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Abstract

Trash production and disposal have emerged as serious issues for underdeveloped nations
as their populations have swelled. As manual classification can be both time-consuming
and potentially dangerous, therefore, nowadays, it is increasingly being replaced by au-
tomated methods. Recent advances in AI and deep learning have allowed for significant
advancements in trash detection and classification systems. Due to the lack of a com-
prehensive trash detection dataset tailored to Bangladesh, we set out to collect data that
would accurately portray the complexity of Bangladesh’s scenario while also incorporating
openlittermap. In this study, we employ a deep learning model known as YOLOv5. Several
variants of the YOLOv5 model are used and assessed with both the freshly minted dataset
and the already existing benchmark datasets. Simulation results indicate that the finetuned
YOLOv5 model outperforms existing models in terms of mean average precision (mAP)
and F1-score. On the Bangladeshi dataset, the model shows an mAP of 34.3% and an
F1-score of 43.7%. The mAP and F1-score provide a holistic evaluation of YOLOv5’s
object recognition accuracy, localization, and precision-recall balance. By incorporating
the additional data from openlittermap into the new dataset, the mAP is increased to 45.4%.
In addition, for some variants of YOLOv5, the suggested model produces greater mAP than
the current literature on both the TACO and PlastOpol datasets. The model also achieves
an mAP of 84.4% and an F1-score of 78.2% in single-class detection experiments with the
newly created dataset. This is because concentrating on just one class helps eliminate class
ambiguity, improves localization accuracy, and mitigates class imbalance.

Keywords: Bangladeshi trash, trash dataset, trash detection, transfer learning, single-stage
object detector.
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Chapter1
Introduction

1.1 Introduction

In today’s world, trash littering is a massive problem that affects many countries. The
problem is exacerbated in underdeveloped countries due to inadequate waste-handling
infrastructure and resource restrictions. Even industrialized countries, however, are not im-
mune to the problem and confront considerable hurdles in managing their trash. Managing
such large amounts of trash is still troublesome for many countries, especially in low-
income nations where waste management systems may be insufficient or non-existent [1].
Poor trash disposal may lead to a variety of environmental and health issues. There are not
enough waste management facilities in many regions of the world to handle the amount of
trash produced. This can result in trash accumulating in public places or being deposited in
unapproved areas, producing pollution and health risks. Additionally, many impoverished
countries lack the financial and human resources to implement effective waste management
systems. Another concern is a lack of public awareness about the importance of proper
trash disposal. Many individuals are uninformed of the dangers of improper garbage
disposal and may be unsure how to dispose of various types of waste properly.

Different types of trash are found in nature, including organic, inorganic, toxic, electronics,
construction, agricultural, and municipal solid trash. According to the World Health
Organization (WHO) [2], around 15% of healthcare waste is infectious, poisonous, or
radioactive; the remaining 85% is general, as shown in Figure 1.1.

In a developing country like Bangladesh, which has a population of over 160 million and
limited resources to deal with waste management, the country has struggled to keep up with
the increasing amount of trash produced daily. In terms of solid waste generation, urban
areas in Bangladesh generate around 25,000 tons of trash each day, with an annual average
of 170 kg per inhabitant [3]. Dhaka, the capital city of Bangladesh, alone generates over
4500 tonnes of trash daily, putting severe pressure on the city’s inadequate waste manage-
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1.1. Introduction

Figure 1.1. Waste categories by WHO

ment infrastructure [4]. The management of solid waste is a major issue for Bangladesh
due to the fact that by the year 2025, the quantity of garbage generated per capita will reach
0.75 kilograms per capita per day, and the overall amount of waste will reach 21.07 million
tons per year [5]. To keep the area clean and healthy, enormous amounts of trash must
be managed. One way to manage trash is to sort it into recyclables, compostables, and
non-recyclables [6]. It also reduces the amount of trash put in landfills. Waste management
procedures have changed due to the COVID-19 pandemic. Medical waste and single-use
plastics have increased due to the increased usage of personal protective equipment (PPE)
and disposable items.

Due to the fact that trash does not conform to any certain shape, the process of catego-
rization can be rather challenging. Several scholars have made significant contributions to
solving the challenges of waste categorization. Cutting-edge technologies have effectively
addressed the challenges of categorizing trash in recent years. Recent studies have aimed to
automate the trash classification process by employing cutting-edge technologies like ma-
chine learning and computer vision. Recyclables, compostables, and non-recyclables have
all been successfully detected and classified using deep learning techniques. Convolutional
neural networks (CNNs) have been utilized for feature-based waste item recognition [7]–
[10], and transfer learning has made it possible to train models with limited data. Certain
tasks are oriented toward the detection of multiple classes, while others are solely focused
on the detection of a single class. In this study, we use a single-stage object detector
to conduct both types of tests and present a comprehensive analysis of the results. For

2



1.2. Trash Classification System

this purpose, we opted for a lightweight object detection model. Due to its efficiency
and rapidity in image processing, a lightweight object detection model is favored since it
enables object identification in real-time and performs well in environments with limited
resources. The ability to deploy the model on smaller devices is another bonus of using a
lightweight object detection model, which is determined by the model’s tiny size and fast
inference time [11].

The benchmark datasets that are accessible for these activities, however, are still quite
restricted in number. Regarding the classification problem, the popular benchmark dataset
currently accessible is called TrashNet [12], consisting of 2527 images, and it has been
utilized in various research studies. TACO [13] is a benchmark dataset that is commonly
used for the detection task. It consists of 1500 pictures with 4784 annotations. The majority
of the public datasets that might be used for classification tasks do not take into account the
actual backgrounds. As a consequence of this, the generalization is somewhat inaccurate
because the image has a genuine background. In addition, the image that is included in the
dataset only shows a single garbage object. However, the background may have several
pieces of trash in a single image. In this scenario, the items must be identified before being
categorized. There are many different object detection models, such as R-CNN [14], Faster
R-CNN [15], Mask R-CNN [16], SSD [17], EfficientDet [18], and YOLO [19], which
are popular among researchers for detection tasks. In this research, we endeavored to
compile a dataset by taking into account the actual conditions that prevail in Bangladesh.
For the purpose of expanding our dataset, we additionally obtained more images from
openlittermap [20].

The structure of this chapter is as follows: It commences with a concise introduction to
the proposed trash classification system, followed by an enumeration of the challenges
faced. Subsequently, the applications of the trash classification system are delineated.
The motivation and contributions of this thesis are expounded upon. Lastly, the chapter
concludes with an overview of the entire thesis.

1.2 Trash Classification System

Trash classification using deep neural networks is a supervised learning methodology
employed in the domain of computer vision with the objective of categorizing diverse
forms of waste materials based on visual data, such as photos or videos. In recent years,
there has been a notable increase in the attention given to this subject, mostly driven by its
relevance to environmental concerns and waste management practices. This includes its
use in areas like recycling, pollution mitigation, and the preservation of valuable resources.
Within the realm of waste categorization, there are two primary responsibilities that can be

3
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discerned:

1.2.1 Single Trash Classification

The process of single trash classification entails the identification and categorization of
individual trash pieces. The aforementioned things encompass a diverse range of waste ma-
terials, including but not limited to plastic bottles, paper, glass, and technological garbage.
Deep neural networks, namely convolutional neural networks (CNNs), are frequently
employed for this particular undertaking. Convolutional Neural Networks (CNNs) have
demonstrated efficacy in the extraction of distinctive characteristics from images enabling
the identification and classification of different types of waste materials. The efficacy of a
unified waste categorization system relies on its ability to accurately process images with
varying viewpoints, lighting conditions, and backdrops.

1.2.2 Multi Trash Classification

In contrast, multi-trash classification expands the functionalities of trash classification
systems by identifying and classifying many trash pieces concurrently inside a particular
scene or frame. The methodology necessitates the first identification of the trash objects
inside the picture. In order to achieve this objective, object identification models such
as YOLO (You Only Look Once) or Faster R-CNN (Region-based Convolutional Neural
Network) can be utilized. Object detection models are specifically engineered to accurately
recognize and pinpoint things of interest inside an image. In the context of this particular
scenario, the objects of interest pertain to the various kinds of rubbish. After the identifica-
tion of trash objects, the system proceeds to categorize each of them into their appropriate
classifications. In order to optimize the efficacy of multi-trash classification, it is important
to effectively tackle the obstacles related to the identification and categorization of various
trash objects that possess diverse forms, sizes, and spatial orientations within a singular
frame.

The major steps of developing our proposed architecture are summarized here, such as,

■ Develop a trash classification dataset that contains both single-trash and multi-trash
categories

■ Split dataset into the training set, test set, and validation set
■ Perform annotation for the dataset
■ Preprocessing
■ Select classification model

4



1.3. Challenges

■ Training and hyperparameter tunning
■ Extract spatial features using CNN
■ Generate output probabilities of each trash category

1.3 Challenges

The categorization of trash using deep neural networks presents several obstacles, particu-
larly when used in outdoor environments. The following are few prominent challenges:

■ Identifying multiple trash objects from outdoor scenarios: Outdoor locations
often present visually intricate backgrounds, which can make it difficult for models
to effectively distinguish between discarded goods and natural elements like trees,
grass, or bodies of water. The existence of various lighting conditions in outdoor
settings might bring unpredictability, which in turn can affect the visual quality
of photographs and create challenges in accurately identifying trash things. The
complexity of identifying and categorizing trash items may increase as a result of
their potential to be partially or fully obscured by surrounding objects.

■ Limited range of classes in existing studies: Numerous extant research and datasets
have a narrow scope, concentrating on a restricted number of categories pertaining
to waste materials. This phenomenon has the potential to generate models that are
highly compatible with certain locations or waste management systems, however,
may lack adaptability when confronted with diverse settings including a broader
range of trash categories. As an example, The categorization of medical waste, which
presents distinct health and safety hazards, necessitates the utilization of specialized
models and training data. The identification and management of medical waste
within the framework of waste categorization provide a significant and pressing
obstacle.

■ Data imbalance: Imbalanced datasets, characterized by the underrepresentation
or overrepresentation of specific trash classes, have the potential to introduce bias
into the performance of models. The rectification of data imbalance is of utmost
importance in order to attain precise and equitable outcomes in waste categorization.

■ Lack of comprehensive datasets from the Bangladeshi environment: The pres-
ence of diverse and high-quality datasets plays a pivotal role in the training and
evaluation of waste categorization algorithms. The absence of comprehensive statis-
tics pertaining to the local environment, waste kinds, and disposal practices in
Bangladesh might impede the formulation of efficacious remedies. The collection
and curation of datasets that contain a comprehensive array of waste materials of-
ten encountered in Bangladesh, including culturally distinctive things, are crucial
for the development of models that can successfully operate within this particular

5
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environment.

