
Agent Command Manipulation System Using Two
Keys Encryption Model

 Sarah Sohana Rahma Bintey Mufiz Mukta
Dept. of Computer Science & Engineering Dept. of Computer Science & Engineering

Chittagong University of Engineering & Technology Chittagong University of Engineering & Technology
Chittagong, Bangladesh Chittagong, Bangladesh

Email: sarahsohana@gmail.com Email: rahmamukta@gmail.com

Abstract— Cryptography plays a vital role in information
security system against malicious attacks. This security system
uses some algorithms to scramble data into scribbled text which
can only be decrypted by party those possess the associated key.
Keys play the most important role in ensuring security of those
algorithms. A two keys based method which uses AES as core
algorithm is proposed here. This improved method has been
developed as application on Android platform which allows the
user to encrypt confidential messages before it is transmitted
over the network. This application provides a secure, fast and
strong encryption of data. There is a huge amount of confusion
and diffusion of data during encryption that makes it very hard
for an intruder to interpret the encryption pattern and the plain
text form of the encrypted data. Comparison between the
proposed system and traditional systems show that the proposed
one provides enhanced security in data transmission with good
performance.

Keywords—cryptography; encryption; keys; symmetric key
encryption; AES; DES; Tripple DES; security

I. INTRODUCTION

The importance of network security has increased
dramatically over the past decade with the development of
technology. Security of these confidential data is a critical
issue. Plenty of safety approaches are available to transfer data
within the organization’s premises. But when data need to be
transferred in the network companies premises, then a good
protection technique is needed which is not only secure but
also efficient for transferring the data quickly and efficiently.
Cryptography is a technique for data protection and security. It
has long been used by militaries and governments to facilitate
secret communication. Encryption is now commonly used in
protecting information within many kinds of civilian systems.
According to [18], the Computer Security Institute reported
that in 2007, 71% of companies surveyed utilized encryption
for some of their data in transit, and 53% utilized encryption
for some of their data in storage.

Many research works have been done on encryption
algorithms. Some of them are very efficient and able to secure
the protected data against unwanted attacks. According to
Kerckhoffs's principle, security of a cryptosystem mainly
depends on keys. Symmetric key algorithms use one key for
encryption. In public key cryptography two keys are used but
they are computationally expensive and CPU intensive.

Key can be defined as the rules which are responsible for
converting plain text into cipher text. Most of the algorithms

use one key. In this paper a system is proposed which uses two
keys instead of using one key. It provides more security than
the existing symmetric key encryption system. Using the
system two agents can share secret and confidential
information without any intrusion.

So keeping in mind the improved security and less CPU
usage we propose an Android based application using two keys
model which allows the user to encrypt the messages before it
is transmitted over the network. And the goal of such
application is end to end secure message transmission between
two agents.

II. SYSTEM DESCRIPTION

A. Overview of System

 The total system consists of a smartphone application that
is divided into three parts. After the app is launched the user
has to log in with a correct username and password to have
access to the system. If correct username and password are
given he will be able to log on to the system. Otherwise, access
is denied. A session for that user is created. A user can either
send a new message or read a message from his inbox. While
writing the secret message, the agent gives the input data or
secret information he wishes to send to another agent. Two
different secret keys for encrypting the message are given
along. Each command also contains a command ID which
helps to trace which message has been encrypted and will be
received by the receiver agent. Next step is the encryption of
the message into ciphertext using the improved encryption
algorithm. When it is completed a confirmation message is be
shown to the user. The secured messages in the inbox are
shown in encrypted form along with the command ID.

 If the agent is reading a ciphertext after having access to
the system, the first step will be the selection of the ciphertext
that he wishes to decrypt. Next, he input two keys for
decrypting the message selected seeing the message code or
choosing a random message. Decryption is done using the
same algorithm as the encryption. A code is generated
depending on the given secret keys. The receiver needs to give
both keys correctly. If the correct encryption key is given
twice, the agent is able to see the secret code or information
sent by the other agent.

 A code is also shown in the case of incorrect keys typed,
but in that case, the code is a garbage code i.e. the reader will
not be able to see the meaningful information that has been sent
and thus secrecy is maintained.

