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Abstract 

 

Nowadays the presence of crack in different engineering structures becomes a 

serious threat to performance. Since most of the civil and mechanical structures may 

be damaged due to material fatigue, mechanical vibration, environmental attack and 

long-term service. Cracks in structural bodies lead to local changes in their stiffness, 

flexibility and consequently their static and dynamic behavior is affected. Moreover, 

dynamical systems of a beam usually possess non-linear characteristics, which 

causes practical difficulties on the model-based damage detection techniques. So it 

becomes essential to study the dynamic response characteristics in order to avoid any 

catastrophic failures and to follow structural integrity and performance.  In the 

present study, a numerical simulation using the Finite Element Method (FEM) is 

carried out on a simply supported concrete beam of length 0.12m and width 0.015m 

with two open transverse cracks, to analyze the response characteristics for which the 

parameters considered are crack depth and its location. Its natural frequency and 

mode shapes are determined by applying suitable boundary conditions. A vibration-

based model is employed to simulate the results by using COMSOL Multiphysics. 

By performing the computational analysis it is observed that, after applying load the 

frequencies of the cracked beam changes with the variation of the location of the 

crack for the all modes of vibration. It also found that frequencies are proportional to 

the increase in load and maximum frequency (around 2304.3 Hz) reserved at the 

cracked stage. Finally, it also revealed that the effects of crack are closer to the fixed 

end than at the free end, and by following this approach, very small sizes of crack 

(near 0.05 mm) can be identified in any structural beam. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 General Overview 

 

 Structural Health Monitoring (SHM) refers to the process of implementing a 

damage detection and characterization strategy for engineering structures such as 

bridges and buildings. Here the damage is defined as changes to the material and/or 

geometric properties of a structural system, including changes to the boundary 

conditions and system connectivity, which adversely affect the system's 

performance. SHM provides a useful tool for ensuring integrity and safety, detecting 

the evolution of damage, and estimating performance deterioration of civil 

infrastructures. After extreme events, such as earthquakes or blast loading, it is used 

for rapid condition screening and aims to provide, in near real time, reliable 

information regarding the integrity of the structure [1]. The most important aspect of 

structural health monitoring is that the technique provides information on the life 

expectancy of structures, simultaneously detects and locates structural damage. This 

needs an idea of the model of structures in great detail, which is always not possible.  

 

Damage detection and location, and condition assessment of engineering 

structures like concrete surface, beams have always been important subjects [2]. 

Cracks, deflection, mode shape is like damages in the structural body that lead to 

local changes in their stiffness, flexibility and consequently their static and dynamic 

behavior is affected. The influence of cracks on dynamic characteristics like natural 

frequencies, modes of vibration of structures has been the subject of many 

investigations. Cracks present a serious threat to the performance of structures since 

most of the structural failures are due to material fatigue. 
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The presence of a crack in structure changes its dynamic characteristics. The change 

is characterized by changes in modal parameters like modal frequencies, modal 

value and mode shapes associated with each modal frequency. It also alters the 

structural parameters like mass, damping matrix, stiffness matrix and flexibility 

matrix of the structure. The vibration technique utilizes one or more of these 

parameters for crack detection [3, 4]. The frequency reduction in a cracked beam is 

not due to the removal of mass from a beam, indeed the reduction in mass would 

increase natural frequency. The effect is due to the removal of material that carries 

significant stresses when defect is a narrow crack [5]. The results of local stiffness 

and natural frequency of structure gradually decrease [4, 6]. Due to presence of a 

crack there is local influence which results from reduction and second moment of 

area of cross-section where it is located. For this reason, in the last two decades 

methods of early detection and localization of cracks have been the subject of 

intensive investigation. As a result, a variety of analytical, numerical and 

experimental investigations now exist. 

 

The crack detection can be done using two ways:  

• Manual Inspection/ Destructive Testing   

• Automated Inspection/ Non-Destructive Testing 

 

1.1.1  Manual Inspection/ Destructive Testing 

 

In conventional methods, manual inspection was done by set of skilled 

inspectors with the help of surveying instruments and visual examination to detect 

the irregularities and defects in the structure. However, this method has certain 

drawbacks, as it is impossible for a crew to detect the cracks in inaccessible areas 

such as large dams, monuments, buildings, etc. and also the estimation of size, 

length and width of the crack. 
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Crack on concrete structure Visual inspection of crack 

 

Figure 1.1: Manual Inspection Methods 

 

1.1.2  Automated Inspection/ Non-Destructive Testing 

 

Non-Destructive Testing (NDT) is mainly concerned with the evaluation of 

flaws in materials which are in the form of cracks and which might lead to loss of 

strength in a concrete structure. Structural health monitoring by NDT like rebound 

hammer and Ultrasonic Pulse Velocity (UPV) test becomes very useful for the 

prediction of the service life of structure [7]. 

