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Abstract—The general algorithms which are followed to solve 
the Longest Common Subsequence (LCS) problems have both 
time complexity and space complexity of O(m * n). To reduce 
this complexity, two ways are proposed in this work. One is the 
use of Divide and Conquer approach, and another one is 
changing the data structure from two-dimensional array to 
queue. By using these approaches, an algorithm has been 
developed and implemented for the long length string in this 
paper. The time complexity after using these approaches 

becomes a function of logarithm  which has been 
shown with proper explanation and the space complexity after 
using queue data structure becomes linear O(n). 

Keywords—Longest Common Subsequence, Queue, Divide 
and conquer, Dynamic Programming, Recursion 

I. INTRODUCTION 

Longest Common Subsequence (LCS) is a popular 
algorithm to find the longest subsequence which is a 
common group of sequences. Normally, two sequences are 
given and from that, LCS has been found out. A 
subsequence is gained from another sequence by removing 
some elements but can't change the series of the other 
elements. There are many other algorithms to find common 
subsequence. Most of them follow the greedy approach. But 
LCS follows the dynamic approach. It can be decided in 
polynomial time. 

The general LCS algorithm takes O(m*n) time. In this 
paper, there has been proposed an algorithm which finds the 
solution by following an optimal infrastructure. The 
problem which is given is broken into subproblems which is 
smaller and simple, which will be broken into yet further 
smaller subproblems until we find the final answer. For this 
approach, time and space complexity is optimal. The time 

complexity becomes  for the best case and 

f or the average case. But the space 
complexity becomes linear by using data structure queue 

instead of two-dimensional array and it is in both best 
and worst cases. Although this algorithm is not unique, it 
can become really complex for a very bigger length. But for 
most of the cases of finding common subsequence, it finds 
the solution in optimum time. 

Many researchers have researched about LCS over a 
period of time. They have given many results. But still it is 
very complex and there is a huge area left to research on this 
topic. The time and space needed to solve a problem by 

using LCS are still high. The main objectives of this research 
are:  

1. To reduce the time complexity and find an optimum a
bigger length string.
2. To reduce the space complexity by changing the data
structure.
3. To use a new approach (Divide and Conquer) and to see
the effects of using this approach.
   The remainder of this paper is organized as follows. 
Section II provides a brief review of related work. In section 
III, we discuss in detail the proposed algorithm. Section IV 
contains experimental results and analysis. Finally, we 
conclude and sketch future research directions in Section V. 

II. RELATED  RESEARCH

J. Liu and S. Wu show that it is possible to find out the
Longest Common Subsequence in linear time using a 2D 
array [1]. The result lies between in the diagonal line of the 
two-dimensional array. They used for them theorems 
provided in [2], [3]. Paper [3] has also shown that the space 
complexity can be linear in the longest common 
subsequence. This paper merges two algorithms to reduce 
the space complexity.  

 K. Kwarciak and P. Formanowicz propose a DNA
sequencing technique using a greedy approach. In their 
algorithm, the greedy method is applied to two different 
sequences at the same time. That's why this greedy 
algorithm is much faster than the dynamic approach. This 
approach can be used as the longest common subsequence. 
J. F. Myoupo and D. Semé used a parallel algorithm to 
minimize time complexity [5]. This algorithm runs in 
O(logN*logM) which is much smaller than the existing LCS 
algorithm. In [6], this problem is solved in O(log m*log n) 
with O(n*m/log m) processors. The CRCW bound is 
O(log(n(log*log m)2)) time where the processors are 
O(m*n/log* log m).  
   In paper [7], X. Tang et al. used a block system by which 
the process become faster than before. The idea of a B+ tree 
and O tree is used in this algorithm which has less run time 
than other algorithms. For that reason, they get a result 
which takes only 36.5 mm^s. Paper [8] proposes a data-
structure that helps to improve the competence of suffix 
array in the algorithm by storing in external memory model. 
The authors of this research paper also propose and 
implement two parallel algorithms (Index Partitioning and 
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Data Partitioning) on a PC cluster. Here the ASM problem 
is solved in DNA sequences with the help of suffix array 
algorithms. 
   R. L. Goldfeder et al. proposes a system where the DNA 
sequence/String is divided into some small pieces, and it 
will be reordered programmatically such that it can enable 
fast and efficient sequencing for human genomes or for a 
string [9]. In this paper, they divided the DNA or String 
sequence in a small portion and get all data and then 
merged.  
   Paper [10] presents real-time sequencing and single 
molecule data that is obtained from a DNA polymerase. 
DNA polymerase is performed in a continuous template 
directed fusion using four different fluorescently categorized 
dNTPs. The data is reported directly used to reveal the 
distinct polymerization states corresponding to DNA 
structure. The paper shows 90% accuracy in medical 
science. F. Chin and C.K. Poon demanded that there has L-
matrix on the dynamic approach in LCS [11]. They showed 
the time complexity becomes O(ns+min(ds, lm)) and the 
space complexity becomes O(ns+d). They used different 
data structures to obtain variations of the basic algorithm. 
 