1.4 Applications of Trash Classification System

■ Construction of intelligent smart waste sorter: Trash categorization systems play
a crucial role in the advancement of smart garbage sorters, which find application in
diverse waste management and recycling facilities. These systems employ computer
vision and deep learning algorithms to autonomously categorize and separate many
sorts of waste products, including plastics, glass, paper, and electronic waste. The
primary advantages encompass enhanced efficiency in recycling processes, reduced
levels of contamination in recyclable materials, and heightened levels of resource
recovery. The use of intelligent trash sorting systems plays a significant role in
promoting sustainable waste management strategies, hence yielding both economic
and environmental advantages.

■ Monitoring of illegal dumping: Trash categorization systems have the potential to
be implemented in outdoor settings and public spaces for the purpose of monitoring
and identifying instances of illicit waste disposal. The utilization of surveillance
cameras integrated with computer vision technology enables the detection of sit-
uations in which persons or organizations engage in the unauthorized disposal of
waste in locations not approved for such purposes. The system has the capability to
initiate warnings or notifications to law enforcement or environmental authorities,
prompting them to undertake necessary measures against individuals engaged in
unlawful dumping activities. This application serves the purpose of deterring and
mitigating unauthorized rubbish dumping, so safeguarding the cleanliness and visual
appeal of public places while also ensuring environmental protection.

■ Waste management and recycling: One of the principal uses pertains to waste
management facilities and recycling centers. Trash classification systems have
the capability to automate the process of classifying recyclable materials, such as
plastics, glass, and paper, from non-recyclable items. This automation significantly
enhances the efficiency and precision of the recycling process.

1.5 Motivation

The motivation behind the implementation of a waste categorization system stems from
the urgent necessity to mitigate the limitations and risks inherent in manual classification.
Manual classification is susceptible to misidentification and human fallibility, thereby
necessitating a more reliable alternative. Furthermore, the absence of proper identification
for workers handling hazardous waste exposes them to considerable health hazards, which

6



1.6. Contribution of the Thesis

must be effectively addressed. In addition, the absence of accessible datasets pertaining to
the Bangladeshi context underscores the need for customized approaches that can address
the unique requirements of waste management in the local setting. These tailored solutions
are essential in surpassing the constraints of previous research endeavors, thus enabling
more efficient and accurate waste management practices, safeguarding the environment,
and ensuring the well-being of workers.

1.6 Contribution of the Thesis

■ Construct a diversified collection of 4418 images, incorporating data from
Bangladesh and openlitremap. There are ten distinct types of trash in the dataset.
The Bangladeshi dataset has 1283 images, while openlittermap provides 3135
images. Due to the scarcity of benchmark datasets for the detection work, our dataset
will be able to fulfill the requirement of the challenge, which is to concentrate data
on the Bangladeshi environment.

■ Apply a transfer-learning-based object detection model that has been adequately fine-
tuned for trash detection tasks using the COCO dataset and then conduct experiments
utilizing the selected fine-tuned models on our datasets. The experimental outcomes
validate the practicability of the approach. Analyze and compare our models’
accuracy to that of state-of-the-art models using two publicly available datasets.
According to the findings of the analysis, the accuracy of our models was superior to
that of the most recent and cutting-edge model.

1.7 Thesis Organization

The subsequent sections of this thesis are structured as follows. Chapter 2 provides an
overview of pertinent technology. In this section, a concise overview of the research
pertaining to other connected studies is provided. Chapter 3 focuses on the suggested
architectures, encompassing comprehensive graphics that are essential for understanding
the subject matter. In Chapter 4, a comprehensive overview is provided of the experimental
outcomes pertaining to the suggested structures, encompassing an assortment of accuracy
metrics. The last chapter serves as the concluding section of the entire body of work.
Additionally, this chapter also references several forthcoming research endeavors.

1.8 Conclusion

This chapter presents a comprehensive review of the notion of trash classification, en-
compassing the inherent obstacles associated with its implementation. Furthermore, an
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1.8. Conclusion

extensive examination was conducted on the diverse range of applications pertaining to
the classification of trash, with particular emphasis placed on elucidating its pertinence
and significance. Subsequently, we expounded upon the underlying rationale and the
significant contributions of this study endeavor. The forthcoming chapter will undertake
a comprehensive examination of the pertinent literature, providing more context to the
subject area.

8



Chapter2
Literature Review

2.1 Introduction

To enhance comprehension of contemporary techniques within the domain of trash clas-
sification systems, we present a succinct outline. This comprehensive review examines
the core ideas in deep learning, focusing on single-stage and multi-stage object detec-
tors, as well as several classification models for single trash items. The key principles
encompassed in this discussion are Object detectors, feature pyramid networks (FPN),
transfer learning, Faster R-CNN, and YOLOv5. Furthermore, the activation functions and
categorical cross-entropy loss functions that are frequently utilized in these models are
also addressed. Following this, we proceed to examine comparable studies in the domain
of trash classification, organizing them according to whether they concentrate on distinct
waste items within the same waste category or contain a variety of categories of trash
items. The chapter is structured in the following manner: At first, a concise overview of
single-stage and multi-stage object detectors is presented. Subsequently, the process of
transfer learning and its use in the domain of trash classification are introduced. In the end,
we present a thorough examination of current methodologies, with succinct explanations
of each technique and their significance within the realm of trash categorization systems.

2.2 Object Detectors

The task of object detection in computer vision pertains to the identification and localization
of objects inside an image. The procedure of object detection generally encompasses the
subsequent stages:

(i) Input Image: The initial step involves the utilization of an input image, which has
the potential to encompass many things that are of significance.

(ii) Feature Extraction: Feature extraction involves the processing of an image to iden-
tify and extract pertinent features. This stage entails the utilization of convolutional
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2.2. Object Detectors

neural networks (CNNs) to effectively capture and analyze patterns and distinctive
features present in the image.

(iii) Candidate Region Proposal: The utilization of region suggestion methods by object
detectors is employed to effectively limit the search space and locate prospective
object locations. This procedure involves the creation of bounding boxes that enclose
regions inside the image that are likely to contain objects.

(iv) Classification: The regions that have been suggested are subjected to more in-depth
analysis in order to determine whether they possess an object and, if they do, to
ascertain the specific sort of object it represents. This process entails the utilization
of classification models to allocate labels to individual regions.

(v) Bounding Box Refinement: The process of bounding box refinement involves the
adjustment of bounding boxes in order to more correctly encompass the items that
have been detected. Frequently, this entails modifying the placement and dimensions
of the bounding boxes.

(vi) Object Localization: Object localization is the concluding stage of the process,
wherein the coordinates of the object within the image are provided, facilitating
accurate and precise object localization.

There are two main methodologies for object detection, namely single-stage and multi-stage
object detectors.

(i) Single-Stage Object Detectors: Single-stage object detectors are designed to predict
the bounding boxes and class labels of all objects in a single run through the network
without the need for several stages or iterations. Typically, these types exhibit higher
speed but may exhibit somewhat reduced accuracy in comparison to multi-stage
detectors. Two well-known examples of single-stage detectors are YOLO (You Only
Look Once) and SSD (Single Shot MultiBox Detector).

(ii) Multi-Stage Object Detectors: Multi-stage object detectors adhere to a dual-step
procedure. Initially, prospective item placements are identified, commonly known as
region suggestions. Subsequently, these zones undergo classification and refinement.
Multi-stage detectors have been observed to exhibit greater accuracy rates but at the
expense of increased processing requirements. One widely recognized instance is
the Faster R-CNN, which stands for Region-based Convolutional Neural Network.

In brief, the process of object detection entails the recognition and precise localization
of items inside an image. Single-stage detectors strive to accomplish this objective in
a solitary iteration, whereas multi-stage detectors adhere to a more intricate, bipartite
procedure. The selection of these methodologies is contingent upon the precise demands of
the undertaking while also considering the trade-off between expeditiousness and precision.
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2.3 Single-Stage Object Detectors

The objective of single-stage object detection is to identify and categorize things inside an
image by utilizing a single iteration through the neural network. The system is renowned
for its high level of efficiency and rapidity. The procedure generally encompasses the
subsequent stages:

(i) Input Image: The process commences with an input image.
(ii) Feature Extraction: The process of feature extraction involves the utilization of

a convolutional neural network (CNN) to analyse the image and extract relevant
information. This stage involves the identification of patterns, edges, and pertinent
information contained within the image.

(iii) Grid-Based Prediction: Grid-based prediction involves dividing an image into
a grid of cells, wherein each cell is assigned the task of predicting a collection
of bounding boxes by the model. The bounding boxes encompass pertinent data
pertaining to their coordinates (x, y, width, height), confidence score (indicating the
likelihood of containing an item), and class scores (representing the scores assigned
to each conceivable object class).

(iv) Non-Maximum Suppression (NMS): Non-Maximum Suppression is employed as a
means to eliminate redundant and less reliable forecasts. The process involves elimi-
nating redundant bounding boxes by selecting the one with the highest confidence
score.

(v) Class Labeling: Class labeling involves the assignment of class labels to the bound-
ing boxes. The labels assigned by the model are determined by selecting the class
score with the highest level of confidence for each individual box.

(vi) Output: The ultimate result comprises the coordinates, class labels, and confidence
ratings pertaining to the identified items. The findings are displayed in the form of
bounding boxes encompassing the identified objects.

2.3.1 Examples of Single-stage object detectors

Examples of two single-stage object detectors are given below:

YOLO: The YOLO system is widely recognized in the field of computer vision for its
ability to perform real-time object recognition using a single-stage approach [19]. The
developmental trajectory of YOLO has made a substantial contribution to the advance-
ment of object identification techniques. The purpose of its design was to bring about a
revolutionary change in the process of detecting and categorizing objects within photos
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and videos, accomplishing this task in a singular, efficient iteration through the neural
network. One of YOLO’s fundamental innovations lies in its grid-based approach. The
input image is partitioned into a grid of cells, wherein each cell has the task of predicting
multiple bounding boxes. The bounding boxes contain crucial data such as coordinates,
confidence scores that measure the probability of object presence, and class probabilities
that determine the classifications of the objects. An additional crucial element in the
development of YOLO is the integration of non-maximum suppression. This technique
effectively eliminates bounding boxes with low confidence levels and redundancy, en-
suring that only the most precise predictions are preserved. The concept of YOLO has
undergone continuous development, resulting in its significant recognition for its ability
to deliver real-time performance. The speedy and precise object detection capabilities of
this technology make it a highly appealing option for applications that require prompt
responsiveness. Moreover, the Darknet architecture is intricately linked with YOLO, a
neural network framework that is specifically designed to enhance and align with the aims
of YOLO. The significant incorporation of this close integration has played a crucial role
in the historical development of YOLO, hence contributing to its extensive acceptance and
achievements within the realm of computer vision and object identification.