 

There are different methods in Non-Destructive test. But most popular and common 

methods are mentioned in below: 

 

• Ultrasonic Pulse Velocity Test 

•  Rebound Hammer Test 

•  Cover Meter Test 
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Ultrasonic pulse test Rebound Hammer Testing 

Service 

Cover meter test 

 

Figure 1.2: Non-Destructive Testing Methods 

 

The main advantages of Non-Destructive Testing are listed below: 

 

 The probe test produces variable results and offers the fastest means of 

verifying concrete maturity and consistency. 

 Schmidt hammer test provides a simple, quick and inexpensive method of 

obtaining the indication of the strength of concrete with an accuracy of 15 to 

20%. 

 Pull-out assessments provide details about growth and maturity. 

 UPV method is the most ideal tool for determining whether concrete is uniform 

or not. 

 Radioactive equipment testing is very simple, and the running cost is less, 

although the initial price might be very high.  

 

1.2  Scope of Studies 

 

This research offers a new technique of crack detection to detect cracks based 

on load and frequency. Recent research demonstrates the mathematical model of 

crack detection using various non-destructive concrete structure approaches, column 

beams, reinforced concrete beams, etc. These models clarify physical behavior, but 

we need more clarification to the research element to element properties. The flow of 

load on different geometries of the computational domain and different types of 

linear or non-linear cracks can be studied using the model. For this, one should 
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concentrate on vibration based method to detect the damage in a specific 

computational domain. For this we need a suitable mathematical model of crack 

detection based on numerical technique, which will significantly reduce the cost of 

computing crack detection and establish an effective method of pavement condition 

assessment. The key benefits of this research that it will provide a better interface to 

recognize the hidden or visible crack in concrete construction, sustainability and 

structural condition of beam. It may create an opportunity to diagnose any types of 

fault/fatigue in any construction field, according to the sequence of this research. It 

can help to save a lot of time and money to assess infrastructural conditions. 

 

1.3  Objectives 

 

 The effect of single crack on the dynamics of structures has been studied by 

most researchers in recent years, and various mathematical models have been 

developed to detect and unwanted behavior of various structural bodies. There are 

some limitations and in some cases, the outcome is not satisfactory in reality. The 

primary objective of our research is to establish a mathematical model by using a 

vibration-based approach to detect different size cracks in different locations and 

structural behaviors. Therefore, attempts have been made to systematically monitor 

the complex behavior of simple crack systems. Vibration analysis is conducted here 

on a cantilever beam with and without cracking. The results are collected 

analytically and then compared to the results of the simulation. The existence of 

crack also decreases the rigidity of the derived structures.  

 

The detailed analyses of crack modeling and stiffness matrices will be 

developed by using the Finite Element Method. The Euler-Bernoulli beam theory is 

used for dynamic characteristics of beams with transverse cracks. Modified 

boundary conditions due to presence of crack have been used to find out the 

theoretical expressions for natural frequencies and mode shape for the beams. The 

Vibration Based Inspection (VBI) method has emerged as a promising tool for 

monitoring and classification of faults in machine and equipment. This technique is 

well prepared for solving inverse variational problems in the context of monitoring 
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and fault detection because of its pattern recognition and interpolation capabilities. 

The VBI method also successfully approach and classify the problems associated 

with nonlinearities, provided they are well represented by input patterns, and also 

can avoid the complexity introduced by conventional computational methods. 

 

1.4  Organization of the Thesis 

 

The continuation of the study is coordinated as follows. Chapter II describes 

an overview of various types of crack and methods of detecting crack and structural 

health monitoring. This chapter also contains the available numerical techniques 

together with the Finite Element Method that are used to model and analyze the 

computational domain’s behavior. In this chapter, we will also briefly discuss the 

literature reviews which are relevant to our thesis. 

 

Chapter III presents the development of a mathematical model for a cracked 

concrete beam. The Numerical approximation of the model is done on the base of 

Finite Element Method precisely using the vibration based method. The governing 

equations for detecting crack and some basic terminologies related to this work are 

given here. The Euler-Bernoulli beam and string theory is also discussed in this 

section which is used for phase and dynamic behavior of the computational domain.   