 It is difficult to remember all the keys that are needed to
decrypt. For this reason, a key exchange mechanism is required
which is secured. In the key management part, keys of the
messages can be found. As keys are the most sensitive
elements in the whole encryption process it must be properly
managed and exchanged. For accessing keys a user must have
to log in using a one-time password. When a user requests this
password is generated for a particular session and the code is
delivered to the user’s personal phone number which is
presented in the user’s database. However, this code can be
used for only one session and expires when the session ends. If
the correct code is given the user may have access to the keys
for the selected messages. The total system architecture is
shown in fig 1.

Figure 1: Total System Architecture

B. Improved Encryption Method

The working principle of encryption algorithm is presented
in fig 2. Here Key 1 and Key 2 are taken as input. Both keys
are converted into binary. Converted keys are bitwise XOR-ed.
At the same time, binary keys are encoded using Base-64
encoding method. In the next step Xor-ed keys and Encoded
keys are compacted. Keys are scheduled and expanded then fed
into AES algorithm scheme.

Plaintext is also taken as input. Here the system allows a
256-bit data length that can be divided into four basic
operational blocks. These blocks are organized as a matrix of
the order of 4×4 that is called the state. For both encryption and
decryption, AddRoundKey is the beginning stage. However,
before reaching the final round, this output goes through
several rounds. The system goes through 14 rounds for 256-bit
keys in order to deliver final result. During each of those

rounds four transformations are performed: Sub-bytes, Shift-
row, Mix-columns, Add round key.

• Sub-bytes
 It is a non linear byte substitution using a substation
table (s box) which is constructed by multiplicative
inverse and affine transformation.

• Shift-row
It is a simple byte transposition, the bytes in the last
three rows of state are cyclically shifted; the offset of
the left shift varies from one to three bytes.

• Mix-columns
It is equivalent to a matrix multiplication of columns of
the states. Each column vector is multiplied by a fixed
matrix.

• Add round Key
It is a simple XOR between the working state and the
round key.

The encryption procedure consists of several steps. A round
function is applied to the data block after an initial
Addroundkey. It is performed iteratively. In the final round,
there is no Mix columns transformation. And as output, a
ciphertext is delivered.

The algorithm varies from the traditional AES in terms of
keys. Instead of single key, two different keys are used. So
randomness is increased.

Figure 2: Improved Encryption Method

C. Improved Decryption Method

The decryption method is shown in fig 3. It is similar to the
encryption method. In this case, the system requires two keys
which receiver gives as inputs and fetches the ciphertext to be
decrypted from the database as another input. Unlike

encryption process keys are Xor-ed and encoded and then
compacted. They are fed into decryption scheme. Decryption is
the reverse process of encryption and it uses inverse
transformations: Inverse Substitute Bytes, Inverse Shift Rows,
and Inverse Mix Columns. As output, the desired plaintext is
delivered. If the input keys are given wrong instead of desired
plaintext meaningless texts are shown as output.

Figure 3: Improved Decryption Method

D. Key Management

Key management consists of two parts: Generate a One
Time Password and Key access via One Time Password.

When a user wants to access the keys he needs a password.
A one-time password (OTP) is an automatically generated
alphanumeric or numeric string of characters that authenticates
the user for a single transaction or session. This password is
generated one time and expires after the session. A new one is
generated for a new session. Generated code is sent via SMS
protocol to user’s personal phone number that is stored in the
server.

After user logs into the system to access the keys he needs
to enter the generated code delivered into his phone via SMS.
The system then checks if the entered code matches with the
code that is stored in the server database. If both codes match,
user’s access is granted and he can now see the keys for the
messages he intends to read. The user can not use the same
code again to have access because after the session expires the
code cannot be used again.

E. Mobile Application

The system is implemented on Android platform. As it a
dynamic app it needs to access a server in order to properly
function, i.e. it needs a data connection either through Wi-Fi or
phone's carrier.

So a prerequisite for launching the app is data connection.
When a connection is established, the application connects to
the server after the splash screen. If the connection is failed

somehow, then it shows the error message just after the splash
screen.