SSD (Single Shot MultiBox Detector): The Single Shot MultiBox Detector (SSD) has
made a substantial impact on the advancement of object identification and possesses a
distinctive background within the domain. The development of SSD aimed to strike a
harmonious equilibrium between precision and efficiency, rendering it a versatile and
broadly usable tool across diverse domains. One significant advancement in the field
of object detection is the ability of SSD (Single Shot MultiBox Detector) to effectively
recognize objects with varying scales and aspect ratios. In order to achieve this objective,
SSD utilizes a sequence of convolutional layers that possess varied receptive field sizes [17].
This enables the model to make predictions regarding bounding boxes at many scales, hence
effectively capturing objects of diverse sizes present inside images. Another characteristic
of SSD is its ability to anticipate bounding boxes with varying aspect ratios, a crucial
attribute for accepting objects with diverse geometries. This innovation enhances its
efficacy across a diverse array of item categories. The SSD model is capable of predicting
class scores for several object categories, enabling it to classify things into a wide range
of predefined classes. This characteristic makes it a versatile and well-suited choice for
applications that require diverse labeling requirements. Similar to the concept of "You
Only Live Once" (YOLO), Single Shot MultiBox Detector (SSD) integrates non-maximum
suppression (NMS) as an essential element inside its item identification methodology.
This methodology guarantees the elimination of bounding boxes with low confidence and
redundancy, resulting in the retention of just the most dependable and precise detections.
The SSD model has seen tremendous development and has emerged as a prominent model
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in the field of object identification. It provides a favorable trade-off between accuracy and
speed, making it highly suitable for a wide range of applications. Moreover, SSD has made
substantial contributions to the continuous advancements in the field of computer vision.

2.4 Multi-Stage Object Detectors

The process of multi-stage object detection entails a two-fold methodology, which initially
entails identifying probable locations of objects and subsequently involves the classification
and fine-tuning of these identified places. The aforementioned approach frequently yields
a greater degree of precision, albeit at the cost of increased computing complexity when
contrasted with single-stage detectors. The process can be delineated as follows:

(i) Region Proposal: The input image undergoes an initial processing step to provide
a collection of region proposals. The aforementioned recommendations refer to
specific locations inside the image that are very probable to encompass items. This
phase is centered on the identification of areas of interest.

(ii) Feature Extraction: Feature extraction involves utilizing region proposals to extract
relevant features. These qualities aid in the characterization of the regions and
facilitate their preparation for subsequent study. Convolutional neural networks
(CNNs) are frequently utilized for this particular undertaking.

(iii) Classification and Localization: In the subsequent phase, the attributes derived
from the region recommendations are employed for the purposes of object cate-
gorization and location. The process involves the categorization of objects into
predetermined classifications, followed by the determination of their exact positions
within the respective regions.

(iv) Non-Maximum Suppression (NMS): Non-Maximum Suppression is a commonly
employed technique to enhance the quality of results. It involves the elimination
of redundant and low-confidence detections, thereby retaining just the most precise
predictions.

2.4.1 Examples of Multi-stage object detectors

Examples of two multi-stage object detectors are given below:

R-CNN: The Region-based Convolutional Neural Network (R-CNN) holds a significant
position in the historical progression of object detection [14]. The advent of this technology
represented a notable advancement in the progression of object-detecting methodologies.
The historical development of R-CNN may be traced back to a sequence of important
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advancements. The introduction of R-CNN marked a significant advancement in computer
vision with the introduction of selective search, a region proposal technique that played a
crucial role in the identification of possible object-containing regions inside an image. This
innovative methodology established the foundation for object detection based on regions.
Selective search is an integral element of the R-CNN framework, as it systematically
generates region recommendations. The aforementioned ideas functioned as the initial
selection of regions of interest within the input image. Another notable characteristic of
R-CNN was its incorporation of pre-trained convolutional neural networks (CNNs), such
as AlexNet or VGG, for the purpose of extracting features from the area suggestions that
were created. The collected features were important in characterizing the zones for future
object detection. The R-CNN model has exhibited a high level of competence in both
object classification and localization tasks. The retrieved attributes were utilized to classify
objects into predetermined categories and accurately ascertain their spatial positions inside
the regions. In order to improve the precision of its detections, R-CNN implemented the
technique of non-maximum suppression (NMS). The utilization of this post-processing
technique played a crucial role in the filtration of predictions with low confidence and
redundancy, hence guaranteeing the selection of the most reliable outcomes. Although
R-CNN introduced innovative ideas to the domain of object detection, it encountered
computational efficiency issues, particularly with regard to the speed of inference. The
continuing value of this model rests in its pioneering role, which established the ground-
work for succeeding models to enhance and progress object detection. As a result, both the
speed and accuracy of object detection have been improved.

Faster R-CNN: The Faster R-CNN model is a significant milestone in the advancement of
object identification, building upon its predecessor, R-CNN. The fundamental objective of
this evolutionary approach was to address the speed and efficiency issues encountered by
previous methodologies. The introduction of Faster R-CNN brought about a significant
innovation in the field, namely the incorporation of the Region Proposal Network (RPN)
as a fundamental component within the model. The Region Proposal Network (RPN)
was designed with the purpose of generating region proposals directly from convolutional
feature maps, hence removing the need for external region proposal algorithms [15]. This
innovation has significantly enhanced the efficiency of the object-detecting procedure. The
concept of feature sharing was developed by Faster R-CNN to enhance efficiency. This
approach enables the model to share convolutional features across the Region Proposal
Network (RPN) and the succeeding components responsible for object categorization and
localization. The implementation of this upgrade has greatly improved computational
efficiency and has made a major contribution to the overall performance of the model. One
of the key advancements of Faster R-CNN was the integration of the Region Proposal
Network (RPN) with the object detection network, resulting in a unified architecture. The
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process of simplifying the structure had a significant impact on improving the speed and
efficiency of the model. Similar to its predecessor, R-CNN, Faster R-CNN maintains
the use of non-maximum suppression (NMS) as an essential post-processing procedure.
The National Monitoring System (NMS) consistently prioritized the retention of highly
accurate and reliable detections, so efficiently removing forecasts with low confidence
levels and redundant information. The historical account of Faster R-CNN highlights its
notable influence on the field of object identification, presenting a revolutionary approach
that greatly enhanced the speed and effectiveness of this procedure. The aforementioned
model has since emerged as a fundamental concept in the discipline, establishing the
foundation for following advancements in the development of expeditious and effective
approaches for object detection.

2.5 Related Review for Trash Classification System

This section provides a summary of previous studies on trash classification and detection.
Since the development of Deep Learning frameworks, researchers have been employing a
wide range of deep learning models to solve their problems. ResNet, MobileNet, DenseNet,
and EfficientNet are just a few examples of well-liked classification models. Single-stage
object detectors and two-stage object detectors are two methods for accomplishing the
detection task. Single-stage object detection method employs a single neural network to
do both object localization and classification. These models are often easy to implement
and take less time to execute; however, they may be less accurate than their two-stage
counterparts. YOLO and SSD are two examples of single-stage methods for object
detection. Two-stage object detection divides the detection process into two phases:
creating object proposals and then classifying those proposals. The first phase creates a
collection of bounding boxes (object proposals) that probably contain objects, while the
second phase classifies and refines the locations of these proposals. One-stage models are
often faster, while two-stage models are typically more accurate. Faster R-CNN and Mask
R-CNN are two-stage object detectors. The following is a synopsis of several relevant
works.

2.5.1 Trash Classification

There are few works that solely concentrate on the classification task. A classification task
involves sorting an image’s garbage into several predetermined categories. The following
provides descriptions of some of the more significant works.

■ A deep learning-based EfficientNet Architecture was suggested by Masand et al. [21]
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to categorize the various types of garbage with greater accuracy and a reduced
number of parameters. They combined four different datasets, including TrashNet,
Openrecycle, TACO, and Waste Classification, to produce a new dataset with 8135
records. In addition to this, they improved the use of adaptive gradient clipping in
order to optimize the models in regions with higher loss. With EfficientNetB3, they
obtained an accuracy of 91.87% on their suggested dataset, whereas on the TrashNet
dataset, they reached 98%.

■ Yang et al. [22] integrates garbage classification and recognition methods of image
classification and object detection. They used ResNet and MobileNet for training and
testing the dataset. They also used YOLOv5 models for the detection of trash data.
They improved the classification accuracy over 2% by integrating the consensus
voting algorithm (CVA). They obtained an accuracy of 98%, while without CVA, it
was 95%.

■ Deep learning and an embedded Linux system were utilized by FU et al. [23] in the
development of their intelligent trash categorization systems. They used a Raspberry
Pi 4B for the hardware implementation of the project. In addition, for the software
implementation, they utilized GNet, which is a combination of transfer learning and
an upgraded version of the MobileNetv3 model, was the algorithm that they utilized
for the classification test. Finally, they constructed a human-computer interaction
system in order to carry out efficient monitoring of the system. They carried out
their trials using the dataset provided by the Huawei Trash Classification Challenge
Cup, and their results showed an accuracy of 92.62%.

■ For better results, Vo et al. [24] suggested a method using the DNN-TC model,
an improved version of the ResNext model. They sorted 5,904 photos of trash
found in Vietnam (VN Trash) into three groups: organic, inorganic, and medicinal.
Both the VN Trash dataset and the TrashNet dataset serve as benchmarks for trash
classification, and their results were compared to those of DNN-TC and other state-
of-the-art algorithms. The results indicated that DNN-TC has an accuracy of 94%
for the TrashNet dataset and 98% for the VN Trash dataset.

2.5.2 Trash Detection

If an image contains numerous types of items, detection is required. Researchers have
used both one-stage and two-stage object detection approaches to look for trash. Here we
provide summaries of a few representative studies.

■ Cordova et al. [25] compared various state-of-the-art object identification techniques,
such as Faster R-CNN, Mask R-CNN, Efficient- Det, RetinaNet, and YOLOv5 for
trash detection. Moreover, they created a whole new dataset of 2418 images called
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Plastopol. Furthermore, they also employed TACO, a standard waste dataset in
addition to Plastopol. For both datasets, they found that YOLOv5 models performed
better than other models. They focused on only one category in both datasets and
got a mAP of 84.9% on Plastopol and 63.3% on the TACO dataset, respectively.