 

Chapter IV is the main chapter of our thesis where the numerical simulation 

of a cracked concrete beam model is performed. We have considered the concrete 

beam and slice of iron for our simulation. The COMSOL Multiphysics Software has 

been used to find the simulation results. The deflection, shear rate, load distribution, 

damage location and thickness of the cracks are observed and results are compared. 

A detailed description of the results is also discussed in this chapter. 

 

Finally, Chapter V includes a conclusion of our entire work and findings of 

the research, along with potential recommendations for future work that may 

contribute to the further development of this research in this field.
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CHAPTER II 

 

LITERATURE REVIEW 

 

2.1     General Overview 

A beam is a structural element that primarily resists loads applied 

transversely to the beam's axis. Its mode of deflection is primarily by bending. The 

loads applied to the beam result in reaction forces at the beam's support points. The 

Beam structures are widely used in many applications, such as automotive, 

aerospace, and civil engineering [1–4]. Many beam structures are subjected to cyclic 

loading, which results in fatigue cracks [5, 6]. 

Cracks are formed in the structures due to various aspects in due course of 

time. The formation of cracks does not lead to immediate failure of the structure, it 

effects gradually. The presence of a crack in a structural component leads to a local 

reduction in stiffness and an increase in damping which will affect its vibration 

response. They may cause serious damage or injury; therefore detecting damage in 

structural components at the earliest possible stage has become an important aspect 

in today’s engineering. Sometimes cracks cannot be detected with the naked eye 

hence non-destructive methods of detection of cracks are applied. There are various 

techniques in crack detection. One of the techniques in non-destructive detection and 

locating of cracks is the use of vibration response of the structures.  

Crack detection through vibration measurements has attracted much interest 

over the years. A substantial amount of work has been conducted on natural 

frequency and mode shape based damage detection methods in the past. The 

presence of a crack in a structural component leads to a local reduction in stiffness 

and an increase in damping which will affect its vibration response. Mostly modal 

frequencies are used for monitoring the crack because modal frequencies are the 

main properties of the whole component. The natural frequency of the component 
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decreases as a result of the crack. Many methods have been developed to detect and 

locate the crack by measuring the change in the natural frequencies of the component 

due to the crack. 

 

2.2 Crack  

 

Cracks are a potential source of catastrophic failure in mechanical 

engineering, civil structures and aerospace engineering. Generally Structural 

cracks are those which result from incorrect design, faulty construction or 

overloading and these may endanger the safety of a building and their inmates. 

Cracks in any structural systems are very common due to various effects with respect 

to time, due to natural calamities (such as Earthquake, cyclone; etc.), construction 

defects, shrinkage of concrete, chemical reactions in concrete etc. 

 

 

Figure 2.1: Sample images with cracks 

 

Figure 2.2: Sample images without cracks [7]  
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2.3 Causes of Cracking in Concrete Structures 

 

There are different reasons for creating a crack. Such as, the cracking of 

joints, especially knuckles, was long believed to lead to arthritis and other joint 

problems. The cracking mechanism and the resulting sound is caused by carbon 

dioxide cavitation bubbles suddenly partially collapsing inside the joints. Cracks in 

concrete occur mostly due to premature drying, inappropriate design and 

construction practices. There are two common types of cracks brought on by 

premature drying- 

i) Crazing cracks and  

ii) Crusting cracks. 

 

When a concrete slab (or its top layer, to be specific) loses moisture quickly, which 

can lead to cracks. Crazing cracks appear when the top layer of the slab quickly loses 

moisture naturally, resembling a spider-web. Crusting cracks appear during the 

stamping process when the top layer is dried for embedding patterns [8]. Both these 

types might look unappealing, but they are largely harmless for the structural 

strength of the slab. Understanding the specific types allows us to identify the root 

cause behind these cracks and take appropriate steps. 

 

In summary a list of some factors causing crack are as follows: 

 Poor quality of concrete-too high a water content and use of excessively high  

cement contents. 

 Poor structural design. 

 The development of differential thermal stresses due to the high heat of  

hydration. 

 Because of restricted thermal expansion and contraction from temperature  

changes, and subsequent dimensional changes as a result of diurnal and 

seasonal temperature cycles, the tensile stresses formed. 

 Dimensional expansion and contraction caused by cycles of wetting and 

drying. 

 Errors, negligence or bad workmanship. 
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 Corrosion of steel by chloride ions or carbonation of concrete. 

 Rapid evaporation of moisture due to dry, hot and windy conditions  

prevailing at the time of placing. 

 Improper compaction of earth or subgrade. 

 Excessive addition of water in concrete or using a high slump. 

 Improper finishing of concrete. 

 Inadequate, improper or no curing of concrete. 

