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Abstract—This paper represents the development of surface 
Electromyographic (sEMG) signal-based finger prosthesis 
control. A filter & amplifier circuit captures the EMG signal from 
the surface of the human hand that can be recorded using 
ATmega-2560 micro-controller. The analysis of the output signal 
is done to study time domain features. In this paper, standard 
deviation, mean, a variance is taken as time domain feature. The 
signal is then trained using simple Artificial Neural Network to 
classify accurately two finger motion i.e. grip motion and thumb-
index finger motion.  
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I.  INTRODUCTION  

Electromyography is used as a diagnostic tool for a 
neurological disorder.  Presently it is also being used in 
rehabilitation of amputees in the form of the robotic prosthesis 
to recapture their ability to perform complicated physical 
movements of the lost human hands. The process of recording 
the electrical signal transmitted by the Motor Neuron to control 
the muscles is Electromyography (EMG). The movement of 
body parts is possible through muscle contraction and expansion 
and brain send excitation signal through the central nerve 
system. When a motor unit is activated motor MUAP is 
produced [1]. The activation from the central nerve system 
repeated continuously for generating force and it results in 
producing EMG. 

Electromyography (EMG) is a suitable approach for human-
machine interface in the prosthetic hand's control. However, 
these super prosthesis hands are highly complex and expensive. 
Though the EMG signal is complicated, this signal can be 
measured by applying a biopotential sensor like electrode [2]. 
Electrode acts as a transducer between the ionic transport of the 
nerve and the electron flow in copper wire. In general, at first the 
EMG signal is captured  by electrode and amplified. After that  
the EMG signal is  processed to remove noises or any other 
elements that may affect the data. In present condition the  
challenge consist of complex motion identification, high cost 
and unpredictable behavior in real world. In this research authors 
have proposed a simple method for motion detection which 
avoids complex design and complex hand gesture prosthetic 
hand. The prosed technique is targeted for low income people in 
3rd world country as prosthetic hand is very costly and could be 
unaffordable for many people. 

II. LITERATURE REVIEW  

In this area,  many researches have been made on developing 
an algorithm, improving recent methods, noise reduction and 
feature extraction. EMG recording is relatively new technology 
though the first documented experiment on EMG is done by 
Francesco Redi in 1666 [4]. In 1961 the first artificial hand was 
developed in Russia by A. E. Kobrinski, the Otto Bock 
Orthopaedic [3-5]. There are still limitations on detecting and 
feature extraction of EMG signal; it cannot provide enough 
information or data to develop more accurate and efficient EMG 
based devices [6, 7]. Several studies have attempted to extract 
features of the EMG signal and to classify signal patterns [6-8]. 
Extracted EMG signals were sent wirelessly to PC for analysis 
[9]. Recently researcher controlled prosthetic hand based on 
torque estimation using EMG signal. In this research, they 
worked on direct torque control method for the prosthetic hand. 
In order to estimate the joint torque from EMG signals, an 
artificial neural network by the feedback error learning schema 
is used by them [10]. The real-time virtual prosthetic hand is 
made for two movements [11]. The system proposed in [11] 
demonstrated 84% accuracy. However, Support Vector Machine 
(SVM) was superior  than the other three classifiers on both 
accuracy and reached an accuracy of 80%. The proposed 
technique could be a potential technique to be used in prosthetic 
control[12]. In future, prosthetic hand probably can accept 
command direct from the human nerve system and perform 
multiple tasks with high accuracy. Currently The accuracy of the 
Prosthetic hand is a major concern. Moreover, Automatic hand 
movement recognition based on sEMG signals is a promising 
approach in prosthesis hand control application [13-15].  

III. METHODOLOGY 

A. System Architecture 
EMG signal in electrode contains noise so it cannot be used 

for processing and it cannot be read by the normal 
microcontroller. In this case, at first, an instrumentation 
amplifier is used which has a high common mode rejection ratio. 
A high common mode rejection is necessary to reject all the 
noise captured by an electrode. CMRR should be over 80 dB. In 
preamplifier, stage gain is 22. After amplification, the signals are 
passed through 2nd order Sallen key high pass which cut-off 
frequency is 20 Hz and low pass filter of the cut-off frequency 
of 500 Hz. Then it goes through an amplifier with a gain of 101. 
Then, the signal is passed through another high pass filter of the 



 

cut-off frequency of 67 Hz to eliminate 50 Hz noise. ATmega-
2560 reads data using the ADC module and then transferred to 
PC using the serial port. The EMG signals amplitude’s range is 
between 0 to 10 millivolts (peak-to-peak) or 0 to 1.5 millivolts 
(RMS). Also, The frequency of an EMG signal is between 0 to 
500 Hz. However, maximum energy of the EMG signal lies 
between 50-150 Hz [16]. EMG signal depends on skin 
resistance. So, skin preparation is important. The objective of the 
present work is to extract the EMG signal and analyse different 
time domain feature in real time. Received data is processed and 
features are extracted. Then the neural network algorithm 
classifies the data and gives output. The output of the neural 
network is matched and gives movement decision. The block 
diagram of the whole system is given in figure 1. 