III. THE PROPOSED ALGORITHM 

   In the proposed algorithm, the existing Longest Common 
Subsequence algorithm has just modified by using the queue 
data structure and the divide-and-conquer method. The 

existing general LCS algorithm works on  time. It 
can be made O(1) if the size of those strings is minimized. 
Here this idea is used. Let, two string A(A1, A2,….., An) 
and B(B1, B2,….Bn) are given and C(C1, C2,….., C k ) is 
the sequence of two string. If A >= B, then this algorithm 
will divide the A string into small parts until the size of the 
string becomes less than 4. Then these small string and the 
B string will use in the second process. From the algorithm 
in Fig. 2the largest string is divided into several small 
strings (as shown in Fig.3). The small string and the second 
string are applied in the second algorithm which is given in 
Fig. 3. The whole algorithm runs in O(n*log(n)) time in the 
best case. This algorithm takes linear space because of using 
the queue instead of a two-dimensional array.    

 
Fig.1 The proposed methodology 

 
From Fig.1, it is clear that there have two steps. The first 
step is the divide-and-conquer method and the second step is 
DP. 

A. Algorithm 

In this algorithm, we have two phases. In the first phase, the 
large string will be made into a small string by the divide 
and conquer method. In the algorithm in Fig. 2, the 
algorithm of the first phase is given. 
 
Function making_a_short_string( start , end) 
1. If(start – end <= 4) 
2.      return LCS( A[ start … end] , B [ 0 …m]) 
3. end 
4. mid = (start+end)/2 
5.      return making_a_short_string(start, mid) + 

making_a_short_string(mid+1, end); 
End 
 
Fig.2 Pseudo code describing the divide-and-conquer method to short the 
large string  
 
   From string A, when the base case arrives in the first 
phase, it will execute the second algorithm which is given in 
Fig. 3. From this algorithm, we can get the sequence. 

Function LCS(s1[ 0…n] , s2[0 …m]) 
Bool Array[0……….m) 

1. Declare a queue data structure Q; 
2. matching_number <- 0 
3. for i:= 0 to n 
4.   for j:= temporary to m 
5.      if i == 0 or j == 0 
6.         if i == 0 
7.   Q<- 0 
8.         End 
9.         if j == 0 
10.              Q <- 0 
11.         End 
12.     End 
13.     Else 
14.          if s1[i-1] == s2[j-1] 
15.              diag <- Q.front and pop the front value 
16.              previous_value <- diag+1 
17.              Q <- previous_value 
18.                  If prevous_value> matching_number 
19.                       temporary <- j 
20.                       Array[j]<- true 
21.                       Matching_number = temporary 
22.                       If j == n-1 return Matching_number 
23.                  End 
24.          End 
25.          Else  
26.       diag <- Q.front 
27.               Pop the front value of Q 
28.              Vertical_value <- Q.front 
29.              Temp = max( previous_value,                  

Vertical_value)  
30.              Previous_value <- temp  
31.              Q <- previous_value 
32.         End 
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33.         If j == m 
34.            Pop the front value of the queue  
35.         end 
36.         end  
37.     end 
38.    end 
39.    Return matching_number 
40. End 

Fig. 3 Pseudo Code describing the algorithm of LCS 

   From this algorithm, we can get an array “Array” which 
track the sequence. If we iterate through the “Array”, we 
will able to get the longest common subsequence C [0….m] 
which is “Array”. 