■ A deep learning-based i-YOLOX model for trash identification was proposed by
Liu et al. [26]. A new dataset was developed that was inspired by the actual world.
They added involution, a simpler structure than convolution, to the original model.
In addition, a convolution block attention module (CBAM) was added to the original
model to enhance the feature extraction process. They observed that their proposed
model outperformed the existing state-of-the-art models. i-YOLOX showed an
improvement by 1.47% and cut down on parameters by 23.3% in comparison with
existing models.

■ Improved YOLOv5s model for finding garbage in the ocean was proposed by Wu
et al. [27]. In order to improve the design of the original YOLOv5s, they swapped
out the network infrastructure with a MobileNetv3 system. To enhance the feature
extraction capabilities, they also used CBAM. They utilized the underwater garbage
images from ICRA19-Trash. The dataset was randomly divided into 80, 10, and 10
halves. With the ICRA19-Trash dataset, they reached an accuracy of 97.5% on their
test dataset. The detection speed, however, is 2.5 times slower than the standard
YOLOv5s model.

■ To find trash in the ocean, Tian et al. [28] proposed a modified version of the
YOLOv4 model. Based on the original YOLOv4 model, they developed a new
four-level detection strategy. In addition, they used model pruning to condense their
model by getting rid of unnecessary weights. They managed to get a 95% mAP.

■ Experiments using a variety of object detection techniques were carried out by
Melinte et al. [29] on the TrashNet dataset. The TrashNet dataset typically only
takes into consideration a single trash item in an indoor setting. They reached the
highest level of accuracy possible with SSD, which is 97.63%. They were able to
attain an mAP of 95.76% by utilizing the Faster R-CNN algorithm.

Table 2.1 summarizes the relevant literature based on the problem category, model utilized,
dataset availability, and accuracy.
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Table 2.1. Summary of detection-based related works

Reference Model used Dataset availability mAP
Yang et al. [22] YOLOv5 No 98%

Cordova et al. [25] YOLOv5 Plastopol : Yes, TACO : Yes Plastopol: 84.9%, TACO: 63.3%
Liu et al. [26] iYOLOX No 97.57%
Wu et al. [27] YOLOv5 ICRA19 : Yes 97.5%
Tian et al. [28] YOLOv4 No 95%

Melinte et al. [29] SSD TrashNet : Yes 97.63%

2.6 Conclusion

This chapter is devoted to a comprehensive analysis of the extant literature. The text offers
an extensive examination of diverse deep learning algorithms and investigates alternative
approaches relevant to the classification of waste materials. The following chapter will
explore the process of the proposed trash classification system.
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Chapter3
Proposed Architecture

3.1 Introduction

The process of classifying waste in real environmental images has significant intricacies.
The obstacles involved in this context include factors such as unanticipated variations in
lighting conditions, diverse image views, obstructions caused by objects, and the inherent
similarity between different categories of waste.

Nevertheless, the present study has effectively addressed these challenges and established a
pioneering dataset encompassing a diverse range of waste categories and several subtypes
within these categories. The dataset was meticulously curated to incorporate complex
environmental variables, such as variations in illumination and a significant level of image
similarity. The studies were carried out using RGB images with dimensions of 640×640.
In order to effectively represent the spatial characteristics depicted in the environmental
photographs, a variety of tailored Convolutional Neural Network (CNN) structures were
created within the YOLOv5 framework. These structures consist of the backbone, neck,
and head components. The procedure involved the application of transfer learning methods,
utilizing the CSP Darknet53 model to enhance the extraction of features. Finally, a softmax
layer was smoothly integrated into the YOLOv5 model to produce class predictions, with
special care taken to guarantee that the cumulative prediction values equated to 1.

The section’s progression encompasses seven crucial stages: (a) the generation of the
dataset, (b) the annotation of the dataset, (c) the preprocessing of the dataset, (d) the design
of the proposed network, (e) the training process of the network, and (f) the evaluation of
the network. The major steps are highlighted in Figure 3.1.
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Figure 3.1. Workflow of the proposed trash classification system

3.2 Dataset Generation

The data collection process consists of two parts. Each image in the collection has one
or more pieces of trash. Overall, we gathered 1283 images of trash from the nature of
Bangladesh. As a whole, our image collection spans over ten distinct classes. Diverse geo-
graphical locations in Bangladesh were selected, including roadsides, parks, sea beaches,
and some selected village areas. For variety, we have selected images from a wide range
of periods. Both single-trash and multi-trash images are included in our dataset.

In contrast to datasets that only take into account static backdrops, we want to create one
that more closely resembles the real world. Plastic has the highest number of occurrences
out of all the materials in our collection. It also suggests the ever-increasing plastic
trash along our streets and other public spaces. Samsung Galaxy M21 was utilized as a
photographic device. The camera has a whopping 48 megapixels of resolution. There were
a total of 1283 images annotated, and these images contained a total of 6178 trash objects.
This information is presented in Table 3.1. We have employed makesense.ai for annotation
purposes. Makesense.ai is an online image labeling tool. We utilized ten distinct labels
to annotate the images of trash. Next, we downloaded 3135 images from openlittremap.
Openlitremap is a database that contains litter and plastic images from all over the world.
After that, we added metadata to the openlittremap images we gathered. A total of 3659
trash objects were annotated from this dataset, as shown in Table 3.2. Overall, 4418 images
with 9837 trash objects have been manually annotated. Figure 3.2 displays how our datasets
are broken up. Several excerpts from our data collection are displayed in Figure 3.3 and
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Figure 3.4. Data collection occurred under various lighting conditions, including morning,
noon, and afternoon. This variability aimed to capture complex patterns and enhance the
dataset’s robustness. The intricacies associated with the task of object detection give rise to
unique obstacles in achieving data balancing. In contrast to classification, object detection
entails the annotation of many objects belonging to various classes inside a single image.
The complexity of this situation presents challenges in attaining data balance. In the course
of our investigation, we acknowledge these obstacles and have implemented measures to
tackle them. The dataset was carefully curated, incorporating images from openlittermap
in order to increase diversity and mitigate potential asymmetries.

We used the available datasets TACO and PlastOpol to test how well our chosen models
generalize to other datasets. TACO is an open picture collection that documents garbage in
its natural environment. It features images of trash taken in a variety of settings, ranging
from beachfront locations in the tropics to urban areas in the UK. TACO consists of 1500
images with 4784 annotations supplied in the COCO format, whereas PlastOpol comprises
2418 images with 5300 annotations, as shown in Table 3.3. In Table 3.4, we also presented
an overview of the maximum, average, and minimum number of cases in the datasets we
used for our research. Our Bangladeshi dataset has a larger mean instance compared to the
others. Some samples of existing datasets are shown in Figure 3.5 and Figure 3.6

Table 3.1. Distribution of Bangladeshi dataset

Total image Category Instances

1283

Tissue paper 471
Plastic 2481

Medical waste 191
Rope 112
Paper 1339

Cigarette butt and box 1088
Metal 9
Glass 1

Organic waste 336
Textiles 150

Total 6178
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Table 3.2. Distribution of Openlittermap dataset

Total images Category Instances

3135

Tissue paper 82
Plastic 1822

Medical waste 233
Rope 85
Paper 456

Cigarette butt and box 338
Metal 526
Glass 89

Organic waste 23
Textiles 5

Total 3659

Figure 3.2. Our extended dataset distribution of 10 categories
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Figure 3.3. Examples from our Bangladeshi dataset: (a) Trash in daylight, (b) Trash in
direct sunlight, (c) Trash in a grassy environment, (d) Trash in a combination of light and
shadow, (e) Trash in cloudy conditions, (f) Trash captured in rainy weather

Figure 3.4. Examples from Openlittermap dataset: (a) glass, (b) plastic and metal, (c)
cigarette butt, (d) organic waste, (e) medical waste and organic waste, (f) metal
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Table 3.3. Summary of existing datasets

Dataset Total images Instances Classes
TACO 1500 4784 60

PlastOpol 2418 5300 Not known

Table 3.4. Summary of the maximum, average, and minimum number of instances in
different datasets

Datasets Max Average Min
Bangladeshi dataset 24 5 1

OpenlittreMap 27 2 1
TACO 90 3 1

PlastOpol 40 2 1

Figure 3.5. Samples of PlastOpol dataset

Figure 3.6. Samples of TACO dataset

3.3 Data Preprocessing

Preprocessing plays a crucial role in the process of trash classification utilizing a deep
neural network. This stage is crucial for ensuring that the input data is appropriately
formatted and of sufficient quality to facilitate the training and testing of the model. The
following section outlines the steps involved in data preprocessing.

3.3.1 Resizing

In order to ensure uniformity in the proportions of photos, it is recommended that all
images be downsized to a resolution of 640x640 pixels. The utilization of a standard
size enables the optimization of processing and training of models, resulting in enhanced
efficiency.
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3.3.2 Data Augmentation

Data augmentation is a method for expanding a training dataset by generating novel
variants of existing images [30]. Data augmentation aims to model contingencies and
variations that may arise in the actual world. The more examples of the same item the
model sees, the more resilient and generalized it becomes. Data augmentation is a crucial
aspect of YOLOv5’s training process and may be accomplished in a number of ways.
YOLOv5 uses Albumentations [31], a Python module that enables quick and versatile
image augmentation. The description of several augmentation techniques is as follows:

■ Hue shift augmentation (hsv_h) involves arbitrarily rescaling an image’s hue values
within a given tolerance.

■ Saturation shift augmentation (hsv_s) involves making arbitrary changes to an
image’s saturation within a predetermined window.

■ Value shift augmentation (hsv_v), a method for arbitrarily adjusting an image’s
brightness within a certain parameter.

■ Translation augmentation (translate) Randomly translates a visual object within a
certain range.

■ Scaling augmentation (scale), wherein the item in the image is scaled arbitrarily
within a certain range.

■ Flip left-right augmentation (fliplr) flips the image horizontally.
■ Mosaic augmentation (mosaic), a method for creating a new training sample by

combining four images into one.
■ Mixup augmentation (mixup), which combines two unrelated images and their labels

to produce a new data set for training.
■ Anchors (anchors) are pre-defined boxes of varying sizes and aspect ratios used to

estimate the location of objects in an image.

