
A New Approach to Solve Quadratic Equation Using

Genetic Algorithm

Bibhas Roy Chowdhury
1
, Md. Sabir Hossain

1*
, Alve Ahmad

1
, Mohammad Hasan

2
,

Md. Al-Hasan
2

1Chittagong University of Engineering & Technology, Chattogram, Bangladesh.
 2Bangladesh Army University of Science & Technology, Saidpur, Bangladesh.

sabir.cse@cuet.ac.bd

Abstract. Solving quadratic equation efficiently is a real-world challenge

nowadays, due to its wide applications in the task of determining a product's

profit, calculating areas or formulating the speed of an object. The general ap-

proach of finding the roots of a quadratic equation is not enough efficient due to

the requirement of high computation time. Because of the Genetic Algorithm's

stochastic characteristics and efficiency in solving problems it can be used to

find roots of quadratic equation precisely. In modern athletics reducing the

computation time of solving the quadratic equation has been so inevitable

where using a genetic algorithm can find a quick solution that doesn't violate

any of the constraints and with high precision also. Optimization has been done

in the Crossover and Mutation process which has reduced the number of itera-

tions for solving the equation. It reduces the time complexity of the existing

approach of solving the quadratic equation and reaches towards the goal effi-

ciently.

Keywords: Genetic Algorithms, Crossover, Mutation, Chromosomal Fitness,

Population, Quadratic equation.

1 Introduction

The approach we are going to follow to solve 2nd order linear equation is the Genetic

Algorithm [2]. The Genetic Algorithm [2] is an efficient way to solve both uncon-

strained & constrained optimization problems that are based on natural selection. The

Genetic Algorithm [2] repeatedly modifies a population of individual solutions. The

basic features on which the Genetic Algorithm [2] stands are:

i) Competition in individual populations for resources and mates.

ii) Successful individuals are allowed to create more offspring.

iii) The propagation of the gene flows from fittest parent to generation.

iv) Survival of the fittest.

The basic outcome of the Genetic Algorithm [2] is a Chromosome and the collection

of the chromosomes is known as a population. The process of the fitness function is

applied to chromosomes to check their stability and select them for going to the next

mailto:sabir.cse@cuet.ac.bd

2

stage. With the participation of selected chromosomes in the crossover stage, they

produce offspring (child chromosomes) combining with the parent's gene. In the later

stage, few chromosomes will undergo the mutation process. After that selected chro-

mosomes which will shift to the next generation for a repeated procedure which will

be determined from fitness value that indicates Darwin's theory of evolution [16].

After completing several generations following the above steps, the best and precise

value of the mathematical equality problem can be gained. The whole process can be

summarized by the following steps:

1. Initialization of random value to each chromosome

2. Evaluation of objective function

3. Selection based on fitness probability

4. Crossover the chromosomes

5. Mutation

We will go through these repeatedly until we get the best value of the chromosome.

Hence, we find the best solution for each variable of the equation by finding the best

fittest chromosome using the Genetic Algorithm [2].

There exists a local solution of generating two equations from the given quadratic

equations containing the two roots and solving those which require severely increased

computation time given a large Datasets and requires further data training. Another

approach can be found the roots using all the coefficients of variables and constants of

the equation and which is also inefficient when a root becomes imaginary. So using

the genetic algorithm can be the best approach to overcome these limitations.

The sequential arrangement of the following part of this paper is as follows. Section 2

of the paper contains the background of related works. The proposed Genetic Algo-

rithm model is described in Section 3. Section 4 contains implementation details. And

section 5 holds our experimental result. Section 6 gives the conclusion and lastly Sec-

tion 7 finishes with all possible future works. Lastly, in section 8 we included all the

references we used.

2 Related Works

We adapted the idea of solving a quadratic equation in Nayak [1] using the Genetic

Algorithm [2]. In this paper, they have used the generalized Schur form of genetic

algorithm. To solve the 2nd order linear equation, they were limited to real-valued

arithmetic & real-valued variables. So in their solutions, the probability to get a cor-

rect answer is high. By using the Hybridized Genetic Algorithm [3], their solution is

not the most efficient one.