B. Example  

Let Two string A= “abcadbcadadcaaddaddcdcddcdadccdaa 
.........................................aaddaada” and B = “abdcad” and 
C is the sequence where C is equal the size of the min (|A|, 
|B|). Here B is small so the size of |C| = |B|Here |A|>|B|, so 
we will divide A into many small strings by algorithm 
which is shown in the Fig. 4. From the best case of the 
string, the Strings will go to the next algorithm, where the 
small string and the new string will go through the 
algorithm in Fig. 3.  
   Let the best case string from the algorithm is “abca” and 
the B string is “abdcad”. Then the process will get an LCS 
between those two strings where the two strings are small so 
it will run in constant time. Then the subsequence can get by  
Fig. 3, when i is zero means at the first row of the algorithm, 
then the queue will be 0 0 0 0 0, then the second loop the 
first element will be zero then the queue will be 0 0 0 0 0 0, 
then if the i-th element and the j-th element is similar then 
the front value of queue will be incremented and it will be 
popped out and pushed in the queue,  then the queue will be  
0 0 0 0 0 1. Then if the i-th and j-th are not similar then it 
will get from the previous value and the vertical value. 
   To get the vertical value firstly popped out the first value 
of the queue then take the new front value. Then compare 
which is maximum and push it to the queue. Then the queue 
will be, 0 0 0 0 1 1 by continuing this process after the 
second-row finishes then the queue will look like 0 1 1 1 1. 
Here the queue is using, again and again, the first value is 
popped and the new value is inserted. Lastly, the queue will 
be 0 1 2 3 4. Then it will return the value 4. During this 

method, a temporary "Array" is declared which will track 
the elements which are the subsequence of both strings. 
Strings will go to the next algorithm, where the small string 
and the new string will go through the algorithm in Fig. 3. 
Let the best case string from the algorithm is "abca" and the 
B string is "abdcad". Then the process will get an LCS 
between those two strings where the two strings are small so 
it will run in constant time. When i is zero means at the first 
row of the algorithm then the queue will be 0 0 0 0 0, then 
the second loop the first element will be zero then the queue 
will be 0 0 0 0 0 0, then if the i-th element and the j-th 
element is similar then the front value of queue will be 
incremented and it will be popped out and pushed in the 
queue, then the queue will be 0 0 0 0 0 1. Then if the i-th 
and j-th are not similar then it will get from the previous 
value and the vertical value. To get the vertical value firstly 
popped out the first value of the queue then take the new 
front value. Then compare which is maximum and push it to 
the queue. Then the queue will be 0 0 0 0 1 1. By continuing 
this process, after the second-row finish then the queue will 
look like 0 1 1 1 1. 
   Here the queue is using again and again, the first value is 
popped and the new value is inserted. Lastly, the queue will 
be 0 1 2 3 4. Then it will return the value 4. During this 
method, a temporary “Array” is declared which will track 
the elements which are the subsequence of both strings.    

IV. EXPERIMENTAL RESULT & DISCUSSION 

   The time complexity of this proposed method is n*log(n) 
and the space complexity is O(n). The process is given in 
the next sections.  

A. Time Complexity 

Let, two strings are A[0,….k] and B [0,…..m] and n is the 
size of min(|A|, |B|). The algorithm has two parts. One is for 
the divide and conquers method which is recursive and one 
is a dynamic approach method. Let the time complexity of 
the dynamic approach is T1(c) and the time complexity of 
the total algorithm is T(n). 
Then, T(n)  = T1(c) + 2T(n/2) 
      = T1(c) + 2{ 2T(n/4) + T1(n/2) } 
      = 2T1(c) + 4T(n/4) 
      = 2T1(c) + 4{ 2T(n/8) + T1(n/4) } 
      = 3T1(c) + 8T(n/8) 
       ------------------------ 
       ------------------------ 
      = kT1(c) + 2^k T(n/2^k) -------- (i) 

 
Fig. 4 Divide-and-Conquer method of the largest string
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Let,    n/2^k = 1 
 n = 2^k 
 log(n) = k [ log base 2 ] 

Substituting k in (i), 
          T(n)  = log(n)T1(c) + n*log(n) -------- (ii) 
So, the general time complexity is log(n)T1(c) + 
n*log(n).The best, worst and the average case is depends on 
the T1(n) term. 

B. Best Case Analysis 

From section VI A, the general time complexity is 
log(n)T1(c) + n*log(n). Let the new sting D and the second 
string is B. If the new string is the proper subset of the 
second string (D ⊂ B), then the T1(c) will the constant time. 
Because all the elements of D are within in B, and the size 
of the D is less than 4, then the second algorithm will run on 
constant time. So, T1(c) will be 1. 
From equation (ii),T(n) = log(n)*1 + n*log(n) 
So, the best case of this algorithm is n*log(n) where n is the 
size of min (|A|, |B|). 