The augmentation strategies that we employed are displayed in Table 3.5.
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Table 3.5. Different augmentation techniques used in our selected model

Augmentation techniques Value
hsv_h 0.01041
hsv_s 0.54703
hsv_v 0.27739
translate 0.04591
scale 0.75544
fliplr 0.5
mosaic 0.85834
mixup 0.04266
anchors 3.412

3.4 Data Annotation

The process of manually annotating the dataset plays a crucial role in the context of
supervised learning. In the context of waste categorization, it is imperative to accurately
classify the images. The makesense.ai platform was utilized to achieve efficient and precise
data labeling. These programs often allow users to create bounding boxes around waste
objects seen in the images. The process involves manually delineating each individual
trash item seen in the images by employing bounding boxes and utilizing an annotation
tool. Following that, we proceed to assign the suitable category label to every enclosing
box. It is imperative to acknowledge that although this particular phase may require a
significant amount of time, it is crucial in order to effectively train a resilient classification
model. The annotations should be stored in a meticulously organized format, such as
XML or TXT. This style guarantees a smooth integration with our selected deep learning
framework, facilitating the comprehension and usage of the annotated data by the model
in a straightforward manner. By adhering to these procedures, we generate a thoroughly
annotated dataset that functions as the fundamental basis for training a reliable trash
categorization model within the framework of supervised learning.

3.5 YOLOv5 Model

We have chosen YOLOv5 model [32] for our detection task as it provides high speed
as well as good accuracy, which is useful in real-time smart applications. We opted for
the YOLOv5 model since it is both more accurate and faster than the predecessors, the
YOLOv3 [33] and YOLOv4 [34] models. YOLOv5’s performance has been enhanced
by a number of changes to its architecture, such as the addition of a cross-stage partial
backbone, feature aggregation via spatial pyramid pooling, and the adoption of the SiLU
activation function. In addition, the YOLOv5 model is lightweight, making it useful in
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many application areas [35], [36]. We have experimented with several YOLOv5 models
to find the better one for our task. We have used YOLOv5s(small), YOLOv5m(medium),
YOLOv5l(large) and YOLOv5x(Extra large). Here ‘s’, ‘m’, ‘l’, and ‘x’ refers to the size
of the YOLOv5 model, with s being the smallest and x being the largest. The size of the
model is calculated by the number of layers, filters, and channels in the convolution layer.
YOLOv5s is the fastest and smallest version of the YOLOv5 family. It has less number of
parameters and also takes less time to train. However, the accuracy is a bit of a concern
here than in the other versions of YOLOv5. YOLOv5x is the largest version and provides
higher accuracy than the others, but it trades speed and training time for accuracy. Also, it
has a longer inference time. The YOLOv5 model is composed of three parts, namely the
backbone, neck, and head.

3.5.1 Backbone

The backbone of a model extracts useful features which are helpful for object detection
tasks. The backbone is made up of a number of convolutional layers that operate on the in-
put image and generate a hierarchy of abstracted feature maps. We used the CSPDarknet53
network, a tweaked take on the Darknet foundation utilized in earlier YOLO versions,
which is the basis of the YOLOv5 architecture. Since YOLO relies on residual and dense
blocks to transmit data to the deepest levels, it struggles with the redundant gradient. By
splitting the feature maps acquired from the input layer in half and then merging the halves
through a cross-stage hierarchy, Cross Stage Partial (CSP) networks mitigate this issue [37].
The backbone of YOLOv5 is given in Figure 3.7

Figure 3.7. Backbone of YOLOv5 model
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3.5.2 Neck

The neck in the YOLOv5 architecture is a set of layers that connect the network’s backbone
to the detection head. The neck serves to combine the high and low-resolution features from
the backbone and to extract more discriminative features that are useful for object detection.
The spatial resolution of the feature maps is lowered by the neck, which lessens the burden
on the network’s computational resources. YOLOv5 neck relies on a combination of
Spatial pyramid pooling - fast (SPPF) and a path aggregation network(PANet). Using a
combined bottom-up and top-down strategy, PANet compiles features across the various
layers of the underlying network [38]. SPPF was created to aid the network in dealing with
objects of varying sizes and shapes.

3.5.3 Head

The model head is employed for the last stage of detection. An anchor box approach
was used for the features, and a final output vector was produced that included class
probabilities, objectness scores, and bounding boxes. In order to forecast the bounding
box coordinates, class probabilities, and objectness score for each grid cell in the image,
the head uses a three-layer output structure. The four coordinates, x, y, width, and height
are predicted for each bounding box in the first output layer. Class probabilities are
predicted for each bounding box in the second output layer, showing the likelihood that the
identified item belongs to each class. For each predicted bounding box, the third output
layer predicts an objectness score that indicates the possibility that an object is present
within the box. The final object detection predictions are a product of the combination of
these three levels of output. The architecture of our proposed model is shown in Figure 3.8.
Our methodology focuses on capitalizing on the inherent strengths and improving the
performance of YOLOv5 while maintaining its basic architecture. The main emphasis of
our study revolves around the careful adjustment of hyperparameters and the customization
of the model to more effectively address the distinct obstacles associated with identifying
trash in natural settings. The commitment to enhancing the model’s efficacy in the given
environment is demonstrated through our proactive initiatives, which involve adjusting
hyperparameters and selectively pretraining the model using a dedicated dataset focused
on trash-related information.
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Figure 3.8. YOLOv5 model architecture

3.5.4 Transfer Learning

Transfer learning is a method used in machine learning to exploit the information obtained
by pre-trained models on a task to improve the performance of a model being used for
a task related to the original job. Transfer learning is very effective in object detection
in terms of improving the performance of models by using the features learned from
pre-trained models on a large-scale dataset such as ImageNet [39] or COCO [40]. Pre-
training on large datasets has been a major driving force in the advancement of computer
vision, with applications in fields as diverse as classification problems [41]–[44], detection
problems [45]–[48] and many more. Due to the small size of our dataset, we relied on the
YOLO models’ weights as learned on the larger COCO dataset.

3.5.5 Activation Function

To better comprehend the intricate relationship between input and output variables, activa-
tion functions add non-linearity to the networks. Sigmoid, Tanh, ReLU, ELU, Swish, and
Mish are just a few examples of well-liked activation functions [49]. Sigmoid-weighted
Linear Unit [50] (SiLU) is utilized in YOLOv5’s most layers. SiLU, like ReLU, is a
non-monotonic activation function, but its curve is smoother, and it also addresses the
critical problem of dying ReLU. The SiLU function, much like the sigmoid function,
converts any value that is inputted into a number that is between 0 and 1. Equation 3.1
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depicts our working definition of SiLU.

SiLU(I) = I × sigmoid(I) (3.1)

where I denotes the input variable, and sigmoid is defined as:

sigmoid(I) =
1

1 + e−I
(3.2)

The SiLU activation function has been employed in conjunction with convolutional op-
erations within the hidden layers. The Sigmoid activation function has been utilized in
conjunction with convolution operations within the output layer. In the domain of object
detection or image classification tasks, it is customary for the output layer of the model
to estimate the probability of object presence in various regions of the input image. The
problem is commonly framed as a binary classification task, wherein each region is cate-
gorized as either "object present" or "object absent". The Sigmoid activation function is
highly suitable for binary classification tasks due to its ability to compress output values
within the range of 0 and 1. This enables the model to interpret the resulting output as
a numerical value that represents the probability of an object’s presence in each specific
region of the image.

3.6 Training Process

The experiments were performed on an AMD Ryzen 5 3600 equipped with 16 GB of
RAM. The software version is built on Pytorch 1.13.1 and Python 3.9.16. Because larger
YOLO models like YOLOv5x, YOLOv5l, and YOLOv5m require more Memory and GPU,
the Google colab pro version has been used for those models. In accordance with the
accessible resources, Google Colab Pro allows 32 GB of RAM and 13 GB of Tesla T4
storage.

We have conducted several experiments on our dataset. To get with, we were just con-
cerned with the dataset pertaining to Bangladesh. Data collected from the environment in
Bangladesh is fairly difficult to interpret because of the abundance of different categories.
Furthermore, the vast majority of data from the Bangladeshi dataset were collected from
a distance of five feet or farther. Because of the constraints imposed by the available
hardware, the resolution of the data is not nearly as high as it should be. Training will need
to be done for a longer period of time if the resolution is increased. When used in object
recognition, high-resolution images produce superior results due to the comprehensive
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feature map extraction made possible by the images. There are 1283 images and 6178
annotations in our Bangladeshi dataset. We divided our dataset into 80:10:10 pieces,
which means that out of 1283 images, 1026 were chosen for training, 128 were chosen for
validation, and 129 were chosen for the test set. Following that, we expanded our dataset
by merging the data we acquired from openlittermap. We have 4418 images and 9837
annotations for them all together. After the right split, we had 3524 images for training,
442 for testing, and 442 for validation.

We evaluated a variety of parameters to see how well our preferred model performed.
We have employed the stochastic gradient descent (SGD) method for every experiment
as an optimizer. We reduced the image size of our dataset and other datasets used in
our experiments to 640×640. Since larger images have the potential to provide more
feature information for object detection, we have opted for an input image size of 640×640.
Choosing a larger size would improve accuracy, but it would come at a higher compu-
tational cost. In all of our experiments, a total of 100 epochs were utilized. The reason
behind employing a uniform epoch number across all models was determined through a
meticulous evaluation of various factors, encompassing computational resources, model
convergence, and generalization performance. Considering the limitations imposed by our
computational resources and time limitations, we made the decision to use a consistent and
uniform number of epochs. This choice was made in order to ensure that fair and consistent
comparisons could be made between the different models. The selected hyperparameters
for our experiments are listed in Table 3.6.

Table 3.6. Hyperparameter values for our experiments

Model Image size Learning rate Epochs Batch size
YOLOv5s 640×640 0.00334 100 12
YOLOv5s 640×640 0.01 100 12
YOLOv5s 640×640 0.00334 100 24
YOLOv5s 640×640 0.00334 100 32
YOLOv5x 640×640 0.00334 100 12
YOLOv5x 640×640 0.01 100 12
YOLOv5l 640×640 0.00334 100 12
YOLOv5m 640×640 0.00334 100 12

3.7 Conclusion

This chapter explores the extensive procedure of categorizing trash through the utilization
of deep neural networks. The justification for selecting a variety of deep learning algorithms
for this task is given significant emphasis. The following chapter will analyze the results
obtained from the experiments done on the proposed deep neural network structures.
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Chapter4
Experimental Result Analysis

4.1 Introduction

This chapter initiates an investigation into the performance evaluation of the YOLOv5
models that have been specifically designed for the purpose of trash classification. The
aim of this study is to assess the effectiveness of these models in accurately classifying
different categories of trash. In order to obtain a thorough comprehension of the model’s
performance, we do an in-depth examination of the system design, spanning various
accuracy measures like precision, recall, and f1-score. Furthermore, we explore factors
pertaining to the duration of inference and the computing efficiency, which is quantified in
terms of GFLOPS. Our experiments were split up into these two distinct parts. In the first
part of this section, we look at all the classes and conduct experiments to identify different
kinds of trash. Experiments will be carried out in the second segment, during which we
will combine all classes into a single trash category.