 

2.4 Effects of Cracks 

 

Generally structures are not collapsed on initial growth of cracks. A crack 

must be detected in the early state, as it may cause serious failure of the structures 

with due course of time. However, it is difficult to recognize a crack by visual 

inspection techniques, when it is too tiny and small. Hence non-destructive testing 

such as vibration technique is used for crack detection. It is essential to study the 

behavior of structure having cracks. 

 

2.5 Physical parameters affecting dynamic characteristics of cracked 

structures 

The dynamic response of a structure is normally determined by the physical 

properties, boundary conditions and the material properties. The changes in dynamic 

characteristics of structures are caused by their variations. The presence of a crack in 

structures also modifies its dynamic behavior.  

The following properties of the crack influence the dynamic response of the 

structure. 

• The depth of crack 

• The location of crack 

• The orientation of crack 

• The number of cracks 

 



28 

 

 

 

2.6 Modes of Fracture 

The crack experiences three specific types of loading which are- 

 

2.6.1 Mode-I 

Mode-I represents the opening mode. In this opening mode the crack faces 

separates in a direction perpendicular to the plane of the crack and the respective 

displacements of crack walls are symmetric with respect to the crack front. Loading 

is perpendicular to the crack plane, and has the tendency to open the crack. 

Generally Mode I is considered the most risky loading condition. 

 

2.6.2 Mode-II 

Represents the in-plane shear loading. In this one the crack face appears to 

slide compared to the other (shearing mode). Here the stress is parallel to the 

direction of crack formation. 

 

2.6.3  Mode-III 

Represents the out-of-plane shear loading. Here the crack faces are sheared 

parallel to the crack front.  

 

 

 

 

Figure 2.3: Modes of Fracture 
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2.7 Classification of Cracks 

 

Structural cracks are caused by a lack construction sites, saturated soil, weak 

bearing or overloading of soil. Other symptoms of foundation problems, such as 

sticking doors and windows, slanted doors, sloping floors and gaps in porches, 

typically follow these cracks. Concrete, once cured, is solid but still has weight 

limits. Crazy cracks will form if the top of the concrete slab dries too quickly. There 

are very tiny cracks on the surface that look like spider webs or broken glass. 

Crazing cracks may be unsightly, but they are not a structural issue. So different 

types and sizes of crack can be formed by different incidents. On the basis of 

geometry, cracks can be broadly classified into two categories- 

 

2.7.1 Macro Defects 

 

Concrete has low strength if these defects are present and can deteriorate 

rapidly due to easy penetration of water and other chemicals. The structure would 

typically need repairs within a few years of its construction. Causes will have to be 

analyzed and defects removed before doing any additional protective treatment. 

 

2.7.2 Micro Defects 

 

These defects are not visible to the naked eye. They are usually very fine 

voids caused by large capillary pores resulting from the use of low grades (strength) 

of concrete with high water to cement ratio.       

 

It is not possible to prevent cracks completely in concrete. However cracks 

can be minimized by adapting good concrete practices. Some of guidelines to 

prevent or minimize cracking are as follows: Subgrade and Formwork, Concrete, 

Finishing Concrete Surface, Curing of Concrete, Joints in Concrete, Cover over 

Reinforcement etc. It’s often difficult to determine exactly what caused a particular 

crack. Proper site preparation, a quality mix, and good concrete finishing practices 
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can go a long way towards minimizing the appearance of cracks and producing a 

more aesthetically pleasing concrete project [9]. 

 

     

 

Figure 2.4: Types of Cracks 

 

2.8 Special types of Cracks in Concrete 

 

Cracks that appear in early age of concrete are not very critical. These cracks 

appear in later stages are critical and may affect structural integrity, strength or 

service life of the concrete structure. These crack creates new cracks due to freeze 

and thaw cycles and due to settlement etc. These cracks lead to deterioration of the 

concrete structure. Tremendous forces can build up inside the wall due to any causes 

of cracks [10]. Different types of cracks may create inside the wall as follows- 

 

    

(a) Shrinkage 

Crack 

(b) Hairline Crack (c) Settlement 

Crack 

(d) Vertical 

Crack 
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(e) Diagonal 

Crack 

(f) Horizontal Crack (g) Structural 

Crack 

(h) Floor Crack 

 

Figure 2.5: Different types of cracks inside the wall 

 

2.9 Different types of Cracks in Hypothetical Concrete Structure 

Concrete expands and contracts as other construction materials do whenever 

there is change in temperature or moisture. Concrete also deflects due to imposed or 

self-load and support conditions. Cracks in concrete appear when these movements 

are restricted and no provisions are made to accommodate these movements.  