C. Average Case Analysis 

The Average case of this algorithm is similar to the best 
case of the algorithm. Let the new sting D and the second 
string is B. In the average case, D is the subset of B, means 
that D has some elements which are in the B. So every 
recursive method the size of B is reducing, for that reason 
the algorithm has to go through the size of the B string. The 
second algorithm will run on linear time. So, T1(c) will be 
m. 
From equation (ii),T(n) = log(n)*m + n*log(n) 
 
So, the best case of this algorithm is k*log(n) where n is the 
size of min( |A|, |B|) and k is the size of max( |A|, |B|)    

 

D. Worse Case Analysis 

The general time complexity is log(n)T1(n) + n*log(n). Let 
the new sting D and the second string is B. If D' is the 
proper subset of B means that there has no element in D 
which is in B. So, it will iterate through all the elements in 
D so the algorithm will run on O(k*m) where the size of the 
D is k and the B is m. So, the worst case time complexity 
will be T(n) = log(n)* k*m + n*log(n) where k is log(n)/2. 

Then, T(n) = m*log(n)^2 + n*log(n). So, the worst case of 
this algorithm is m*log(n)^2, where n is the size of min( |A|, 
|B|) and m, is the size of max(|B|,|A|). 

 

E. Space Complexity 

The space complexity of the first algorithm is O(n/2+1)~ 
O(n/2) and the space complexity of the second algorithm is 
O(n) because instead of a 2D array, there is used a data 
structure queue. The space complexity of queue for the best 
and worst case is O(n). So the space complexity of the full 
algorithm is O(n) means that the program is running on a 
linear space algorithm. 
   A comparison between our proposed method and the 
proposed framework of other authors is given in Table 1. 
From Table 1, it is clearly seen that our algorithm’s space 
complexity is better than any other of these mentioned 

algorithms and the time complexity becomes a logarithmic 
function which is optimal than some of the other algorithms. 
 

TABLE I Comparison of time and space complexity 

 

TABLE II Comparison of time with General LCS algorithm 

 
   In this paper, the space complexity of LCS is highlighted. 
The space complexity of this algorithm is linear. The best 
space complexity of queue is O(n) as well as the space 
complexity is O(n). Divide-conquer approach has been used 
here. For this approach, this will take constant time to solve 
a problem. Later the data structure has been changed from a 
two-dimensional array to queue. For this, space will be 
reduced. In Table II it has shown time comparison between 
general LCS and our algorithm. 
   Generally, for LCS, the worst time complexity becomes 
exponential and it becomes very complex to find a 
subsequence from a very large string. But in the proposed 
case of this paper, the worst time complexity is O(m*((log 
n)^2)) for which it becomes very optimal to get the final 
result from a very large string. But not for only the worst 
case, In the time complexity for best case in the proposed 
LCS is O(n*log(n)). It is very optimum and time-consuming 
to get the final result. 
 

V. CONCLUSION  

   The LCS algorithm is studied and researched by a lot of 
researchers. Here, we have developed an algorithm by using 
a divide and conquer approach and a queue. By using this 
approach we have made the space complexity linear O(n). 
The time complexity becomes a function of the logarithm. 
For the best case, it becomes O(n*log(n)) where n is the 
length of the smallest string between the two string. For 
average time complexity, it becomes O(k*log(n)) where k is 
the length of the largest string between the two string. For 
the worst case, the time complexity is O(m*log^2(n)) where 
m is the length of the bigger string. Normally the time 
complexity for the general LCS algorithm over the world is 

Algorithm 
 

Best 
time 

complex
ity 

Average 
time 

complexit
y 

Worst 
time 

complexity 

Space  
complex

ity 

LCS Ω(m*n) Θ(m*n) O(m*n) O(m*n) 

Ref. [1] Ω(n*n) Θ(n*n) O(n*n) O(m+n) 

Ref. [2] Ω(n(m-
p))  

Θ(n(m-p)) O(n*m) O(m+n) 

Ref.  [3] Ω(m*n) Θ(m*n) O(m*n) O(n) 
Ref. [11] Ω(ns+mi

n(ds,lm)) 
Θ(ns+min(
ds,lm)) 

O(ns+min(
ds,lm)) 

O(n*m) 

Our 
Algorithm 

Ω(n*log(
n)), 
n=max(|
A|, |B|)    

Θ(k*log(n
), 
k=max(|A|
, |B|)    
 

m*log(n)^2 
+ n*log(n), 
m=max(|A|, 
|B|), 
n=max(|A|, 
|B|)    

O(n) 

Length of two string 
(n and m)  

LCS(sec) Our Algorithm 
(sec) 

n<100 
&& m<100 

           0.932 0.812 

n<10000 
&& m<10000 

           3.003 2.855 
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O (n^2). We are able to show that our algorithm is better 
which gives results faster and use linear space than the used 
algorithm. 
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