4.2 System Configuration

The system configuration for all of our experiments is outlined in Table 4.1.

Table 4.1. System configuration

Name Details

Processor AMD Ryzen 5 3600 Processor

RAM 16 GB

Operating System Ubuntu 20.04

Library and Framework Pytorch 2.0

Programming Language Python 3.7

IDE Spyder

Others Google Colab Pro (32 GB)
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4.3 Loss Function and Evaluation Metrics

In order to train the model for object detection, the YOLOv5 model employs a mix of
different loss functions [51]. The total loss function may be stated in the following format:

Losstotal = Lossbox + Lossclass + Lossobject (4.1)

where the bounding box regression loss function, the classification loss function, and the
confidence loss function, respectively, are referred to as Lossbox, Lossclass, and Lossobject.

To evaluate how well the model is doing, the YOLOv5 object detection algorithm uses a
few different assessment criteria [52]. These metrics consist of the following:

■ Intersection over Union: The evaluation metric of Intersection over Union (IoU)
is widely employed in object detection tasks to quantify the degree of similarity
between two bounding boxes. It is calculated by dividing the area of the union of the
predicted and ground-truth bounding boxes by the area of the intersection. The IoU
measure runs from 0 to 1, with 1 indicating a complete overlap between anticipated
and ground-truth bounding boxes. The following formula can be used to get the IoU:

IoU(P,Q) =
P ∪Q

P ∩Q
(4.2)

where P is the set of the predicted areas, and Q is the set of the actual areas.
■ Precision: Precision is defined as the fraction of predictions that turn out to be correct

relative to the total number of positive predictions. The formula for precision is:

precision =
TP

TP + FP
(4.3)

where TP and FP indicate the true positive and false positive, respectively.
■ Recall: Recall, also known as sensitivity or true positive rate (TPR), is the percentage

of positive instances that the model properly recognized. The formula for the recall
is:

recall =
TP

TP + FN
(4.4)

where FN is the number of false negatives, i.e., positive instances projected as
negative.

■ F1-score: The F1-score is a combined measurement of both precision and recall, and
it is calculated as the harmonic mean of these two measures. The F1-score strikes a
compromise between accuracy and recall, making it beneficial when it is necessary
to have both high precision and strong recall. The following is the formula for the
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F1-score:
f1-score =

2× (precision× recall)

precision+ recall
(4.5)

■ Mean Average Precision (mAP): The Mean Average Precision measure is a standard
method of comparing different object detection algorithms. It evaluates the model’s
accuracy on an average basis, taking into account various confidence levels and
thresholds. YOLOv5 calculates the mAP using the IoU of anticipated and ground-
truth bounding boxes. The mAP is obtained by doing independent calculations for
each object class and then taking the average of those results for all classes, as shown
in Equation 4.6.

mAP =
1

N

N∑
w=1

TP (w)

TP (w) + FP (w)
(4.6)

where N is the number of classes, TP(w) is true positive instances, and FP(w) is false
positive instances. Hence, the value of the metric mAP0.5:0.95 reflects the mAP over a
range of IoU thresholds that goes from 0.5 to 0.95 with increments of 0.05. Similarly,
mAP0.5 defines mAP for an IoU that is more than 0.5, and mAP0.75 represents mAP
for an IoU that is greater than 0.75. In our work, we decided to use mAP0.5 as the
primary criterion for assessment, in addition to precision, recall, and F1-score.

■ Giga Floating-Point Operations per Second (GFLOPs): The computing performance
of a neural network model is measured in terms of GFLOPs. It is the maximum rate
at which the model’s GPU or CPU can execute floating-point calculations. When
comparing neural network models, the GFLOPs metric can be helpful for quantifying
the difference in computational efficiency. Generally, a model with a higher GFLOPs
value is more computationally efficient and can process input data faster than one
with a lower GFlops value. Even though a higher GFLOPs value might mean that
a model is performing better in terms of computation time, however, it does not
mean that it can work faster or provide more accurate results. We have considered a
number of performance metrics, such as accuracy and inference time, in addition to
GFLOPs.

■ Inference Time: The inference time is measured as the amount of time it takes for
the model to analyze an input image and provide a prediction. There are a lot of
variables that can affect this time, including the number of objects to be identified,
the size and complexity of the input image, and the hardware utilized for inference.

4.3.1 Results on our dataset

First, we concentrated our focus on the data collected from Bangladesh. We selected
different batch sizes and learning rates for our experiments. The outcomes of our exper-
iments are displayed in Table 4.2. There are a total of four different YOLOv5 models
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shown in this table. Using a batch size of 12 and a learning rate of 0.01, the YOLOv5x
model achieved an mAP of 33.3% for IoU 50. This result is greater by 31.7% compared
to YOLOv5m, 16.8% compared to YOLOv5l, and 14.8% compared to YOLOv5s. On
the other hand, as compared to YOLOv5s, the inference time of the YOLOv5x model
is painfully sluggish. Following the implementation of TTA with the YOLOv5x model,
we recognized an improvement in mAP, precision, and f1-score, as well as a reduction in
recall and inference time. We examined the performance of two distinct learning rates to
see which one is superior, and we observed that the YOLOv5 model performs admirably
with a learning rate of 0.01 when applied to our Bangladeshi dataset.

Experiments with various different variants of YOLO [53], [54], and Faster R-CNN have
also been carried out, as can be shown in Table 4.3. According to the table, we can conclude
that the YOLOv5 model performs better than the YOLOv6, YOLOv8, and Faster R-CNN
models on our dataset. Table 4.4 lists parameter counts for our experimental models. As
can be observed from the table, the Faster R-CNN algorithm requires the maximum number
of parameters, while the YOLOv5s algorithm requires the lowest number of parameters.
The comparison of training times between different models is depicted in Figure 4.1,
which highlights the variations in training duration. The figure indicates that smaller
models such as YOLOv5s (22.92min), YOLOv5m (43.32min), YOLOv6s (47.16min), and
YOLOv8s (26.34min) exhibit less training times, whereas larger models like YOLOv5l
(69.54min) and YOLOv5x (121.44min) demonstrate a gradual increase in training time.
The Faster R-CNN model necessitated a greater amount of time (370min) for training in
comparison to alternative models. In contrast, Figure 4.2 presents a visual representation of
the inference times for the different models, offering valuable insights into their respective
execution efficiencies during the inference process. The figure illustrates that smaller
models exhibit lower inference times (YOLOv5s - 6.9ms, YOLOv6s - 10.49ms, YOLOv8s
- 22.3ms), whereas larger models such as YOLOv5l (28.9ms) and YOLOv5x (59.1ms)
demonstrate higher inference times than other models. The Faster R-CNN model exhibits a
significantly longer inference time (102ms) than the YOLOv5x model. Models with faster
inference times indicate greater efficiency, rendering them more appropriate for real-time
applications or scenarios. As a result, we will continue the rest of the experiments with the
YOLOv5 model. The representation of mAP on our dataset for the YOLOv5x model is
shown in Figure 4.3. A comparison of SGD with several other optimizers has also been
carried out, and as shown in Figure 4.4, SGD outperforms in this regard. The properties
of the dataset and the peculiarities of the training procedure may influence the choice of
the Stochastic Gradient Descent (SGD) optimizer over ADAM and ADAMW. SGD is a
simple optimization technique that uses the gradient of the loss function with respect to the
parameters to update model parameters. SGD can be more effective in discovering optimal
solutions in circumstances where the dataset is not excessively huge, and the optimization

35



4.3. Loss Function and Evaluation Metrics

Table 4.2. Experimental results on the Bangladeshi dataset

Model Lr mAP@50 mAP@50:95 Precision Recall F1-Score GFLOPs Inference (ms) Bs
YOLOv5x 0.00334 31.1 13.6 52.8 33.4 40.9 203.9 53.7 12

YOLOv5x + TTA 0.00334 31.1 13.8 61.7 32.8 42.8 203.9 57.3 12
YOLOv5x 0.01 33.3 14.6 49.9 38.8 43.6 203.9 59.1 12

YOLOv5x+TTA 0.01 34.3 15.1 51.6 38 43.7 203.9 65.7 12
YOLOv5m 0.00334 25.3 11 57.4 27.1 36.8 48.0 15.7 12

YOLOv5m+TTA 0.00334 25.3 11.5 56.3 31.6 40.4 48.0 18.0 12
YOLOv5l 0.00334 28.5 13.2 62.1 30.8 41.1 107.8 28.9 12

YOLOv5l+TTA 0.00334 30.6 14.2 61.8 32.9 42.9 107.8 27.9 12
YOLOv5s 0.00334 14.8 6.54 66.9 18.1 28.4 15.8 6.9 12

YOLOv5s+TTA 0.00334 14.9 6.51 67.3 18.7 29.2 15.8 13.9 12
YOLOv5s 0.00334 14.7 6.44 67.1 18.2 28.6 15.8 6.7 24
YOLOv5s 0.00334 15.3 6.72 66.9 18.3 28.7 15.8 6.4 32
YOLOv5s 0.01 29 12.4 51.3 29.2 37.2 15.8 6.8 32
YOLOv5s 0.01 27 11.9 38.4 29.9 33.6 15.8 6.6 12

Lr = Learning rate, Bs = Batch size, TTA = Test Time Augmentation.

Table 4.3. Comparison with other models on our dataset

Model mAP@50
YOLOv5x 34.3
YOLOv6s 32.1
YOLOv8s 31.9

Faster R-CNN 27.3

landscape is not extremely complex. In addition to SiLU, we compared several other
activation functions, such as ReLU, LeakyReLU, and GELU [55]. Out of these, SiLU
performed relatively better, as can be shown in Figure 4.5.

