
NCICIT 2013: 1st National Conference on Intelligent Computing and Information Technology,
November 21, CUET, Chittagong-4349, Bangladesh

20

Exploiting GPU Parallelism to Optimize
Real-World Problems

Md. Hasan Furhad1, Fahmida Ahmed2, Md. Faisal Faruque3, Md. Iqbal Hasan Sarker4

1Department of Computer Engineering & Information Technology, University of Ulsan, South Korea
2Department of Computer Science & Engineering, Chittagong University, Bangladesh

3Department of Computer Science & Engineering, University of Information Technology & Sciences, Bangladesh
4Department of Computer Science & Engineering, Chittagong University of Engineering & Technology, Bangladesh

Email:hfurhad@gmail.com; sarzana.cse.cu14@gmail.com; faisal_uits@yahoo.com; iqbal@cuet.ac.bd

Abstract— Construction of optimal schedule for airline
crew-scheduling requires high computation time. The
main objective to create this optimal schedule is to
assign all the crews to available flights in a minimum
amount of time. This is a highly constrained
optimization problem. In this paper, we implement co-
evolutionary genetic algorithm in order to solve this
problem. Co-evolutionary genetic algorithms are
inherently parallel in nature and they require high
computation time. This high computation time can be
reduced by exploiting the parallel architecture of
graphics processing units (GPU). In this paper, compute
unified device architecture (CUDA) provided for
NVIDIA GPU is used. Experimental results demonstrate
that computation time can significantly be reduced and
the algorithm is capable to find some good solutions in a
feasible time bound.

Keywords: GPU;CUDA; Co-evolutionary genetic
algorithm; Crew-scheduling; Min-max optimization.

I. INTRODUCTION
The scheduling of resources in the transportation
industry is very complex and is a time consuming
process. For instance, the airline industry faces largest
scheduling problems in its daily operations [1]. The
main problem every airline must solve is to construct
an optimal schedule with the most efficient use of
aircraft and crew resources in the timetable at a
minimum cost to achieve maximum revenue. It is a
real time optimization problem which should be solved
in a given time to prevent any propagation of the
disruption [2]. Therefore, these difficult optimization
problems deserve a great deal of attention. However,
these problems can be effectively solved by
formulating min-max optimization problems.

Min-max optimization problems are found in
different areas, for instance, in game theory,
scheduling applications, network design, mechanical
engineering, constrained optimization and function
optimization [3]. These problems are considered
difficult to solve deterministically in polynomial time
bound. However, co-evolutionary genetic algorithms
are found to be reliable to solve min-max optimization
problems [4]. Co-evolutionary genetic algorithms
usually operate on two or more populations of

individuals. The populations evolve independently,
but they are coupled together through fitness
evaluation. The fitness of an individual in one
population is evaluated on its performance against the
individuals in the other population [5].

Using co-evolutionary genetic approach to solve

min-max optimization problems requires high
computation time to evaluate fitness of the individuals
of each population [6]. Let us consider two
populations each containing n individuals. The
number of objective function calls required to
evaluate each population is n2. The individuals of one
population must be evaluated against all the
individuals with the other population. The evaluation
of population needs to be performed in a number of
times during the optimization process which is the
most time consuming process [7]. Hence, this
approach suffers from scalability problems if n is
large or the objective function is complex. However,
this scalability can be improved by exploiting the
parallelism of GPU. In the proposed approach, fitness
evaluation of each individual of one population
against every individual in the other population is
done in parallel. As a result, we can achieve a
significant reduction in the computation time.

The remainder of the paper is organized as follows:

in Section 2, the basic definition of min-max
optimization problem is discussed. Section 3,
describes the problem definition and co-evolutionary
genetic algorithm. In Section 4, the implementation of
the algorithm in CUDA architecture to solve the crew-
scheduling problem has been discussed. Section 5
presents the experimental results and Section 6
concludes the paper.

II. LITERATURE REVIEW
Min-Max optimization problems allow one to find
solutions by using scenarios to structure uncertainty
[8]. In general, it can be defined as follows. Let’s
consider X is a set of all solutions and S is the set of all
possible scenarios. If F(x,s) is considered to be the cost
of a solution x ϵ X in a scenario s ϵ S, then the task is to
find some solutions which can minimize this cost over

Md. Hasan Furhad et al.