S.D. Bapon et al. [4] have shown improvement from the existing method using a new

algorithm about solving a 1st linear equation using a genetic algorithm. In their algo-

rithm, they encoded solutions as chromosomes. It was presented by Roulette Wheel

[5] in the selection after the process of evaluation. They also worked with the muta-

tion rate to get the optimal solution more quickly.

Solving a linear equation using the evolutionary algorithm was also discussed in [6].

This paper also solved the equation but not as efficient as the previous method. The

3

even structural improvement in the genetic algorithm was discussed in [7]. These

improvements assist in reducing complexity. A fixed point is also used in [12].

In the product recommendation system [8], U. Janjarassuk and S. Puengrusme pro-

vide a method to get the best guess for the crossover to increase efficiency. In this

paper [9] they solved non-linear equations using a genetic algorithm. Their proposed

technique is applied to the benchmark problem adopted from Grosan [10]. They have

made a comparative analysis to substantiate the effectiveness and reliability of the

proposed method in handling nonlinear systems which involved transcendental func-

tions. Sensitivity analysis was also made to validate the selection of parameters of

GA. We have also studied some optimization techniques using a genetic algorithm in

[13-15].

3 Proposed Methodology

In most of the cases, we get optimal solutions from the genetic algorithm. It's because

of some exclusive features of the genetic algorithm like adaptive characteristics. Mu-

tation, crossover, and selection method are behind this algorithm's character.

3.1 Initial population

The process begins with the Population which is nothing but a set of an individual.

Individuals are a solution to the problem we want to solve. An individual is character-

ized by a set of parameters (variables) known as Genes. Genes are joined into a string

to form a Chromosome (solution). In a genetic algorithm, the individual's set of genes

is represented, in terms of an alphabet, using a string. Most of the time binary values

are used (a string of 1s and 0s). First, we encode the gene in a chromosome then we

decode it before evaluating their fitness. Only the fittest chromosomes move to the

next generation.

Fig. 1. Initial Population.

4

3.2 Fitness Evaluation

Evaluation Function also is known as the Fitness Function finds how close is a given

solution compared to the optimum solution of the problem. How much fit a solution is

stated by it. Each of the solutions is generally represented by a chromosome as a

string of binary numbers in the Genetic Algorithm. We have to test these chromo-

somes and come up with the best solution to solve a given problem. Each of the prob-

lems has its fitness function. The fitness function is used depends on the given prob-

lem. In our problem the fitness function that we have considered is:

 Func_fit =
1

1+objective function

Fig. 2. The methodology of our proposed system.

3.3 Cross-over

Here "par_chromosome" chromosome will be selected as parent chromosome. Here,

the set of randomized numbers Random [par_chromosome] < ρc will be selected.

Now, as the crossover rate is set to 35% so randomly taken chromosomes which are

less than 0.35 are selected for crossover.

Fig. 3. Cross-over [11].

5

3.4 Mutation

In the mutation process, a significant change in the chromosome has been done.

Here, Total gene = number of genes in Chromosome × the number of populations.

The mutation is a process of change and so if the mutation rate or changing rate is

kept low (in a range of 0.01 to 0.1) than it provides the fittest result. The mutation rate

12 is defined by ρm. The basic purpose of mutation in GAs is preserving and intro-

ducing diversity. The mutation is done during evolution based on a user-definable

mutation probability. The probability has to be set low. If it is too high, the search

would turn into a primitive random search.

Fig. 4. Mutation.

The Pseudocode for Genetic Algorithm

The parameters of our genetic algorithm are the initial population, Max-Iteration,

 Best fitness, Max-fitness.