In Figure 4.6, we have displayed both the original image as well as the images that were
detected for our test data. We can see that the YOLOv5x model accurately identified
the trash types and properly labeled them with a confidence score of 75% and 89%,
respectively, in Figure 4.6(a). The confidence score for YOLOv5’s model is lower than that
of YOLOv5x, despite the fact that it correctly identified trash categories. While YOLOv5m
performed similarly to YOLOv5s, YOLOv5l could not correctly identify some of the
categories in the image. In Figure 4.6(b), the YOLOv5x model detected ten categories
but incorrectly categorized paper as plastic. YOLOv5s correctly recognized the paper;
however, tiny pieces of trash, such as cigarette butt and medicine, were not recognized
correctly. The YOLOv5l and YOLOv5m models also failed to identify some trash; hence,
the YOLOv5x model performed better than the other models in both cases.
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Table 4.4. Number of parameters of our experimental models

Model Number of parameters
YOLOv5s 7.04M
YOLOv5m 20.9M
YOLOv5l 46.2M
YOLOv5x 86.2M
YOLOv6s 17.2M
YOLOv8s 11.1M

Faster R-CNN 165.2M

Figure 4.1. Training time comparisons for different models

Figure 4.2. Inference time comparisons for different models
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Figure 4.3. mAP for YOLOv5x on Bangladeshi dataset at (a) IoU 0.50, (b) IoU 0.50:0.95

Figure 4.4. Comparison of different optimizers on our dataset
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Figure 4.5. Comparison of different activation functions on our dataset

Figure 4.6. Detection results on sample test data (a) 2 instances, (b) 17 instances

4.3.2 Results on extended dataset

We expanded our dataset derived from openlittermap to ensure the diversity of the various
categories. We put the four YOLOv5 models through their paces by adjusting the hyper-
parameters, and the outcomes are presented in Table 4.5. We can see from the table that
YOLOv5l accomplished an mAP of 45.2%, having a learning rate of 0.00334 and a batch
size of 12. The accuracy is superior to that of the YOLOv5x model, which achieved the
best result in the experiment that we had conducted previously. The F1-score and inference
time are significantly improved compared to the other models utilized in this experiment.
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Figure 4.7. mAP for YOLOv5l on extended dataset at (a) IoU 0.50, (b) IoU 0.50:0.95

Minor improvements were seen in mAP@0.50, F1-score, and inference time after TTA
was applied. The mAP of the YOLOv5l model is shown in Figure 4.7.

Figure 4.8 shows the experimental results for two sample test images taken from our
extended dataset, executed on YOLOv5 models. We have shown two cases, one with four
instances, as in Figure 4.8(a), and the other with ten instances, as in Figure 4.8(b). In
Figure 4.8(a), every model, with the exception of YOLOv5x, identified three instances.
When compared to other models, the confidence score assigned to each piece of trash in
YOLOv5’s model is significantly greater. In addition, YOLOv5s and YOLOv5m are the
only models that accurately identified two separate instances of paper. In Figure 4.8(b),
the YOLOv5x model identifies eight out of ten instances of the problem. The YOLOv5l
algorithm found seven instances, and it had a high confidence level in detecting tissue
paper.

4.3.3 Results on existing datasets

We have used two existing datasets to demonstrate the efficacy of our chosen models.
TACO has sixty distinct classes, while Plastopol has only one. In Table 4.6, we can see the
results of all the tests conducted on TACO. At a learning rate of 0.01 and a batch size of 12,
the YOLOv5l model produced an mAP of 25.5% at IoU@50. While the YOLOv5x model’s
output was comparable to that of the YOLOv5l model, the latter model performed better
in terms of both the f1-score and the inference time. The mAP of the YOLOv5l model
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Table 4.5. Experimental results on the extended dataset (Bangladeshi dataset + openlit-
termap)

Model Lr mAP@50 mAP@50:95 Precision Recall F1-Score GFLOPs Inference (ms) Bs
YOLOv5x 0.00334 43.9 25.9 56.6 42.9 48.8 203.9 58.9 12

YOLOv5x + TTA 0.00334 44.2 26.2 64.2 44.4 52.4 203.9 54.0 12
YOLOv5x 0.01 42.2 24.9 56 42 48 203.9 56.7 12

YOLOv5x+TTA 0.01 42.7 25.5 52.3 46.1 49 203.9 50.7 12
YOLOv5m 0.00334 40.2 24.4 62.5 38.6 47.7 48 15.4 12

YOLOv5m+TTA 0.00334 40.1 24.8 58.2 41.2 48.2 48 17.1 12
YOLOv5l 0.00334 45.2 27.6 67.8 44.9 54 107.8 29.0 12

YOLOv5l+TTA 0.00334 45.4 27.5 70.1 45.7 55.3 107.8 27.8 12
YOLOv5s 0.00334 30 18.5 67.2 29.7 41.1 15.8 6.4 12

YOLOv5s+TTA 0.00334 31.8 20 67.5 30.7 42.2 15.8 8.8 12
YOLOv5s 0.00334 30.4 18.5 69.9 31.4 43.3 15.8 6.3 24
YOLOv5s 0.00334 30.7 18.8 69.9 29.9 41.8 15.8 6.2 32
YOLOv5s 0.01 41.2 23.1 37.8 51 43.4 15.8 6.3 32
YOLOv5s 0.01 38.8 22.3 42.8 39.1 40.8 15.8 6.2 12

Figure 4.8. Detection results on test data of our extended dataset (a) 4 instances, (b) 10
instances

improved with TTA but at the cost of more inference time. We also tried the YOLOv5x
model with a learning rate of 0.00334, but the results were unsatisfactory.

We have also compared our findings to those of previously published works using TACO
datasets shown in Table 4.7. While previous authors have reported an mAP of 16.2% and
17.6% for their work with 7 and 10 classes, respectively, our experiments with 60 classes
yielded an mAP of 25.5%.

4.3.3.1 Single class detection

Some authors [13], [25], [56] have worked on single-class detection problems in which the
goal is to determine whether trash is present in an image. For single-class detection, we
employed TACO and PlastOpol. For the TACO dataset, the results are shown in Table 4.9.
According to the data in the table, the YOLOv5x model with a batch size of 12 and a
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Table 4.6. Experimental results on the TACO dataset (60 classes)

Model Lr mAP@50 mAP@50:95 Precision Recall F1-Score GFLOPs Inference (ms) Bs
YOLOv5x 0.00334 9.7 7.68 69 9.22 16.2 205 43.0 12
YOLOv5x 0.01 22.5 18.9 27.6 31.3 29.3 205 42.2 12

YOLOv5x+TTA 0.01 25.2 20.5 45.2 24.5 31.7 205 48.9 12
YOLOv5m 0.01 20.5 16.1 28.1 24.5 26.1 48.6 15.5 12

YOLOv5m+TTA 0.01 22 17.3 37.6 27 31.4 48.6 18.0 12
YOLOv5l 0.01 22.9 18.1 37.2 27.9 31.8 108.7 28.9 12

YOLOv5l+TTA 0.01 25.5 19.9 46.3 25.4 32.8 108.7 42.2 12
YOLOv5s 0.01 15.8 10.7 36.2 20.5 26.1 16.3 8.7 12

YOLOv5s+TTA 0.01 17.6 12.2 50.1 18.8 27.3 16.3 27.5 12
YOLOv5s 0.01 17.7 12.1 48.6 18.7 27 16.3 6.6 24
YOLOv5s 0.01 18.4 13.3 43.6 21.2 28.5 15.8 7.8 32

Table 4.7. Comparison of TACO datasets (multiple classes)

Author Dataset mAP@50
Majchrowska et al. [56] Extended TACO(7 classes) 16.2

Pedro et al. [13] TACO (10 classes) 17.6
Ours TACO (60 classes) 25.5

Table 4.8. Fold selection of PlastOpol dataset

Model Fold mAP@50 F1-score

YOLOv5x

fold 1 84.7 80.3
fold 2 85.4 77.9
fold 3 87.8 83.9
fold 4 85.7 77.6
fold 5 85.3 80.3

Table 4.9. Experimental results on the TACO dataset (one class)

Model Lr mAP@50 mAP@50:95 Precision Recall F1-Score GFLOPs Inference (ms) Bs
YOLOv5x 0.00334 61.4 47.6 84.1 51.3 63.7 203.8 40.5 12

YOLOv5x+TTA 0.00334 60.6 47.3 78.7 51.1 61.9 203.8 50.0 12
YOLOv5m 0.00334 57.4 42.7 82.8 49.1 61.6 47.9 13.8 12

YOLOv5m+TTA 0.00334 56.7 42.7 78.5 50.4 61.3 47.9 34.2 12
YOLOv5l 0.00334 60.3 46.1 72.9 54.1 62.1 107.6 22.4 12

YOLOv5l+TTA 0.00334 59.6 46 67 56.2 61.1 107.6 37.0 12
YOLOv5s 0.00334 55 38.5 68.7 50.1 57.9 15.8 7.1 12

YOLOv5s+TTA 0.00334 55.4 39.1 77.8 45.9 57.7 15.8 26.3 12
YOLOv5s 0.00334 54.7 37.9 68.6 49.9 57.7 15.8 6.0 24
YOLOv5s 0.00334 54.4 38 68.4 49.1 57.1 15.8 6.4 32
YOLOv5s 0.01 52.6 37.7 72.6 48.4 58 15.8 7.3 12
YOLOv5x 0.01 58.9 46.2 77.8 52.3 62.5 203.8 39.5 12

Table 4.10. Experimental results on the PlastOpol dataset - fold 3 (one class)

Model Lr mAP@50 mAP@50:95 Precision Recall F1-Score GFLOPs Inference (ms) Bs
YOLOv5x 0.00334 87.8 74.7 88.2 80 83.9 53.4 53.4 12

YOLOv5x+TTA 0.00334 88.4 74.8 86.9 81.2 83.9 203.8 49.7 12
YOLOv5m 0.00334 84.6 69.3 84.7 77.6 80.9 47.9 15.4 12

YOLOv5m+TTA 0.00334 85 69.7 86.8 74.9 80.4 47.9 17.3 12
YOLOv5l 0.00334 86.8 72.8 88 77.8 82.5 107.6 27.7 12

YOLOv5l+TTA 0.00334 86.9 73 86.5 79 82.5 107.6 26.5 12
YOLOv5s 0.00334 78.2 60.2 82 69.6 75.2 15.8 6.1 12

YOLOv5s+TTA 0.00334 79.8 61.7 82.2 71.1 76.2 15.8 7.9 12
YOLOv5s 0.01 83.4 67.7 90.7 73.7 81.3 15.8 6.0 32
YOLOv5s 0.01 83.3 68.1 86.4 76.8 81.3 15.8 6.1 12
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Table 4.11. Single class experiment comparison with the TACO dataset

Author Dataset Model mAP@50
Majchrowska et al. [56] Extended TACO EfficientDet D2 55.7

Pedro et al. [13] TACO Mask R-CNN 26.2
Cordova et al. [25] TACO YOLOv5s 54.7

Ours TACO YOLOv5s 55
Ours TACO YOLOv5m 57.4

Table 4.12. Single class experiment comparison with the PlastOpol dataset

Author Dataset Model mAP@50
Cordova et al.[25] PlastOpol YOLOv5x 84.9

Ours PlastOpol YOLOv5x 88.4

Table 4.13. Experimental results on our extended dataset (one class)