21

some scenarios. This is same as minimizing the
maximum cost. According to this, the problem can be
defined as follows:

),(maxmin sxF
SsXx ∈∈

 (1)

From [9], we find that the min-max problems were
originally formulated by game theorists, which can be
seen as an antagonist game where two players have a
set of options. The player trying to find the solution x,
tries to minimize the cost, while the player
determining the scenario s, tries to maximize the cost.
Later, these min-max problems were studied
mathematically by many researchers. However, this
problem is well suited with co-evolutionary genetic
algorithms, since we can generate two different
populations for x & s from two different search spaces.

III. PROBLEM DEFINITION & ALGORITHM

A. Crew-Scheduling Problem Definition
Given a set of trips that an agency must manage, the
crew scheduling problem is to assign the trips to each
crew in such a way that no trips are left unassigned in
a given time. Let {T1, T2, T3, …….. Tn} be the set of trips.
Each trip Ti has a minimum processing time pi and a
maximum processing time qi where 0 < pi < qi . There
are m crews C1, C2, C3, …….. Cm . We consider decision
binary variables xik where,

xik = 1 [if Ti is assigned to crew Ck]
xik = 0 [if Ti is not assigned to crew Ck]

An assignment x is a feasible assignment (solution) if,
for each trip Ti ,

∑
=

=
m

k
ikx

1

1 (2)

Let X be the set of all possible solutions. A scenario
s is the combination of processing times. Thus s =
(p1

s…… pn
s). For each trip Ti , pi ≤ pi

s ≤ qi , S is the set
of all possible scenarios. F(x,s) is the time or cost of a
solution x in scenario s. The cost is the maximum
processing time to assign a trip to crew. Thus, we can
define it as follows:

)(max),(
1

1

s
i

n

i
ik

mk
pxsxF ∑

=
≤≤

= (3)

Now the problem is to minimize this cost which can
be formulated as min-max problems discussed earlier:

),(maxmin sxF
SsXx ∈∈

 (4)

We use co-evolutionary genetic algorithm to solve
this problem.

B. Co-evolutionary genetic algorithm
The co-evolutionary genetic algorithm maintains two
populations. The basic steps of the algorithm are
illustrated below:

1. Initialize population A and population B at
t = 0 /* Initialize Populations */

/* for i=1 to Maxitetrations */
 /* for j=1 to Maxgeneration1 */

2. For each individual x ϵ A(t), we evaluate
h(x) = max(F(x,s): s ϵ B(t))
 /* fitness evaluation */

3. Create new generation A(t+1) by
reproduction, crossover and mutation
/* end of Maxgeneration1 for loop */

 /* for k=1 to Maxgeneration2 */
4. For each individual s ϵ B(t), we evaluate

g(s) = min(F(x,s): x ϵ A(t))
/* fitness evaluation */

5. Create new generation B(t+1) by
reproduction, crossover and mutation

 /* end of Maxgeneration2 for loop */
6. t = t+1, Unless t equals the maximum

number of iterations go to step 2
/* end for loop of Maxiterations */

7. Return the best solutions
From the Algorithm, we can observe that the

number of evaluations of populations is
Maxiterations(Maxgeneration1 + Maxgeneration2).
Considering n individuals in both populations, the
number of evaluations of the objective function per
populations is n2. This evaluation is done in
conventional CPU, which is also known as sequential
evaluation. The formulation can be written as
following:

)21(22 nMaxgennMaxgenMaxitEval seq ∗+∗= (5)
For instance, if we consider Maxiterations = 100,
Maxgeneration1 = 10, Maxgeneration2 = 10, n = 50,
we have Evalseq = 5000000. This computation is
inevitable, but it is possible to evaluate the fitness of
all n individuals in parallel. For this case, we can
write the formulation as following:

)21(nMaxgennMaxgenMaxitEval parl ∗+∗= (6)
Considering the same parameters we have Evalparl =
100000, which shows a clear advantage over
sequential evaluation. Hence, we can obtain a
significant reduction in computation by exploiting the
parallel advantage of GPU.