1: Generation =0

2: Initialize Population

3: While Generation < Max Generation

4: Evaluate fitness of population members

5: for i to 1 to elitist

5.1: Select best individual

5.2: end for

6: for i from elites to population_ size

6.1.1: for j to 1 from tournament size

6.1.2: select best parents

6.1.3: end for

6.1.4: end for

6.2.1: for k from elites to population_size * (1-mutation rate)

6.2.2: crossover parents child (Just add this tick mark)

6.3.1: for k from population_size*(1-mutation rate) to population_size

6.3.2: mutant parents child

6.3.3: end for

6.2: insert child for next generation’s population

6.3: end for

7: update current population

8: generation ++

9: end while

6

4 Implementation Details

Let, there is a quadratic equation to be like 𝑥2 − 8𝑥 + 15 = 0. Here, the Genetic algo-

rithm is used to find the root of the equation x1 and x2. five steps will be needed such

as initialization, evaluation, selection, crossing over and mutation to execute the

whole process.

4.1 Initialization

At first, we take the total number of 6 chromosomes as the initial population. Then,

we initialize the random values of gene x1 in each chromosome.

Chromo [1] = [x1] = [00000010]

Chromo [2] = [x1] = [00000100]

Chromo [3] = [x1] = [00000110]

Chromo [4] = [x1] = [00000111]

Chromo [5] = [x1] = [00001001]

Chromo [6] = [x1] = [00001000]

 It can be decoded as follows:

 Chromo [1] = [x1] = [2]

Chromo [2] = [x1] = [4]

Chromo [3] = [x1] = [6]

Chromo [4] = [x1] = [7]

Chromo [5] = [x1] = [9]

Chromo [6] = [x1] = [8]

4.2 Evaluation

In this step of evaluation, the value of the objective function for each chromosome is

computed.

Func_Objective[1]= Abs(22 − 2 ∗ 8 + 15)=3

Func_Objective[2]= Abs(42 − 4 ∗ 8 + 15)=1

Func_Objective[3]= Abs(62 − 6 ∗ 8 + 15)=3

Func_Objective[4]= Abs(72 − 7 ∗ 8 + 15)=8

Func_Objective[5]= Abs(92 − 9 ∗ 8 + 15)=24

Func_Objective[6]= Abs(82 − 8 ∗ 8 + 15)=15

In the next generation, the fittest chromosomes with higher probability will get select-

ed. To determine fitness probability at first, we determine the fitness function of each

chromosome. Then, 1 will be divided by (the objective function of each chromo-

some+1) to get the fitness probability.

 Func_Fit [1] = 1 / (1+Func_ objective [1]) = 1/4 = .25

Func_Fit [2] = 1 / (1+Func_ objective [2]) = 1/2 = .5

Func_Fit [3] = 1 / (1+Func_ objective [3]) = 1/4 = .25

Func_Fit [4] = 1 / (1+Func_ objective [4]) = 1/9 = .11

7

Func_Fit [5] = 1 / (1+Func_ objective [5]) = 1/25 = .04

Func_Fit [6] = 1 / (1+Func_ objective [6]) = 1/16 = .0625

 Total = 1.212

The rule for determining probability of each chromosome is:

 Probability[i] = Func_Fit[i] / Total

Probability [1] = .25 / 1.212 = .206 Probability [4] = .11/ 1.212 = .090

Probability [2] = .5/ 1.212 = .412 Probability [5] = .04 / 1.212 = .033

Probability [3] = .25 / 1.212= .206 Probability [6] = 0.0625 / 1.212 = .0515

Seeing the above probabilities, it is seen that Chromo [2] has the highest probability
of going to the next generation. A roulette wheel is used for this selection procedure.
For the computation in the roulette wheel, we should compute the values of cumula-
tive probability.
 C_Probability [1] = .206

 C_Probability [2] = 0.206+.412 = .618

 C_Probability [3] = 0.206+.412 +.206= .824

 C_Probability[4] 0.206+.412 +.206+.090 = .914

 C_Probability[5]= 0.206+.412 +.206+.090 +.033 = .947

 C_Probability[6]= 0.206+.412 +.206+.090 +.033 +.0515 = .9985
By calculating the cumulative probability of selection step using roulette wheel can

be done to generate random number Random which range is in between 0-1 as given
below-

 Random [1] = .822 Random [4] = 0.943

 Random [2] = 0.912 Random [5] = 0.201

 Random [3] = 0.823 Random [6] = 0.610

If for example generated a random number is greater than C_Probability [1] and

smaller than C_Probability [3] then select Chromo [3] as a chromosome for next gen-

eration in the existing population.