To have access to the system, a user must log in using a
username and a password. This user account is created on the
server side by the administrator. Unauthorized users can not
have access to the system. When logged on with correct
username and password, a user session is created by the server.

Figure 4: User Login

The Main screen of the app has three main options

• Command an Agent

• Secured Messages

• Key Management

 The first option is for sending secret message to an agent.
The second option is for reading a secret message. The last one
is for accessing keys for decrypting. It has also a logout option
to end the session. Screenshot of the main screen is shown in
fig 5.

Figure 5: Main Screen

While sending message the user needs to fill the field boxes
for message ID, the message, key 1 and key 2. He also needs to
specify the user he wants to send the message to. After clicking
send button the message is encrypted and transmitted via
server. Encryption is done before transmitting. Encrypted
messages are then sent to the specific users account. A
confirmation message is shown after the message is sent. If any

field is kept blank, no message is transmitted and an error
message is shown.

 Figure 6: Command an Agent

Encrypted messages that are sent to a user are stored
database. When this option in the main screen is selected the
encrypted messages along with their message IDs are visible to
the user. He can only see the messages that have been sent to
his account. The user can then select a message to decrypt and
read the secret information. User needs to fill in the field boxes
for key 1 and key 2. The keys are identical to the keys that have
been used to encrypt the message. Using these two keys the
message is then decrypted. This is shown in fig. 7.

Figure 7: Reading a Secret Message

If correct keys are given the desired plaintext is shown to
the user. Otherwise, a garbage code is found.

In our app one time password is used to access the keys. In
the key management option, there is a button named ‘Generate
Onetime Password’. When this button is clicked a one-time
password is generated and the password is sent to the user’s
phone number via SMS. The user can then enter the code to
have access to the keys. This code only works for that session.
When the session expired the code can no longer be used to
access the keys.

III. EXPERIMENTAL RESULT

This study evaluates different encryption algorithms
namely; AES, DES, 3DES and the Proposed Two Key
Encryption method. After implementing the system we

compare the system with these existing symmetric key
systems. The parameters we used for comparing are as
follows.

A. Avalanche Effect

A desirable property of any encryption algorithm is that a
tiny change in either the plaintext or the key will produce a big
change in the cipher text. That means a change in one bit of the
either plaintext or the key should produce a change in many
bits of the cipher texts. This property is known as Avalanche
Effect. As in [15], [16], the more change in avalanche effect
the more secure the system.

 Avalanche Effect (%) = (Number of Changed Bits in Cipher text)
/ (Total number of bits in cipher text) * 100

TABLE I. CHANGE IN BITS IN CIPHERTEXT (BINARY) IF THE PLAINTEXT
IS CHANGED ONE BIT

Algorithm Ciphertext
for plaintext
“security”

Ciphertext for
plaintext

“secusity”

Change
In bits

DES unDK1dCTj8
I=

0MtUQ5pFO7
I=

30

3DES 8TdxLKYcsS
66cMrV0JOP
wg==

kUIT6JYc2CP
Qy1RDmkU7s
g==

87

AES 9JodZFHww
ZKCqjFpc7Ij
Aa4AGje4HP
rUwerhcEDB
8pw=

tVWfXk2qyZc
nXU+h5zAYK
dO/00XrlQ2IN
suwKTzSQE0
=

138

Proposed
System

SE/B1rXPrX
7QPzUFtt+iT
gpeOWzAD5
1VHe56HC0
M1jo=

vaEstCM40c2r
4w717Wlvfwg
He9BsEEv+Q
G2
d0y+olc=

156

The Table I shows the avalanche effect for each algorithm
when we took input plaintext as “security” and flipping one bit
from the plaintext to get “secusity” (on flipping r (0111 0010)
to s (0111 0011)).

TABLE II. COMPARISON BASED ON AVALANCHE EFFECT

Technique Avalanche Effect (%)

DES 31

TRIPLE DES 45

AES 53

PROPOSED ALGORITHM 60

 Fig. 8 shows comparison among DES, 3DES, AES and
Proposed algorithm based on Avalanche effect. By analyzing
the table 2 and fig. 8, it can be noticed that in the proposed
algorithm avalanche effect is significantly high i.e. it is 62 due
to one-bit change in plaintext keeping the key unchanged,
whereas for DES it is 35. Higher avalanche effect means higher
security. Therefore, it shows that our proposed system offers
higher security.