 

The following figure shows various types of cracks in concrete beams due to shear 

stress known as shear crack, reinforcement corrosion, inadequate rebar cover, 

bending stress and compression failure. 

 

Table 2.1: Location of different cracks in hypothetical concrete structure 

Types of Cracking Designation Time of occurrence 

Plastic settlement A,B,C Ten minutes to three 

hours 

Plastics Shrinkage D,E,F Thirty minutes to six 

hours 

Early thermal Contraction G,H One day to two to three 

weeks 

Long-term drying shrinkage I Several weeks or months 

Crazing J,K One to seven days-

sometimes much later 

Corrosion of reinforcement L,M Several years, but may 

be sooner 

Alkali-aggregate reaction N More than five years 
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Figure 2.6: Examples of Intrinsic cracks in hypothetical concrete structure 
 

Generally there are five of the most common types of concrete cracks below- 

 Plastic shrinkage concrete cracks. 

 Expansion concrete cracks. 

 Heaving concrete cracks.                                

 Settling concrete cracks. 

 Concrete cracks caused by overloading the slab 

 

  

(a)  Shrinkage cracks originating at re-entrant corners (b)  Expansion Concrete Cracks 

   

(c) Heaving concrete cracks (d) Settling Concrete Cracks (e)  Large Weights can 

Crack a Slab 
 

Figure 2.7: Most Common types of Concrete Cracks 
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2.9.1 Plastic Shrinkage Concrete Cracks 

When concrete is still in its plastic state (before hardening), it is full of water. 

When that water eventually leaves the slab, it leaves behind large voids between the 

solid particles. These empty spaces make the concrete weaker and more prone to 

cracking. This type of cracking happens frequently and is referred to as “Plastic 

Shrinkage Cracking”. While plastic shrinkage cracks can happen anywhere in a slab 

or wall, they almost always happen at reentrant corners (corners that point into the 

slab) or with circular objects in the middle of a slab. Since concrete cannot shrink 

around a corner, stress will cause the concrete to crack from the point of that corner. 

Plastic shrinkage cracks are typically very narrow in width and barely visible. While 

nearly invisible, it is important to remember that plastic shrinkage cracks don’t just 

exist on the surface, they extend throughout the entire thickness of the slab.  

2.9.2 Expansion Concrete Cracks 

Just like a balloon, heat causes concrete to expand. When concrete expands, 

it pushes against anything in its way (a brick wall or adjacent slab for example). 

When neither the ability to flex, the expanding force has can be enough to cause 

concrete to crack. Expansion joints are used as a point of separation (or isolation), 

between other static surfaces. Typically made of a compressible material like 

asphalt, rubber, or lumber, expansion joints must act as shock absorbers to relieve 

the stress that expansion puts on concrete and prevent cracking. 

2.9.3 Heaving Concrete Cracks 

When the ground freezes, it can sometimes lift many inches before thawing 

and settling back down. This ground movement brought on by the freezing and 

thawing cycle is a huge factor contributing to concrete cracking. If the slab is not 

free to move with the ground, the slab will crack. Large tree roots can have the same 

effect on a slab. If a tree is located too close to a slab, the growing roots can lift and 

crack the concrete surface. 
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2.9.4 Settling Concrete Cracks 

On the other hand, ground settling below a concrete slab can also cause 

cracking. Settling cracks typically occur in situations where a void is created in the 

ground below the concrete surface. Think about when a large tree is removed from 

nearby and the roots begin to decompose or when a utility company digs a trench for 

their lines, pipes, etc. and don’t compact the soil when they refill it–these are 

examples of instances where settling cracks are likely to happen. 

2.9.5 Concrete cracks caused by Overloading the Slab 

Although concrete is a very strong building material, it does have its limits. 

Placing excessive amounts of weight on top of a concrete slab can cause cracking. 

When concrete mix has a strength of 2000, 3000, 4000, or 5000+ PSI (Pounds per 

Square Inch), it is referring to the pounds per square inch it would take to crush that 

concrete slab. When it comes to residential concrete slabs, overload of the actual slab 

isn’t all that common. Instead, what is more likely to occur is excess overload on the 

ground below the slab. After a heavy rain or snowmelt when the ground below is 

soft and wet, excessive weight on the slab can press the concrete down and result in 

cracks.  