New_Chromo[1] = Chromo[3] New_Chromo[4] = Chromo[5]

New_Chromo[2] = Chromo[4] New_Chromo[5] = Chromo[1]

New_Chromo[3] = Chromo[3] New_Chromo[6] = Chromo[2]

Now, the existing chromosomes in the population look like given be-

low: Chromo [1] = [6] Chromo [4] = [9]

 Chromo [2] = [7] Chromo [5] = [2]

 Chromo [3] = [6] Chromo [6] = [4]

4.3 Cross-over

The crossover process generally helps to cut a chromosome by selecting a cutting

point randomly and joining another chromosome at that point. This process is re-

strained by using a parameter called crossover-rate which is expressed by ρc.

Here “par_chromosome” chromosome will be selected as parent chromosome. Here,

the set of randomized numbers Random [par_chromosome] < ρc will be selected.

8

Now, the crossover rate will be set to 35%. Now the process will be initialized as

follows.

At first,a random number Random is generated as the number of population

Random [1] = 0.069

Random [2] = 0.172

Random [3] = 0.679

Random [4] = 0.437

Random [5] = 0.312

Random [6] = 0.826

Now it is clear that, as Random [1], Random [2], Random [5] have the values less

than ρc. So, Chromo [1], Chromo [2] and Chromo [5] are selected for crossing over

process.
Chromo [1] >< Chromo [2]

Chromo [2] >< Chromo [5]

Chromo [5] >< Chromo [1]

Now three crossover constants will be selected randomly for three cutting point of

three chromosomes. So,

Cut_point [1] = 0

Cut_point [2] = 0

Cut_point [3] = 0

Then for crossover, crossover, parent’s gens will be cut at gen number 1, e.g.

Chromo [1] >< Chromo [2] = [6] >< [7] = [7]

Chromo [2] >< Chromo [5] = [7] >< [2] = [2]

Chromo [5] >< Chromo [1] = [2] >< [6] = [6]

After crossover process, the chromosomes are,

Chromo [1] = [7]

Chromo [2] = [2]

Chromo [3] = [6]

Chromo [4] = [9]

Chromo [5] = [6]

Chromo [6] = [4]

4.4 Mutation

In the mutation process, a significant change in the chromosome has been done.

Total gene = number of genes in Chromosome * the number of populations = 1*6 = 6

The mutation is a process of change and so if the mutation rate or changing rate is

kept low (in a range of 0.01 to 0.1) than it provides the fittest result. The mutation rate

is defined by ρm. Here mutation rate is defined 10% (0.1). So, 10% of the total gen

will be mutated. So, number of mutations will be = 0.10 * 6 = .6 ≈1

So, after mutation in the 3rd chromosome which was randomly chosen, the chromo-

somes will look like this,

9

Chromo [1] = [7] Chromo [4] = [9]

Chromo [2] = [2] Chromo [5] = [6]

Chromo [3] = [1] Chromo [6] = [4]

After mutation, the objective function will be again evaluated by following,

For Chromo [1] = [7],

Func_ objective [1] = Abs (72 − 8 ∗ 7 + 15) = 8

For Chromo [2] = [2]

Func_ objective [2] = Abs (22 − 8 ∗ 2 + 15) = 3

For Chromo [3] = [1]

Func_ objective [3] = Abs (12 − 8 ∗ 1 + 15) = 8

For Chromo [4] = [9]

Func_ objective [4] = Abs (92 − 8 ∗ 9 + 15) = 24

For Chromo [5] = [6]

Func_ objective [6] = Abs (62 − 8 ∗ 6 + 15) = 3

For Chromo [6] = [4]

Func_ objective [5] = Abs (42 − 8 ∗ 4 + 15) = 1

From this evaluation is clear that the objective functions are decreasing in some cases

and the lowest value of an objective function will be considered much fitter.