Figure 8: Comparison based on Avalanche Effect

B. Encryption/Decryption Time

It indicates the time required by algorithm for processing a
particular length of data. In this experiment the text files sizes
range from 49 KB to 7310 KB.

C. CPU Process Time – in the form of Throughput

Encryption time is used to calculate the throughput of an
encryption scheme. The throughput is calculated by dividing
the total plaintext in MB by total encryption time in Second for
each algorithm. Similar procedure has been followed to
calculate the throughput of decryption scheme.

TABLE III. COMPARATIVE EXECUTION TIMES (IN MILLISECONDS) OF
ENCRYPTION ALGORITHMS WITH DIFFERENT PACKET SIZE

 Fig. 9 shows the throughput by different encryption
algorithms. From table III, we can see that 3DES needs more
time to encrypt different file sizes than all other algorithms. So
it’s throughout is the lowest. AES and our system need almost
equal time to encrypt a message. So the throughput for both
AES and the two key encryption method are quite similar,
despite of the fact two keys are being used in our system.

Figure 9: Throughput of each encryption algorithm
(Megabyte/Sec)

TABLE IV. COMPARATIVE EXECUTION TIMES (IN MILLISECONDS) OF
DECRYPTION ALGORITHMS WITH DIFFERENT PACKET SIZES

Table IV depicts the same result for decryption as for
encryption. 3DES takes much time to decrypt so its
throughput is less than others. AES and our proposed system
show almost same output as observed in the both charts.

By analyzing fig. 10, we can see that though our proposed
system is using two keys its processing time both is similar to
the traditional AES and it is faster than the processing time of

0

20

40

60

Avalanche Effect

DES

3DES

AES

Proposed
Algorithm 0

0.5

1

1.5

2

2.5

DES 3DES AES Proposed
method

Input
Size
(KB)

DES 3DES AES Proposed
Method

49 50 53 63 65

321 74 87 149 151

963 164 177 164 165

5345 783 835 655 663

7310 953 1101 882 894

Average
Time

404.8 450.6 382 387.6

Through
put

3.374 3.031 3.55 3.524

Input
Size
(KB)

DES 3DES AES Proposed
System

49 29 54 56 57

321 82 167 164 165

963 250 283 208 211

5345 1296 1466 1237 1245

7310 1695 1786 1366 1385

Average
Time

670.4 751.2 606 613

Through
put(MB/s

ec)

2.037 1.818 2.25 2.23

DES. But it can be shown that its security level and encryption
intensity is higher than other algorithms. Here, the performance
of 3DES is the slowest because of its triple phase encryption
characteristics.

Figure 10: Throughput of each decryption algorithm
(Megabyte/Sec)

IV. CONCLUSION

In this paper, we proposed a new application with an
improved encryption scheme. We developed the system in a
way so that the requirements for speed and compactness can
meet. The program size is very small and it can be installed
into any cell-phone running on Android platform. The user
experiences no delays while using the program, which is a
clear indication that the speed requirement is met. We analyzed
the security measurements and performance in this paper which
is satisfactory. We made sure that the user interface is simple
and easy to handle. Most importantly, in this application the
messages having confidential information are stored securely
and remain undisclosed even when the device is accessed by an
adversary. So it can be concluded that this application
guarantees a secure end to end transfer of confidential data
with ease.

REFERENCES
[1] F. Jing, and Zhu Xian,"Data Encryption by Two Keys", Information

Science and Engineering (ICISE), 1st International Conference on.
IEEE, pp. 1683-1686, 2009.

[2] A.K. Al Tamimi, "Swati, Performance Analysis of Data Encryption
Algorithms’.", International Journal of Advanced Research in Computer
Science and Software Engineering, 3.2, 147-149, 2013.

[3] S. P. Singh, and Raman Maini, "Comparison of data encryption
algorithms.”, International Journal of Computer Science and
Communication 2.1: 125-127, 2011.