 

2.10 Crack Detection Method by Non-Destructive Testing 

 

 

 

Figure 2.8: Types of Non-Destructive Testing 
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https://concretesupplyco.com/residential-concrete-trends/
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2.10.1 Ultrasonic Method 

 

Ultrasonic methods of NDT use beams of mechanical waves (vibrations) of 

short wavelength and high-frequency, transmitted from a small probe and detected 

by the same or other probes. In high quality metal, such mechanical waves can travel 

wide distances in the form of a differing wave with progressive attenuation. The 

frequency is in the range 0.1 to 20 MHz and the wavelength in the range 1 to 10 mm. 

The velocity depends on the material and is in the range 1000-6000 m/s. The 

technique detects internal, secret discontinuities below the surface that may be deep. 

To generate waves of several kinds, including longitudinal, shear, and surface waves, 

transducers and coupling wedges are available. 

 

 

Figure 2.9:   Ultrasonic Method 

 

2.10.2 Acoustic Emission Method 

 

Acoustic Emission (AE) refers to the generation of transient elastic waves 

produced by a sudden redistribution of stress in a material. When a structure is 

subjected to an external stimulus (change in pressure, load, or temperature), 

localized sources trigger the release of energy, in the form of stress waves, which 

propagate to the surface and are recorded by sensors. With the right equipment and 

setup, motions on the order of picometers (10-12 m) can be identified. Detection and 

analysis of AE signals can supply valuable information regarding the origin and 

importance of a discontinuity in a material. Because of the versatility of Acoustic 

Emission Testing (AET), it has many industrial applications and is used extensively 

as a research tool. The advantages of AET include fast and complete volumetric 
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inspection using multiple sensors, permanent sensor mounting for process control, 

and no need to disassemble and clean a specimen. Drawback of AE stems from loud 

service environments which contribute extraneous noise to the signals. For 

successful applications, signal discrimination and noise reduction are essential. 

 

Figure 2.10:  Acoustic Emission Method 

 

2.10.3  Vibration Inspection Method 

 

Vibration Based Inspection Methods (VBI) are common due to the 

convenience of modal parameter measurement and selection. The global presence of 

the parameters (such as natural frequencies) ensures that experiments can be 

conducted at virtually arbitrary points. A prior knowledge of the location of the 

damage is not required [11]. VBI techniques also define a hidden injury that is 

usually difficult to reach. This skill has drawn the attention of mathematicians and 

engineers over the past decade. For numerical simulation, it is necessary to model 

the crack beam. The modeling of the cracked beam portion will assist in hairline 

crack modeling using the methods of linear invoice mechanics [12]. For crack 

detection in cantilever beams [13], an analytical as well as experimental approach is 

used. In order to relate the crack position and depth, the intersection of contours with 

the constant modal natural frequency planes is used [14].  

 

Non-Destructive error detection suggests that if dynamic response of 

structure is monitored. Variation in monitored signatures is indication of error and it 

can be located [15]. The equivalent stiffness may be computed from the crack strain 

energy function [16, 17]. The expression for the spring stiffness represent a crack 
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depth ratio is presented [18, 19]. The damage detection in composites is done by 

measurement of natural frequency.  

 

2.11 Importance of Detecting Crack 

Identification of structural crack location has become an intensely 

investigated subject due to its practical importance since the unpredicted structural 

failure may cause catastrophic, economic, and life loss. It becomes a crucial task in 

monitoring structural health and ensuring structural safety [20-23]. In the recent 

years, with the advancement of Science and technology, the study of detecting of 

crack has been increasing among researchers. Being very commonly used in steel 

construction and machinery industries, health monitoring and the analysis of damage 

in the form of crack in Beam structures poses a vital role.  

 

Particularly for concrete elements, cracks create access to harmful and corrosive 

chemicals to penetrate into the structure, which consequently damage their integrity 

as well as esthetics. Normally Cracks that appear in early age of concrete are not 

very critical. Cracks that appear in later stages are critical and may affect structural 

integrity, strength or service life of the concrete structure [24]. The presence of the 

crack not only changes the regional stress and strain fields of the crack tip but also 

affects structural dynamics [25]. If these fatigue cracks cannot be timely detected 

and repaired, the subsequent fracture can bring catastrophic failure to the beam 

structures [26]. Cracks in concrete can be reduced by ensuring the following: 

 

 Concrete structure should be designed properly for all type of anticipated  

loads, 

 Provide shrinkage and insulation joints properly,  

 Proper sub grade for slab on grade should be developed, 

 Concrete should be correctly installed and finished,  

 Concrete should be cured properly. 

 



38 

 

 

 

It is not possible to prevent cracks completely in concrete. However cracks can be 

minimized by adapting good concrete practices. In this work we choose Concrete 

beam to detect crack. Because Concrete beams are the choice shape for structural 

builds because of their high functionality. The shape of concrete beams makes them 

excellent for unidirectional bending parallel to the web. 

