous_value <- temp
31. Q <- previous_value
32. End

1415

33. If j == m
34. Pop the front value of the queue
35. end
36. end
37. end
38. end
39. Return matching_number
40. End

Fig. 3 Pseudo Code describing the algorithm of LCS

 From this algorithm, we can get an array “Array” which
track the sequence. If we iterate through the “Array”, we
will able to get the longest common subsequence C [0….m]
which is “Array”.

B. Example

Let Two string A= “abcadbcadadcaaddaddcdcddcdadccdaa
...aaddaada” and B = “abdcad” and
C is the sequence where C is equal the size of the min (|A|,
|B|). Here B is small so the size of |C| = |B|Here |A|>|B|, so
we will divide A into many small strings by algorithm
which is shown in the Fig. 4. From the best case of the
string, the Strings will go to the next algorithm, where the
small string and the new string will go through the
algorithm in Fig. 3.
 Let the best case string from the algorithm is “abca” and
the B string is “abdcad”. Then the process will get an LCS
between those two strings where the two strings are small so
it will run in constant time. Then the subsequence can get by
Fig. 3, when i is zero means at the first row of the algorithm,
then the queue will be 0 0 0 0 0, then the second loop the
first element will be zero then the queue will be 0 0 0 0 0 0,
then if the i-th element and the j-th element is similar then
the front value of queue will be incremented and it will be
popped out and pushed in the queue, then the queue will be
0 0 0 0 0 1. Then if the i-th and j-th are not similar then it
will get from the previous value and the vertical value.
 To get the vertical value firstly popped out the first value
of the queue then take the new front value. Then compare
which is maximum and push it to the queue. Then the queue
will be, 0 0 0 0 1 1 by continuing this process after the
second-row finishes then the queue will look like 0 1 1 1 1.
Here the queue is using, again and again, the first value is
popped and the new value is inserted. Lastly, the queue will
be 0 1 2 3 4. Then it will return the value 4. During this

method, a temporary "Array" is declared which will track
the elements which are the subsequence of both strings.
Strings will go to the next algorithm, where the small string
and the new string will go through the algorithm in Fig. 3.
Let the best case string from the algorithm is "abca" and the
B string is "abdcad". Then the process will get an LCS
between those two strings where the two strings are small so
it will run in constant time. When i is zero means at the first
row of the algorithm then the queue will be 0 0 0 0 0, then
the second loop the first element will be zero then the queue
will be 0 0 0 0 0 0, then if the i-th element and the j-th
element is similar then the front value of queue will be
incremented and it will be popped out and pushed in the
queue, then the queue will be 0 0 0 0 0 1. Then if the i-th
and j-th are not similar then it will get from the previous
value and the vertical value. To get the vertical value firstly
popped out the first value of the queue then take the new
front value. Then compare which is maximum and push it to
the queue. Then the queue will be 0 0 0 0 1 1. By continuing
this process, after the second-row finish then the queue will
look like 0 1 1 1 1.
 Here the queue is using again and again, the first value is
popped and the new value is inserted. Lastly, the queue will
be 0 1 2 3 4. Then it will return the value 4. During this
method, a temporary “Array” is declared which will track
the elements which are the subsequence of both strings.

IV. EXPERIMENTAL RESULT & DISCUSSION

 The time complexity of this proposed method is n*log(n)
and the space complexity is O(n). The process is given in
the next sections.

A. Time Complexity

Let, two strings are A[0,….k] and B [0,…..m] and n is the
size of min(|A|, |B|). The algorithm has two parts. One is for
the divide and conquers method which is recursive and one
is a dynamic approach method. Let the time complexity of
the dynamic approach is T1(c) and the time complexity of
the total algorithm is T(n).
Then, T(n) = T1(c) + 2T(n/2)
 = T1(c) + 2{ 2T(n/4) + T1(n/2) }
 = 2T1(c) + 4T(n/4)
 = 2T1(c) + 4{ 2T(n/8) + T1(n/4) }
 = 3T1(c) + 8T(n/8)

 = kT1(c) + 2^k T(n/2^k) -------- (i)

Fig. 4 Divide-and-Conquer method of the largest string

1416

Let, n/2^k = 1
 n = 2^k
 log(n) = k [log base 2]

Substituting k in (i),
 T(n) = log(n)T1(c) + n*log(n) -------- (ii)
So, the general time complexity is log(n)T1(c) +
n*log(n).The best, worst and the average case is depends on
the T1(n) term.