[4] A. Kumar, Dr Sudesh Jakhar, and S. Kakkar, "Comparative Analysis
between DES and RSA Algorithms.”, International Journal of Advanced
Research in Computer Science and Software Engineering 2.7: 386-391,
2012.

[5] J. Thakur, and Nagesh Kumar, "DES, AES and Blowfish: Symmetric key
cryptography algorithms simulation based performance analysis.”,
International journal of emerging technology and advanced engineering
1.2: 6-12, 2011.

[6] M.H.Fei, Fan Jing, and Li Hong Lian, "Order Exchange Key in Data
Encryption.", Recent Advances in Computer Science and Information
Engineering, Springer Berlin Heidelberg, pp. 407-412, 2012.

[7] V. Agrawal, Shruti Agrawal, and Rajesh Deshmukh, "Analysis and
Review of Encryption and Decryption for Secure Communication.",
Analysis 2, no. 2 , 2014.

[8] R. Rayarikar, S. Upadhyay and P. Pimpale, “SMS Encryption using AES
Algorithm on Android.”International Journal of Computer
Applications 50(19):12-17, July 2012.

[9] D. Hadapad, and Steven Raj N, “Android Application For Secure File
Transferring Using Data Encryption Standard”, International Journal of
Engineering Research & Technology, Vol.2 - Issue 7, July 2013.

[10] A. Bhushan and P.Dulari. "TORDES-the new symmetric key
algorithm."

[11] K.R. Saraf, V.P. Jagtap, A.K. Mishra."Text and Image Encryption
Decryption Using Advanced Encryption Standard." International Journal
of Emerging Trends & Technology in Computer Science (2014).

[12] P.C. Mandal."Evaluation of performance of the Symmetric Key
Algorithms: DES, 3DES, AES and Blowfish." Journal of Global
Research in Computer Science 3.8 (2012): 67-70.

[13] D. Salama, H.A. Kader, M. Hadhoud. "Studying the Effects of Most
Common Encryption Algorithms." International Arab Journal of e-
Technology 2.1 (2011): 1-10.

[14] Z.P.Buba, G.M.Wajiga,"Cryptographic algorithms for secure data
communication." International Journal of Computer Science and
Security (IJCSS) 5.2 (2011): 227-243.

[15] A. Kumar, M. N. Tiwari. "Effective implementation and avalanche effect
of AES." International Journal of Security, Privacy and Trust
Management (IJSPTM) 1.3/4 (2012): 31-35.

[16] A.K. Mandal, A. Tiwari. “Analysis of Avalanche Effect in Plaintext of
DES using Binary Codes." International Journal of Emerging Trends and
Technology in Computer Science (IJETTCS) 1.3 (2012): 166-177.

[17] E.K. Kavitha. "Performance Evaluation of Cryptographic Algorithms:
AES and DES for Implementation of Secured Customer Relationship
Management (CRM) System." Journal of e-technology 2.1 (2011).

[18] A. Kumar, S. Sinha, R. Chaudhary. "A Comparative Analysis of
Encryption Algorithms for Better Utilization." International Journal of
Computer Applications 71.14 (2013): 17-23.

[19] A. Doganaksoy, B. Ege, O. Koçak, F. Sulak. "Cryptographic
Randomness Testing of Block Ciphers and Hash Functions." IACR
Cryptology ePrint Archive 2010 (2010): 564.

[20] One time password. Last day of access (September 5, 2015). [Online].
Available: https://en.wikipedia.org/wiki/One-time_password

[21] One Time Password Token & Security Solution. Last day of access
(September 5, 2015). [Online]. Available:

[22] http://www.securemetric.com/one-time-password-security.php

[23] Encryption. Last day of access (April 22, 2015). Available:

[24] https://play.google.com/store/apps/details?id=com.TollerTech.Encryptio
n

[25] G. Singh, S. Kinger. "Integrating AES, DES, and 3-DES Encryption
Algorithms for Enhanced Data Security." International Journal of
Scientific & Engineering Research 4.7 (2013): 2058.

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

DES 3DES AES Proposed
Method