IV. IMPLEMENTATION OF THE
ALGORITHM USING CUDA

A. Basic Concepts of GPU & CUDA
The Graphics Processing Unit (GPU) has emerged as
a powerful computing device in this era of
technology. The operational speed of GPU is much
faster than the CPU (Central Unit Processing) [11].
The CPU mainly concentrates on arbitrary operations
whereas on-the-other side GPU mainly concentrates
on performance optimization related tasks. NVIDIA
developed a software platform named compute
unified device architecture (CUDA) for programmers
to code in GPU. The language syntax consists of
extensions of basic C-Language [10]. The depiction of

NCICIT 2013: 1st National Conference on Intelligent Computing and Information
Technology, November 21, CUET, Chittagong-4349, Bangladesh

22

basic CUDA architecture has been illustrated in Fig.
1. To support the parallelism of a program: threads,
blocks and grids are used. In CUDA the functions are
grouped into three categories: The host functions,
which are called and executed only by the CPU.
These functions are similar to those implemented in
C. The kernel functions are only executed by the GPU
device and called by the CPU. We have to use the
qualifier, __global__, for this type of function. The
return type of this type of functions is always void.
Finally, there are device functions, which are both
called and executed only by the GPU device. The
qualifier, __device__, precedes the function definition
for this type of functions. In case of device functions,
it is allowed to return any type of value [11].

Figure 1. Basic CUDA Architecture

B. Problem Formulation
To evaluate the performance of this algorithm, first
we try to find the worst-case scenario. For a solution,
one of the worst-case scenarios is the one when all the
trip assignments require maximum processing time.
Thus, if we can reduce this worst-case scenario as
much as we can, then we can create an optimal
schedule. We define a lower bound on this algorithm.
It is defined as follows:

∑
=

=
n

i
iq

m
L

1

1 (7)

where q is the maximum processing time required for
m crews. In addition, we formulate some problem sets
to evaluate the performance of the algorithm. We
consider two variables α1 & α2 to govern the
processing time. The minimum processing time pi is
selected from a uniform distribution with the range [5,
20 α1], where we set some arbitrary values for α1. The
maximum delay time di is selected from a uniform
distribution with the range [0, α2 pi], where we set
some arbitrary values for α2. Hence, the maximum

processing time is qi = pi + di. We try to find some
good solutions closer to the lower bound as mentioned
in Eq. (1).

C. Implementation of the Algorithm in CUDA
The main objective of this work is to minimize the
processing time and generate an optimal schedule. In
order to observe the robustness, we implement this
algorithm in both sequential (CPU) and parallel
(GPU) environment. The coding structure for these
two environments is similar except the fitness
evaluation and population generation part. Hence, in
this section we discuss about these two parts
regarding to GPU by which we can achieve
parallelism. The algorithm first initializes the
populations and then calculates the fitness in both
randomly initialized populations. To note, we
consider processing time as Population A and solution
as Population B. Fig. 2 depicts the code which is
responsible for invoking the kernel fitness function.

Figure 2. Sample CUDA code for Kernel Fitness Function

The computation is done in parallel to calculate the
fitness for each individual of populations A and B.
Here each block indexed by blockIdx calculates the
fitness of the individual in its corresponding threads
indexed by threadIdx. This evaluation is done in two
populations concurrently. However, there is some

Fitness<<<nPop,nPop>>>(oldPopA,oldPop
B,nPop,nPar);
…………………………………
__global__ void Fitness(population A,
population B, int nPop, int nPar){
 __shared__ float fitness[NPOP];
 int popAid = blockIdx.x;
 int i;
 int popBid = threadIdx.x;
 float fit2 = mp(A[popAid].s,
B[popBid].g);
 fitness[popBid] = fit2;
 __syncthreads();
 if(popBid==0){
 float min = 100000;
 for(i=0; i<nPop; i++){
 if(fitness[i]<min){
 min = fitness[i];
 }
 }
 B[popAid].fit=min;
 }else if(popBid==1){
 float max = -100000;
 for(i=0; i<nPop; i++){
 if(fitness[i]>max){
 max = fitness[i];
 }
 }
 A[popAid].fit=max;
 }
}

Md. Hasan Furhad et al.

23

redundancy in calculations. This is because; each
evaluation is done twice since shared memory is
block-wise. We avoid this redundancy by utilizing
global memory. Fig. 3 shows the corresponding
CUDA code which is responsible for the generation of
the new individuals of a population.

Figure 3. Sample CUDA code for Kernel generation Function

The kernel function responsible for Population A
generation and Population B is similar. Here, we
represent for the case: Population A. The crossover
needs an array to store the individuals to perform the
operation and they are stored in the array named

trialvector. This is generated by the host and indexed
using the threadId. After mutation and picking the
trial solutions the most fit values are stored in the
required processing time by calling the device
function proctime(). In this way, we can utilize the
advantage of GPU for co-evolutionary genetic
algorithm to ensure parallelism.