B. Best Case Analysis

From section VI A, the general time complexity is
log(n)T1(c) + n*log(n). Let the new sting D and the second
string is B. If the new string is the proper subset of the
second string (D ⊂ B), then the T1(c) will the constant time.
Because all the elements of D are within in B, and the size
of the D is less than 4, then the second algorithm will run on
constant time. So, T1(c) will be 1.
From equation (ii),T(n) = log(n)*1 + n*log(n)
So, the best case of this algorithm is n*log(n) where n is the
size of min (|A|, |B|).

C. Average Case Analysis

The Average case of this algorithm is similar to the best
case of the algorithm. Let the new sting D and the second
string is B. In the average case, D is the subset of B, means
that D has some elements which are in the B. So every
recursive method the size of B is reducing, for that reason
the algorithm has to go through the size of the B string. The
second algorithm will run on linear time. So, T1(c) will be
m.
From equation (ii),T(n) = log(n)*m + n*log(n)

So, the best case of this algorithm is k*log(n) where n is the
size of min(|A|, |B|) and k is the size of max(|A|, |B|)

D. Worse Case Analysis

The general time complexity is log(n)T1(n) + n*log(n). Let
the new sting D and the second string is B. If D' is the
proper subset of B means that there has no element in D
which is in B. So, it will iterate through all the elements in
D so the algorithm will run on O(k*m) where the size of the
D is k and the B is m. So, the worst case time complexity
will be T(n) = log(n)* k*m + n*log(n) where k is log(n)/2.

Then, T(n) = m*log(n)^2 + n*log(n). So, the worst case of
this algorithm is m*log(n)^2, where n is the size of min(|A|,
|B|) and m, is the size of max(|B|,|A|).

E. Space Complexity

The space complexity of the first algorithm is O(n/2+1)~
O(n/2) and the space complexity of the second algorithm is
O(n) because instead of a 2D array, there is used a data
structure queue. The space complexity of queue for the best
and worst case is O(n). So the space complexity of the full
algorithm is O(n) means that the program is running on a
linear space algorithm.
 A comparison between our proposed method and the
proposed framework of other authors is given in Table 1.
From Table 1, it is clearly seen that our algorithm’s space
complexity is better than any other of these mentioned

algorithms and the time complexity becomes a logarithmic
function which is optimal than some of the other algorithms.

TABLE I Comparison of time and space complexity

TABLE II Comparison of time with General LCS algorithm

 In this paper, the space complexity of LCS is highlighted.
The space complexity of this algorithm is linear. The best
space complexity of queue is O(n) as well as the space
complexity is O(n). Divide-conquer approach has been used
here. For this approach, this will take constant time to solve
a problem. Later the data structure has been changed from a
two-dimensional array to queue. For this, space will be
reduced. In Table II it has shown time comparison between
general LCS and our algorithm.
 Generally, for LCS, the worst time complexity becomes
exponential and it becomes very complex to find a
subsequence from a very large string. But in the proposed
case of this paper, the worst time complexity is O(m*((log
n)^2)) for which it becomes very optimal to get the final
result from a very large string. But not for only the worst
case, In the time complexity for best case in the proposed
LCS is O(n*log(n)). It is very optimum and time-consuming
to get the final result.