 

 
Figure 1. Functional block diagram of the proposed technique 

B. EMG electrode and Its placement 
The electrode provides a noninvasive way to detect and 

analyze to EMG signal. For proper skin preparation, the dead 
cell should be removed by alcohol so that skin resistance keeps 
between 5k to10K Ohms.  The longitudinal axis of the electrode 
and Length of the muscle fiber should be parallel. A reference 
point is used as a ground for the EMG signal extraction and the 
electrode is placed in the elbow, as the elbow is electrically 
neutral and far from target muscle. This electrode in the elbow 
is directly connected to the instrumentation amplifiers reference 
pin which is shown in figure 2. 

 
Figure 2. Placement of EMG electrodes to extract sEMG signal 

C. Pre-amplification 
A different amplifier with high CMRR ratio is used to 

eliminate dominant 50Hz noise. The common CMRR ratio of 
the instrumentation amplifier should be 90-120 DB. A RC low 
pass filter is used at the input for removing RF interference. 
Then the signal respectively passes through the 2nd order Sallen 
key High pass and low pass filter of the cut-off frequency of 20 
Hz and 500 Hz respectively to remove the noise from the signal. 
To eliminate 50 Hz noise the signal passes through a high pass 
filter of cut-off frequency 67 Hz. The output of the Sallen key 
Filter is feed to a gain amplifier. The  schematic diagram of the 
analog frontend used to record the sEMG signal is provided in 
figure 3. An inverting amplifier is used in this case. 

Gain, 
ܩ                                 = − ோಷோ಺                                        (1)                       

RF=100k, RI=1k, So gain is 100 in this stage. 

D. Data acquisition  
The amplified EMG signal has a negative portion in its signal 

which cannot be read by the ADC module. So, 2.5V bias voltage 
is added at the output of the gain stage using an operational 
amplifier. The resolution of the analog to digital conversion 
(ADC) module which is integrated in ATMega 2560 is 10 bits. 
The sampling frequency was 1 kHz. Then the signal data fed to 
the main computer using UART serial communication protocol 
at a speed of 115200 bps. 

E. Signal processing 
sEMG signals are irregular in the pattern. Each time for the 

same pattern of muscle movement, the generation of the same 
pattern of muscle signal is impossible. And this signal rapidly 
fluctuates while a muscle contraction or extension occurs. So, 
for classifying muscle movement pattern from the sEMG signal, 
some signal processing steps must be adopted to smooth this 
signal. The classification accuracy mostly depends on a good 
signal processing method. Researchers usually use three types 
of signal processing method to process sEMG signal i.e. time 
domain, frequency and time-frequency domain signal 
processing [17]. Time domain signal processing approach has 
been used in this paper. 

sEMG signal is a non-stationary signal. For real-time 
processing of a non-stationary type signal, moving average or, 
moving window filter are the popular techniques which have 
been implemented in this paper. A moving window of 80 data 
sample has been selected which shifts to right after each 10 data 
sample is received and averages the data points that are covered 
by the moving window. When the average value crosses a 
certain threshold, level is detected as the muscle motion has 
begun. And when this average value goes below the threshold is 
detected as the motion has been the end. The motion window 
within these start and end motion is then truncated and used for 
further processing. The data sample out of this motion window 
corresponds to no motion.The truncated signal is meaning for 
motion detection. Hence for each truncated window feature 
extraction procedure is applied. So, each truncated window will 
have  value of Variance (VAR), Standard deviation (STD) and 
Mean Absolute Value (MAV). 



 

 

Figure 3. Circuit schematic of the analog frontend used to record the sEMG signal. 

After the application of moving window/average filter the 
signal becomes smoother than the raw signal which is shown in 
Figure 4. The data sample within the motion window is used for 
feature extraction and classification.  

 
Figure 4. Raw EMG signal and signal after filtering which is used in ANN 

training 

F. Feature extraction:  
Feature extraction is the most important part for classifying 

a signal using an Artificial Neural Network.[18] A good feature 
creates more distance amongst the different patterns of the same 
signal. Features are like some characteristics that a signal has 
e.g. amplitude, RMS value, standard deviation etc. From the 
moving averaged signal three-time domain features has been 
calculated which are Variance (VAR), Standard deviation (STD) 
and Mean Absolute Value (MAV). The features were extracted 
for two types of finger motion i.e. grip motion and thumb-index 
finger motion. Other parameters do not change sharply for two 
types of finger motion, so these three features are the input for 
the artificial neural network architecture. 

Variance determines how spreads out the data samples are 
from their mean. The mathematical definition of variance is the 
average of squared differences from the mean.  ߪଶ = ∑(௑ିఓ)మே      (2) 

Standard deviation is the square root of variance.  ߪ = ට∑(௑ିఓ)మே      (3) 



 

Where σ is the standard deviation, N denotes the number of 
samples, X is the value of the sample and µ is the mean of the 
data samples. 