Hereafter 1st iteration fitter Chromosome is: Chromo [6] = [4]

And this fitter chromosome will undergo the same process of this algorithm. After the

next iteration, the value of fitness function will be decreased and after running 6 gen-

erations, the fittest chromosome will be obtained for which related objective function

becomes 0. So fittest chromosome is: Chromo = [5]

After decoding the answer, the result will be transformed like as follows

 Chromo= [00000101]

It is expressed that x1=5

Now if the value of x is put in the equation

x1+x2= -b/a (Where a & b are coefficients of x
2
 & x)

or, 5 + x2 = 8 (as b= -8 and a =1)

or, x2=3

Now, (x1, x2)=(5,3)

For justification F(x)= 𝑥2 − 8𝑥 + 15

Then F(5)= 52 − 8 ∗ 5 + 15=0

 F(3)= 32 − 8 ∗ 3 + 15=0

So it is clear that the value of these variables generated by GA satisfies the mathemat-

ical equality.

5 Experimental Result & Complexity Analysis

5.1 Execution Time Comparison

Results obtained by implementing our proposed algorithm are shown in Table 1. Ta-

ble 1 shows variations in runtime when ran for three consecutive times.

10

Table 1. Data table for execution time.

Equations Execution

Time 1st

run(second)

Execution

Time 2nd

run(second)

Execution

Time 3rd

run(second)

𝑥2 − 8𝑥 + 15 0.92 3.277 1.028

𝑥2 − 7𝑥 + 12 0.934 2.857 1.011

𝑥2 − 2.5𝑥 + 1 2.014 2.995 2.012

𝑥2 − 3𝑥 + 2 1.384 3.055 1.023

𝑥2 − 𝑥 − 2 0.873 3.265 2.995

The total number of generations depends on the number of randomly taken chromo-

somes. In our implementation, the results we found are shown in Table 2. This table

shows changes in generations which are depending on the number of random values.

Table 2. Data table for generations.

As the genetic algorithm moves towards the solution by consecutive crossovers and

mutations among the chromosomes so it shows variable execution time for a fixed

code, the execution time can be much lower or much higher when we run a single

time. So as genetic algorithm code has no specific execution time therefore the effi-

ciency of using the algorithm cannot be compared with other existing methods [Fig.

5].

Fig. 5. Graphical representation for given data.

Number of random values Generations

6 6

8 8

5 5

4 4

3 3

11

As total no of generation= number of genes in Chromosome * number of populations,

a total number of generations and the number of initial population was found the same

in our implementation.

5.2 Complexity Analysis

The time complexity of Genetic algorithm depends on three parameters-

1. Fitness function.

2. Selection operator.

3. Variation operator

Among the three parameters, it mainly depends on the fitness function. If the time

complexity of GA is evaluated with Big O notation, then it can be O (NG), where N is

the size of population and G stands for the number of iterations. On the other hand, if

we assume N be the size of the population and L be the length of the genotypes, then

for a simple Rastrigin function, the time complexity for the evaluation of the whole

generation will be O(NL). If the selection is stochastic then it is needed to sort the

population. In this case, time complexity will be O(NlogN), while for tournament

selection it will be O(N). If the population is transformed with a crossover and muta-

tion operator, then time complexity will be O(NL).

5.3 Best and Worst-Case Complexity

In Table 1, we have taken several equations and found their computation time. We

can see for 𝑥2 − 8𝑥 + 15 = 0 equation on 1
st
 Run the computation time was least.

The reason behind it was the requirement of a few steps of the crossover and mutation

process to find out the required root.

On the other hand, in Table 1, for the same equation’s 2
nd

 run, the computation time

was highest. The only reason was it took a lot of steps in the crossover and mutation

process to find the final roots. These were the best and worst time complexity for this

implementation.