V. EXPERIMENTAL RESULTS

A. Experimental Environment
To evaluate the algorithm performance we have
carried out our simulations for sequential and parallel
cases. To perform parallel evaluation we carried our
experiment on linux server using NVIDIA GeForce
GTX 580 driver which supports the CUDA compiler.
The system specifications of the driver are listed in
Table 1. To perform sequential evaluation we carried
our experiment on Intel Pentium G620 processor
working at 2.60 GHz clock speed. We adjust our
machine to operate at 32-bit operating system
including 8GB RAM memory.

Table 1. System Specifications for Parallel
Evaluation

Table 2, lists the parameters considered for co-
evolutionary genetic algorithm.

Table 2. Parameters Considered for Co-
evolutionary Genetic Algorithm

Parameter Values
CUDA version 4.2

Global memory 3 GB

Local memory 48KB

Warp size 32

Maximum number of
threads per block

1024

Maximum size of each
Dimension of a block

1024x1024x64

GPU clock speed 1.54 GHz

Parameter Values
Maximum number of
Iterations

100

Maximum number of
allowable generations

100

Population size 50

Number of bits required by a string to
represent an individual

64

Number of genes in a
String

16

Number of bits restriced for
a gene

4

Crossover rate 0.7

Mutation rate 0.003

generateA<<<nPop,nPop>>>(newPopA,
oldPopA, oldPopB, cudaShuffle, nPop,
nPar, RAND, mut_rate, cross_rate,
bound, nRes);
……………………………………………………..
__global__ void generateA(population
newPopA, population oldPopA,
population oldPopB, int* shuffled,
int nPop, int nPar, float* RAND,
float mut_rate, float cross_rate,
float *bound, int nRes){
 individual trialVector;
 int i, r1, r2, r3, j;
 __shared__ float fitness[NPOP];
 i = blockIdx.x;
 j = threadIdx.x;
 // uniform crossover
 if(j==0){

Crossover(oldPopA,newPopA,&trialVecto
r,i,nPar cross_rate, RAND);
………………
 }
 // mutation
 mutation(shuffled, nPop, &r1,
&r2, &r3, RAND);

makeTrial(oldPopA,&trialVector,r1,r2,
r3, mut_rate,nPar);
 __syncthreads();
 fitness[j]=proctime(newPopA[i].s,
oldPopB[j].g);
 __syncthreads();
 int k;
 float max = -100000;
 for(k=0; k<nPop; k++){
 if(fitness[k]>max){
 max = fitness[k];
 }
 }
 newPopA[i].fit = max;

 if (oldPopA[i].fit <
newPopA[i].fit){

 copyIndividual(&oldPopA[i],&ne
wPopA[i],nPar,nRes);
 }
}

NCICIT 2013: 1st National Conference on Intelligent Computing and Information
Technology, November 21, CUET, Chittagong-4349, Bangladesh

24

Recall that the main objective of this work is to
minimize the computation time by exploiting the GPU
parallelism. Hence, we calculate the algorithm
execution time in both CPU and GPU environments to
observe the speedup. It is an indication of how much
faster a parallel processing is over its counterpart, i.e.,
sequential processing [12]. The speed up is calculated
by the following equation within the defined time
bound.

parl

seq

T
T

Speedup = (8)

Here Tseq and Tparl are the total time taken by the
sequential processing and parallel processing of the
algorithm.

B. Experimental Results
To evaluate the algorithm, we compare our solutions
to the lower bound as we defined earlier. In addition,
the algorithm is able to create an optimal schedule by
satisfying the requirements. In order to address this
issue, we devise a schedule as illustrated in Table 3.
In this schedule, we assume a normalized value to 1 to
observe the performance of the algorithm. If the
solutions can achieve closer to 1 then we can state that
the algorithm have a good lower bound, and it can
generate good solutions.

Table 3. Results for the Crew-Scheduling Problem

From Table 3, we can observe that the algorithm
performs well when it is performed in parallel situation
rather than sequential evaluation. Here, we consider
one problem set in which 10 instances are considered.
In 1 instance, we consider a set of crews those are
being assigned to their available trips in the processing
time. The objective can be achieved by finding good
lower bounds for the algorithm. Here, the values those
are closer to the normalized value 1, are considered as
good solutions. Hence, we can achieve an optimal

schedule by minimizing the maximum processing time
which exploits the parallel advantage of GPU.

 The speed up achieved by the parallel evaluation is
compared with sequential evaluation. To conduct this
task, we fix every parameter except varying the
generations. The results are depicted in Table 4. From
Table 4, we can observe that, the computation time
can be reduced significantly with parallel
implementation to achieve robust solutions.