 

2.12 Some Important Definitions 

 

2.12.1 Stress and Strain  

 

When a body is subjected to a deforming force, a restoring force occurs in the 

body which is equal in magnitude but opposite in direction to the applied force. This 

restoring force per unit area is known as stress. We can also refer to stress as a 

measure of the internal force experienced by an object per unit of cross-sectional 

area. 

When the force applied to an elastic body, the body deforms and the deformation 

depends upon the force applied to it. Stress is the force per unit area upon which it 

acts. 

Force
Stress,

Area
   

 

Stress applied to a material can be of two types- i) Tensile and ii) Compressive 

 

2.12.1.1 Tensile Stress 

 

It is the force applied per unit area which results in the increase in length (or 

area) of a body. Objects under tensile stress become thinner and longer. 

 

2.12.1.2 Compressive Stress 

 

It is the force applied per unit area which results in the decrease in length (or 

area) of a body. The object under compressive stress becomes thicker and shorter. 
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According to the strain definition, it is defined as the amount of deformation 

experienced by the body in the direction of force applied, divided by initial 

dimensions of the body. Strain is the relative internal change in shape of an 

infinitesimally small cube of material and can be expressed as a non-dimensional 

change in length or angle of distortion of the cube. Shortly it is the deformation per 

unit of its original length. The relation for deformation in terms of length of a solid is 

given below, 

Strain,
dL

s
L

  

 

2.12.2 Young's modulus 

 

Young modulus or the modulus of elasticity in tension, is a mechanical 

property that measures the tensile stiffness of a solid material. It quantifies the 

relationship between tensile stress σ (force per unit area) and axial strain ε 

(proportional deformation) in the linear elastic region of a material and is determined 

using the formula [27],  

E



  

 

Young's moduli are typically so large that they are expressed not in Pascal but in 

Giga-Pascals (GPa). 

 

Young's modulus enables the calculation of the change in the dimension of a 

bar made of an isotropic elastic material under tensile or compressive loads. For 

instance, it predicts how much a material sample extends under tension or shortens 

under compression. The Young's modulus directly applies to cases of uniaxial stress, 

that is tensile or compressive stress in one direction and no stress in the other 

directions. Young's modulus is also used in order to predict the deflection that will 

occur in a statically determinate beam when a load is applied at a point in between 

the beam's supports. 

 

 

https://en.wikipedia.org/wiki/Isotropic
https://en.wikipedia.org/wiki/Statically_determinate#Statically_determinate
https://en.wikipedia.org/wiki/Beam_(structure)
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2.12.3 The Poisson's ratio 

  

In materials science and solid mechanics, Poisson's ratio  is a measure of the 

Poisson effect, the deformation (expansion or contraction) of a material in directions 

perpendicular to the direction of loading. The value of Poisson's ratio is the negative 

of the ratio of transverse strain to axial strain. For small values of these changes,  is 

the amount of transversal elongation divided by the amount of axial compression. 

The ratio is form as,  

trans

axial

d

d





  

Where, 

 = the resulting Poisson's ratio, 

trans = transverse strain (negative for axial tension (stretching), positive for axial 

compression) 

axial = axial strain (positive for axial tension, negative for axial compression). 

 

Most materials have Poisson's ratio values ranging between 0.0 and 0.5. Nearly 

incompressible materials, such as rubber, have a ratio near 0.5. The Poisson's ratio of 

a stable, isotropic, linear elastic material must be between −1.0 and +0.5 because of 

the requirement for Young's modulus, the shear modulus and bulk modulus to have 

positive values [28]. A perfectly incompressible isotropic material deformed 

elastically at small strains would have a Poisson's ratio of exactly 0.5. Most steels 

and rigid polymers when used within their design limits (before yield) exhibit values 

of about 0.3, increasing to 0.5 for post-yield deformation which occurs largely at 

constant volume [29]. 

 

2.12.4 Tensor 

 

A tensor is a concept from mathematical physics that can be thought of as a 

generalization of a vector and is a geometric objects that describe linear relations 

between geometric vectors, scalars and matrices. While tensors can be defined in a 
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purely mathematical sense, they are most useful in connection with vectors in 

physics. Euclidean vectors, often used in physics and engineering applications, and 

scalars themselves are also tensors. A linear map is represented by a matrix (a 2-

dimensional array) in a basis, and therefore is a 2nd-order tensor. A vector is 

represented as a 1-dimensional array in a basis, and is a 1st-order tensor. Scalars are 

single numbers and are thus 0th-order tensors. 