6 Conclusion

To find an efficient solution of a quadratic equation within acceptable time form was

our primary focus of this work. We compared our proposed genetic algorithm ap-

proach with an existing method of solving equations. After numerous analysis, we

have to come in the conclusion that GAs has an upper-hand for obtaining a solution.

After further considering the obtained result and CPU times and comparing them with

other based known existing solutions of solving a quadratic equation it can be stated

that the GA based proposed approach performs well and much more efficiently.

12

7 Future Work

In the future, there is a scope for working on crossing over rate. We were not getting

expected outcome when both of the roots are imaginary, negative or fractional. So the

future recommendation is to implement the solving technique of second and higher-

order equations using GA considering these things also.

8 References

1. Nayak, T.: Solution to Quadratic Equation Using Genetic Algorithm. In Proceedings of

National Conference on AIRES, Andhra University (2012).

2. Holland, J. H.: Genetic algorithms. In Scientific American 267, 66–72 (1992).

3. Li, K., Jia, L., and Shi, X.: An Efficient Hybridized Genetic Algorithm. In Proceedings of

IEEE International Conference of Safety Produce Informatization, IICSPI 2018, 118–

121(2019).

4. Bapon, S.D, Hossain, M.S., Fahad, M.N.: Improvement of Solving First Order Linear

Equations by Adopting Genetic Algorithm. Unpublished Undergraduate Thesis. In Chitta-

gong University of Engineering & Technology, Chattorgram, Bangladesh,(February 2019).

5. Rodríguez, A. & Mendes, B.: Probability, Decisions and Games. Probability, Decisions

and Games. In John Wiley & Sons, Inc., (2018).

6. Bashir, L. Z.: Solve Simple Linear Equation using Evolutionary Algorithm. In World Sci-

entific News 19, 148–167 (2015).

7. Chen, T. Y. & Chen, C. J.: Improvements of simple genetic algorithm in structural design.

In International Journal for Numerical Methods in Engineering 40, 1323–1334 (1997).

8. Janjarassuk, U., Puengrusme, S.: Product recommendation based on genetic algorithm. In

5th International Conference on Engineering, Applied Sciences and Technology

(ICEAST), Luang Prabang, Laos, 1-4 (2019).

9. Uddin, M., Mangla, C., Ahmad, M.: Solving System of Nonlinear Equations using Genetic

Algorithm. In Journal of Computer and Mathematical Sciences10(4),877-886 (April, 2019)

10. Grosan, C. and Abraham, A.: A new approach for solving nonlinear equations systems.

In IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,

38(3), 698–714 (2008).

11. Riazi, A.: Genetic algorithm and a double-chromosome implementation to the traveling

salesman problem. In SN Appl. Sci. 1, 1397 (2019).

12. Rovira, A., Valdés, M. & Casanova, J.: A new methodology to solve non-linear equation

systems using genetic algorithms. In International Journal for Numerical Methods in Engi-

neering 63, 1424–1435 (2005).

13. Zhang, Y., Jin, W., Hu, Z., Chan, C. W.: A Genetic-Algorithms-Based Approach for Pro-

gramming Linear and Quadratic Optimization Problems with Uncertainty. In Journal of

Mathematical Problems in Engineering, 12, 1024-123X, (2013).

14. Tsutsui, S. & Fujimoto, N.: Solving quadratic assignment problems by genetic algorithms

with GPU computation: A case study. In Genetic and Evolutionary Computation Confer-

ence, GECCO-2009, 2523-2530(2009), 10.1145/1570256.1570355.

15. Sheta, A. & Turabieh, H.: A comparison between genetic algorithms and sequential quad-

ratic programming in solving constrained optimization problems. In ICGST International

Journal on Artificial Intelligence and Machine Learning (AIML), 6, 67-74 (2006).

16. Darwin, C.: On the Origin of the Species. In Darwin 5, 386 (1859).