Table 4. Algorithm Execution Comparison

From Table 4, we can observe a reduction in speedup
while we increase the generations. This is because;
the search space increases while we increase the
number of generations, which affects the algorithm
execution time. The algorithm execution time is
lower, when it creates an optimal schedule by finding
good solutions in less number of generations
compared to higher number of generations. Overall,
the approach helps us to achieve our goal.

VI. CONCLUSION
This paper presents a co-evolutionary genetic
algorithm to solve crew-scheduling problem by
formulating min-max optimization problems. The
main time consuming area of the co-evolutionary
genetic algorithm is fitness evaluation of the
individuals. In case of serial implementation, the
evaluation of fitness function requires O(n2) time. The
parallel evaluation of the fitness of the individuals
brings down this time to O(n). Finally, we can state
that, the highly constrained real world optimization
problems can be solved easily by inheriting the
parallel advantage of GPU.

REFERENCES
[1] X. Chen, X. Chin, and X. Zhang, “Crew scheduling models in

airline disruption management”, In Proceedings of the 17th
IEEE International Conference on Industrial Engineering and
Engineering Management (IE & EM), pp. 1032-1037, 2010.
(Conference)

[2] T. H. Yunes, A.V. Moura, and C. C. d. Souza, “Solving very
large crew scheduling problems to optimality”, In Proceedings
of the ACM symposium on Applied computing, pp. 446-451,
2000. (Conference)

[3] T. Alamo, D. M. de la paena, and E. F. Camacho, “An
Efficient Maximization Algorithm with implications in Min-

Values considered
for governing the
processing time

Algorithm
Performance
for Sequential

Evaluation
(CPU)

Algorithm
Performance
for Parallel
Evaluation

(GPU)

α1 = 0.2

α2 = 0.6

1.12 1.00

1.15 1.01

1.09 1.00

1.08 1.03

1.01 1.02

1.07 1.03

1.09 1.05

1.02 1.00

1.03 1.00

1.10 1.02

Number of
generations

Tseq[CPU (s)] Tparl[GPU
(s)]

Speedu
p

20 6.721 0.099 67.88x

40 7.821 0.212 36.89x

60 10.38 0.582 17.83x

80 12.17 0.841 14.47x

100 14.69 1.061 13.84x

Md. Hasan Furhad et al.

25

Max Predictive Control,” IEEE Transactions on Automatic
Control, vol. 53, no. 09, pp. 2192-2197, 2008. (Journal)

[4] K. Deb, S. Gupta, J. Dutta, and B. Ranjan, “Solving dual
problems using a coevolutionary optimization algorithm,”
Journal of Global Optimization, 2012. (Journal)

[5] A. M. Cramer, S. D. Sudhoff, and E. L. Zivi, “Evolutionary
Algorithms for Minimax Problems in Robust Design,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 02,
pp. 444-453, 2009. (Journal)

[6] L. P. Veronese, and R. A. Krohling, “Differential evolution
algorithm on the GPU with C-CUDA,” In Proceedings of the
IEEE International Conference on Evolutionary Computation,
pp. 18-23, 2010. (Conference)

[7] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential
Evolution Algorithm With Strategy Adaptation for Global
Numerical Optimization,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 02, pp. 398-417, 2009. (Journal)

[8] L. Liu, and Y. Zhang, “Gemetic Algorithm design of the Min-
max weighted distance problem,” In Proceedings of IEEE

International Conference on Computer Application and
System Modeling (ICCASM), pp. 620-623, 2010.
(Conference)

[9] K. Masuda, K. Kurihara, and E. Aiyoshi, “A novel method for
solving min-max problems by using a modified particle
swarm optimization,” In Proceedings of the IEEE
International Conference on Systems, Man, and Cybernatics
(SMC), pp. 2113-2120, 2011. (Conference)

[10] NVIDIA Homepage. Available: http://www.nvidia.com (link)
[11] C. C. Boyer, M. Meng, J. Tarjan, S. Sheafler, and K. Skadron,

“A performance study of general-purpose applications on
graphics processors using CUDA,” Journal of Parallel and
Distributed Computing, vol. 68, no. 10, pp. 1370-1380, 2008.
(Journal)

[12] J. Verdu, A. Pauelo, and M. Valero, “The Problem of
Evaluating CPU-GPU Systems with 3D Visualization
Applications,” IEEE Micro, vol. 32, no. 06, pp. 17-27, 2012.
(Journal)