These three features or characteristics of the sEMG signal 
for different motion has been shown in the figure  5below.  

 

 

 

Figure 5.  Scatter plot of the Features and class segmentation of one single 
sample (X and Y axis interpretation) 

G. Classification 
Artificial Neural Network (ANN) approach has been 

incorporated to train input-output data so that it can classify the 
muscle movement pattern more accurately. There are several 
algorithms for implementing Artificial Neural Network from 
which the Back-Propagation Algorithm has been adopted as the 
learning method.  

ANN architecture basically executes a hypothesis function. 
This hypothesis function uses a transfer function which may be 
linear e.g. purely or, non-linear e.g. sigmoid function.  

For software implementation of Backpropagation algorithm 
and neural network architecture, MATLAB software was used. 
MATLAB has a built-in NETWORK class that can be 
customized to evaluate the designed neural network architecture. 
ANN architecture consists of three-layer i.e. input layer, hidden 

layer, and output layer. Each layer includes some neurons or, 
units. The hidden layer can be more than one in number 
depending on the application. This architecture uses a feed 
forward network that takes the features as input vector, 
processes the data through the hidden layer and changes the 
weight matrices and shows the recognition logic on the output 
layer. Figure 6 shows the architecture of  Artificial Neural 
Network 

 
Figure 6. Artificial Neural Network Architecture 

In this application, the number of the hidden layers is 20 and 
each hidden layer includes 10 neurons. The number of input 
feature is 3 and the number of output pattern is 2. The total 
number of training of sample for training the network is 192. 
The NETWORK class was customized to use a sigmoid function 
as the transfer function. 

IV. RESULT 

A prototype of this proposed method is constructed and 
shown in Figure 7. The proposed prototype has 2nd degree 
freedom. The approximate cost of the proposed prototype is 
around 75 dollar. Table I shows just one sample data for one grip 
motion and thumb index motion. MAV,STD,VAR are 
calculated for every Grip motion and Thumb-Index motion 
performed and listed. These sample data are used for training the 
ANN model. The output vector of the corresponding motion is 
shown in Table II. Table III shows the experimental result of  5 
samples. In these 5 samples MAV, STD, VAR are input, and 
ANN will a vector out put . With this Vector output 
corresponding Grip/ Thumb-Index Motion is produced by servo 
motor. 

TABLE I.  SAMPLE  TRAINING  INPUT  VECTOR 

Feature Input Finger Motion

Grip Motion  

x (5/1023)V 

Thumb-Index   
Motion 

x (5/1023)V 

MAV 118.71 78.28 
STD 166.54 57.53 
VAR 0.2757 0.0329 

 



 
 

TABLE II.  SAMPLE  TRAINING  OUTPUT  VECTOR 

 Grip motion Thumb-index    
motion 

 
Output Vector 

1 0 

 0 1 

TABLE III.  SAMPLE INPUT/OUTPUT DATA SET AND 
RECOGNITION RESULT 

Input 
Features 

TS1 TS2 TS3 TS4 TS5 

MAV 105.5
1 

71.99 73.81 123.9
3 

72.63 

STD 141.1
7 

59.85
7 

38.30 169.5
5 

54.69 

VAR 0.198
3 

0.035
57 

0.014
4 

0.286
0 

0.0296
8 

 
Output 
Target 

1 0 0 1 0 

 0 1 1 0 1 
      

Recognition 
Result 

0.887
3 

0.150
5 

0.038
7 

0.924
8  

0.1331 

 0.112
7 

0.849
5 

0.961
3 

0.075
2 

0.8669 

 
 

 
 

Figure 7. Prototype of prosthetic hand used in this experiment 
In experiment, the extracted feature value  such as value 

listed in Table I are feed to nueral network which produces a 
vector result shown in Table II. In Table III, feature values of 
traning sample is givien and its corresponding result are listed. 
The corresponding results indicate that this technique can 
identify two types of motion and the prototype also able to 
mimic the corresponding hand gesture. 

A. Limitations 
The proposed technique is a low-cost prototype which comes 

with some limitations. The first limitation of this method is that 
it can only mimic two types of motion which is not enough for 
flexible daily life prosthetic hand user. Also, this prototype is 

susceptible to noise. Hence, the performance deteriorates when 
the prototype is overwhelmed by noisy environment. 

V. CONCLUSION 

In this paper, the authors have identified only two motions 
because for more motion classification it requires a signal from 
2 or 3 muscle group and additional circuitry is needed.  One key 
feature of this module is real-time implementation. The 
proposed system requires approximately 0.5sec for motion 
identification. To extract Emg signal without noise is a 
challenging task. Due to improper grounding some time external 
noise is detected which effects ANN’s accuracy. In Future 
hybrid ANN can be used to detect motion. 
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