Model Lr mAP@50 mAP@50:95 Precision Recall F1-Score GFLOPs Inference (ms) Bs
YOLOv5x 0.00334 83.2 50.1 81.7 74.4 77.8 203.8 53.7 12

YOLOv5x+TTA 0.00334 83.7 50.6 80.5 74.1 77.1 203.8 49.7 12
YOLOv5m 0.00334 82.2 49.3 79.6 76 77.7 47.9 16.2 12

YOLOv5m+TTA 0.00334 83.2 50.2 81 74.5 77.6 47.9 16.5 12
YOLOv5l 0.00334 83.4 49.9 81 75.2 77.9 107.6 28.0 12

YOLOv5l+TTA 0.00334 84.4 50.9 81.6 75.2 78.2 107.6 27.4 12
YOLOv5s 0.00334 80.1 46.5 81 69.4 74.7 15.8 6.2 12

YOLOv5s+TTA 0.00334 81.2 48.4 80.8 70.9 75.5 15.8 9.5 12
YOLOv5s 0.01 78.7 43.9 79.2 71.8 75.3 15.8 6.0 12
YOLOv5s 0.01 78.9 43.7 78.7 72.5 75.4 15.8 5.9 32

learning rate of 0.00334 produced an mAP of 61.4%. Since the PlastOpol dataset was
distributed in five subsets, we applied the YOLOv5x model to each subset to see which
gave the best results, as shown in Table 4.8. According to the table, fold three produces the
highest mAP and f1-score, which we used to determine the optimal fold. Our PlastOpol
experiment results are summarized in Table 4.10. We used a batch size of 12 and a learning
rate of 0.00334, and we obtained an mAP of 87.8%. The mAP increases to 88.4% after
the use of TTA. In addition, we tried out the YOLOv5s model with various batch sizes
and found that it produced results that were superior to those produced by the same model
with a batch size of 12. In addition, Table 4.11 and 4.12 provide a comparison with
existing datasets. Our selected YOLOv5 models performed better than other models for
the TACO and PlastOpol datasets, as shown in the tables. For the TACO dataset, Cordova
et al. [25] obtained an mAP of 54.7% using the YOLOv5s model, whereas we were able to
obtain an mAP of 55.0% using the same model. In the evaluation of the TACO dataset,
a comparison was made between Mask R-CNN, EfficientDet, and YOLOv5. The results
indicated that YOLOv5 exhibited a higher accuracy rate of 57.4%, surpassing the accuracy
rates of Mask R-CNN (26.2%) and EfficientDet (55.7%). This information can be found
in Table 17. The observed variation in performance can be ascribed to multiple factors,
encompassing the dissimilarity in architectural design between the models, the specific
attributes of the TACO dataset, the efficacy of YOLOv5’s single-stage methodology,
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and its capacity to effectively handle objects of varying scales and aspect ratios through
anchor-based detection. Furthermore, YOLOv5 could have potentially derived advantages
from the implementation of efficient data augmentation techniques, meticulous tuning of
hyperparameters, and optimal allocation of computational resources throughout the training
process. For the PlastOpol dataset, Cordova et al. [25] attained an mAP of 84.9% using the
YOLOv5x model, whereas we were able to acquire an mAP of 87.8% using the same model
as shown in Table 4.12. The activation function utilized in the experiments conducted
by Cordova et al. [25] was not explicitly specified. Nevertheless, our investigation of
the PlastOpol dataset revealed that employing the SiLU activation function within the
convolutional layer yielded superior accuracy in contrast to their findings. Furthermore, a
distinct learning rate was employed, resulting in enhanced performance. The significance
of architectural choices, activation functions, and hyperparameters is underscored by these
findings, as they have the potential to exert a substantial influence on the performance of
a model when applied to particular datasets. In addition, we performed experiments on
our extended dataset. As shown in Table 4.13, we achieved an mAP of 83.4% using the
YOLOv5l model and a batch size of 12. With the implementation of TTA, the mAP rises
to 84.4%, and the f1-score climbs to 78.2%.

4.3.4 Discussion

We applied our selected model to our dataset in addition to two preexisting datasets in an
effort to identify trash in the wild. Six different types of detection tasks are summarized
in Table 2.1. Three of the datasets were not made available to the public. Experiments
were carried out using publicly accessible datasets that were sufficiently complicated and
suited the scope of our research. However, we were unable to incorporate some datasets,
such as those pertaining to marine debris or a straightforward indoor setting, into our
studies. In addition, there are datasets that have refrained from making their annotation
files available to the broader public. As a consequence of this, there is a disparity between
our mAP and the outcomes of the other studies presented in Table 2.1. Although we made
advancements in enhancing the reported outcomes of certain models, as evidenced by our
study’s comparison to Cordova et al.’s previous research on litter [25], we encountered
difficulties in attaining similar results with alternative datasets. The potential cause for the
observed variability in performance may be ascribed to the utilization of Transfer Learning.
Although Transfer Learning is a potent technique for harnessing the knowledge of pre-
trained models on extensive datasets, it may not consistently produce optimal outcomes
for particular datasets. The dataset we have employed pertains to the identification of
trash in natural environments, and it possesses distinctive attributes and obstacles that
may not have been comprehensively addressed in the pre-training phase. Consequently,
it is plausible that the model’s capacity to effectively adjust to our specific dataset might
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have been constrained, thereby resulting in disparities in performance when compared
to other datasets. In addition, the datasets utilized for evaluation demonstrated a wide
range of environmental contexts. The dataset employed by Melinte et al. [29] was the
TrashNet dataset, which comprised indoor images predominantly featuring individual
instances of garbage. On the other hand, the dataset utilized in our study consists of
data gathered from outdoor settings, thereby introducing a range of variables such as
variations in lighting conditions, backgrounds, and object dimensions. As depicted in
Figure 4.9(a) and Figure 4.9(b), we have taken into account two distinct datasets to
facilitate a comparison between indoor and outdoor settings. For testing purposes, the
indoor samples are sourced from the TrashNet dataset, while the outdoor samples are
derived from the Bangladeshi dataset. The presence of diverse backgrounds can have a
significant impact on object detection, as objects may be encountered in different levels
of complexity, lighting conditions, and contextual components. The model’s difficulty
in adapting to complex circumstances, as exemplified by the mixing of sunlight and
shadow in Figure 4.9(b), can be attributed to the obstacles posed by natural backgrounds.
Likewise, the use of grassy backgrounds introduces an additional level of intricacy, hence
increasing the level of difficulty in achieving precise object detection. The aforementioned
characteristics have the potential to impact the performance of the model on our dataset.
The intricacy of the dataset may be to blame for the mAP gap, whereas the data from
natural environments are the primary focus of our investigation.

Figure 4.9. Comparison of Indoor and Outdoor Environments across two different datasets.
The images in (a) depict indoor environments sourced from the TrashNet dataset, whilst
the images in (b) exhibit outdoor situations derived from the Bangladeshi dataset.
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4.4 Conclusion

The efficacy of different deep neural network architectures in our trash classification
system was thoroughly evaluated through an extensive set of experiments. The YOLOv5
model consistently shows a high level of accuracy in the classification of a wide range of
trash objects, which is in line with the goals we set out to achieve. However, our efforts
did not cease at that point. The integration of openlittermap data resulted in a notable
enhancement of our model’s performance, hence improving its capacity to effectively
distinguish between different types of trash. Moreover, the adaptability and effectiveness
of the system were demonstrated by trials conducted using benchmark datasets, extending
its applicability beyond the confines of our specific dataset. The conclusion of this chapter
instills a feeling of fulfillment and a sense of eagerness for further investigation in the
realm of trash classification using deep neural networks. In the subsequent chapter, an
analysis of the findings will be conducted, followed by the proposal of potential directions
for future research.
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Chapter5
Conclusion

The purpose of this research is to identify instances of littering in outdoor settings that
are representative of the environment in Bangladesh. As far as we are aware, there are no
benchmark datasets available for multiple garbage detection in Bangladesh, which would
be helpful for the construction of any intelligent waste sorter. In order to accomplish this,
we compiled a new dataset consisting of ten separate categories using images taken in
Bangladesh’s natural environments as the source material. We included some data from
openlittermap to our existing dataset so that our model could better generalize its findings.
Our extended dataset includes a total of 4418 images, with some images representing a
single trash category while others representing numerous trash categories. The dataset
is available for use in further research and may be acquired by contacting the authors
of the study. The codes, while presently inaccessible, are being actively developed for
inclusion in the repository along with the dataset in the coming period, with the aim of
enhancing the reproducibility of our research. Many tests were carried out on our dataset
with the assistance of the YOLOv5 models. We employed four distinct models that were
all part of the YOLOv5 family. In the majority of the tests, the YOLOv5x model performed
better than the other versions, despite the fact that it required more time to complete the
inference. Our experiments involved using the YOLOv5x model to evaluate our dataset and
an extended dataset. The mAP value for the extended dataset was higher than our original
dataset. In addition to this, we used our models on two previously collected datasets,
namely TACO and PlastOpol. With the TACO dataset, which includes sixty different
classes, we got an mAP of 25.5%. Furthermore, we conducted single-class detection
experiments on all our datasets, assuming all classes belong to the trash category. Our
single-class detection experiments achieved better results than the current state-of-the-art
methods for TACO and PlastOpol datasets, with an mAP of 55% for TACO (YOLOv5s)
and 88.4% for PlastOpol. This indicates the effectiveness of our approach in detecting trash
in outdoor environments. The mAP for a single class category in our expanded dataset was
found to be 84.4%.
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5.1 Future Works

As we draw this thesis to a close, we wish to offer some concise insights regarding the
constraints of our study and avenues for future expansion.

■ Expanding the dataset to include a wider array of categories necessitates a substantial
effort in terms of data collection. This involves not only finding sources for additional
categories but also ensuring that the data is representative and of sufficient quality.
The challenge lies in the diversity of data sources, formats, and the need to curate
and preprocess data for consistency.

■ The issue of class imbalance is exacerbated when incorporating a wider array of
categories. Some categories may have significantly fewer instances, making it chal-
lenging to train and evaluate machine learning models effectively. This imbalance
can lead to model biases and reduced performance for underrepresented categories.

We aim to incorporate a broader range of categories, such as ocean garbage, to achieve
a more evenly distributed dataset. Other object identification methods, such as SSD,
Mask R-CNN, and EfficientDet, will be tested in the future using our dataset. We will
investigate the advancement of custom network architecture and conduct experiments
involving different combinations of hyperparameters in order to better optimize prediction
accuracy. Our current studies did not include a disposable or recyclable tag on the labels.
It will also be incorporated in the future.
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