V. CONCLUSION

 The LCS algorithm is studied and researched by a lot of
researchers. Here, we have developed an algorithm by using
a divide and conquer approach and a queue. By using this
approach we have made the space complexity linear O(n).
The time complexity becomes a function of the logarithm.
For the best case, it becomes O(n*log(n)) where n is the
length of the smallest string between the two string. For
average time complexity, it becomes O(k*log(n)) where k is
the length of the largest string between the two string. For
the worst case, the time complexity is O(m*log^2(n)) where
m is the length of the bigger string. Normally the time
complexity for the general LCS algorithm over the world is

Algorithm

Best
time

complex
ity

Average
time

complexit
y

Worst
time

complexity

Space
complex

ity

LCS Ω(m*n) Θ(m*n) O(m*n) O(m*n)

Ref. [1] Ω(n*n) Θ(n*n) O(n*n) O(m+n)

Ref. [2] Ω(n(m-
p))

Θ(n(m-p)) O(n*m) O(m+n)

Ref. [3] Ω(m*n) Θ(m*n) O(m*n) O(n)
Ref. [11] Ω(ns+mi

n(ds,lm))
Θ(ns+min(
ds,lm))

O(ns+min(
ds,lm))

O(n*m)

Our
Algorithm

Ω(n*log(
n)),
n=max(|
A|, |B|)

Θ(k*log(n
),
k=max(|A|
, |B|)

m*log(n)^2
+ n*log(n),
m=max(|A|,
|B|),
n=max(|A|,
|B|)

O(n)

Length of two string
(n and m)

LCS(sec) Our Algorithm
(sec)

n<100
&& m<100

 0.932 0.812

n<10000
&& m<10000

 3.003 2.855

1417

O (n^2). We are able to show that our algorithm is better
which gives results faster and use linear space than the used
algorithm.

REFERENCES
[1] J. Liu and S. Wu, “Research on longest common subsequence

fast algorithm,” in 2011 International Conference on Consumer
Electronics, Communications, and Networks, CECNet 2011 -
Proceedings, 2011.

[2] N. Nakatsu, Y. Kambayashi, and S. Yajima, “A longest common
subsequence algorithm suitable for similar text strings,” Acta
Inform., 1982.

[3] D. S. Hirschberg, “Algorithms for the Longest Common
Subsequence Problem,” J. ACM, 1977.

[4] K. Kwarciak and P. Formanowicz, “A greedy algorithm for the
DNA sequencing by hybridization with positive and negative
errors and information about repetitions,” Bull. POLISH Acad.
Sci. Tech. Sci., vol. 59, no. 1, 2011.

[5] J. F. Myoupo and D. Semé, “Time-Efficient Parallel Algorithms
for the Longest Common Subsequence and Related Problems,” J.
Parallel Distrib. Comput., 1999.

[6] A. Apostolico, M. Attalah, L. Larmore, and S. Mcfaddin,
Efficient parallel algorithms for string editing and related
problems, SIAM J. Comput. 19 (1990), 968?988.

[7] X. Tang, R. Tian, and D. F. Wong, "Fast evaluation of
sequencepair in block placement by longest common
subsequence computation,” IEEE Trans. Comput. Des.Integr.
Circuits Syst., 2001.

[8] L. L. Cheng, D. W. Cheung, and S. M. Yiu, “Approximate string
matching in DNA sequences,” in Proceedings - 8th International
Conference on Database Systems for Advanced Applications,
DASFAA 2003, 2003.

[9] R. L. Goldfeder, D. P. Wall, M. J. Khoury, J. P. A. Ioannidis, and
E. A. Ashley, “Human Genome Sequencing at the Population
Scale: A Primer on High-Throughput DNA Sequencing and
Analysis,” Am. J. Epidemiol., 2017.

[10] J. Eid et al., “Real-time DNA sequencing from single polymerase
molecules,” Science (80-.)., 2009.

[11] F. Chin, and C.K. Poon, Chung, "Fast algorithm for computing
longest common subsequences of small alphabet size," Journal of
Information Processing. 13. 463-469, 1991.

1418