 

Tensors are useful when trying to understand how a given system reacts to 

directional forces. They are simply a mathematical tool used by scientists and 

engineers to describe and understand how a system is affected when these forces, 

usually represented by vectors (which have both magnitude and direction) change 

when acted upon by other forces.  

 

2.12.5 Rate of Deformation 

  

The strain rate tensor or the deformation rate is a physical quantity that 

describes the rate of change of the deformation of a material in the neighborhood of 

a certain point, at a certain moment of time. Stress tensor is a second order tensor 

named after Augustin-Louis Cauchy. The stress at a point in a solid body needs nine 

components to be completely specified, since each component of the stress must be 

defined not only by the direction in which it acts but also the orientation of the 

surface upon which it is acting. 

 

In engineering, deformation refers to the change in size or shape of an object. 

Displacements are the absolute change in position of a point on the object. Strains 

are related to the forces acting on the cube, which are known as stress, by a stress-

strain curve. The relationship between stress and strain is generally linear and 

reversible up until the yield point and the deformation is elastic. [30]. Above the 

yield point, some degree of permanent distortion remains after unloading and is 

termed plastic deformation.  

 

 

https://en.wikipedia.org/wiki/Tensor
https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
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2.12.6 Torsion 

 

In the field of solid mechanics, torsion is the twisting of an object due to an 

applied torque. Unlike axial loads which produce a uniform, or average, stress over 

the cross section of the object, a torque creates a distribution of stress over the cross 

section. When a torque is applied to the structure, it will twist along the long axis of 

the rod, and its cross section remains circular. Torsion is expressed in either 

the Pascal (Pa), an SI unit for Nm-2, or in pounds per square inch (psi) while torque 

is expressed in Newton-Meters (N·m) or foot-pound force (ft·lbf). In sections 

perpendicular to the torque axis, the resultant shear stress in this section is 

perpendicular to the radius. 

 

Figure 2.11: Torsion of a square section bar 

 

In non-circular cross-sections, twisting is accompanied by a distortion called 

warping, in which transverse sections do not remain plane. For shafts of uniform 

cross-section unrestrained against warping, the torsion is: 

T TJ J
T G

r l
 

 

Where, 

T = applied torque or moment of torsion in Nm. 

τ = maximum shear stress at the outer surface 

JT = torsion constant for the section.  

r = perpendicular distance between the rotational axis and the farthest point in the 

section (at the outer surface). 

l =length of the object to or over which the torque is being applied. 

Φ =angle of twist in radians. 

https://en.wikipedia.org/wiki/Pascal_(unit)
https://en.wikipedia.org/wiki/SI
https://en.wikipedia.org/wiki/Pounds_per_square_inch
https://en.wikipedia.org/wiki/Newton_metre
https://en.wikipedia.org/wiki/Foot-pound_force
https://en.wikipedia.org/wiki/Shear_stress
https://en.wikipedia.org/wiki/Torsion_constant
https://en.wikipedia.org/wiki/Radian
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G = shear modulus, also called the modulus of rigidity, and is usually given in Giga-

Pascal (GPa), lbf/in2 (psi), or lbf/ft2 or in ISO units N/mm2. 

 

The product JTG is called the torsional rigidity wT. 

 

2.12.7 Deflection of Beams 

 

Deflection, in structural engineering terms, refers to the movement of a beam 

or node from its original position due to the forces and loads (due to its deformation) 

being applied to the domain. Deflection, also known as displacement or may refer to 

an angle, can occur from external applied loads or from the weight of the structure 

itself, and the force of gravity in which this applies. It can occur in beams, trusses, 

frames and basically any other structure. The deflection distance of a member under 

a load can be calculated by integrating the function that mathematically describes the 

slope of the deflected shape of the member under that load. Standard formulas exist 

for the deflection of common beam configurations and load cases at discrete 

locations. Otherwise methods such as virtual work, direct integration, Castigliano's 

method, Macaulay's method or the direct stiffness method are used. An example of 

the use of deflection is in building construction. Architects and Engineers select 

materials for various applications. The deformation of a beam is usually expressed in 

terms of its deflection from its original unloaded position. The configuration 

assumed by the deformed neutral surface is known as the elastic curve of the beam. 

 

   

Figure 2.12: Deflection of Beams 

 

https://en.wikipedia.org/wiki/Torsional_rigidity
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2.12.8 Shear Forces (SF) and Bending Moment (BM) 

 

Shear Forces occurs when two parallel forces act out of alignment with each 

other. Bending Moments are rotational forces within the beam that cause bending. At 

any point within a beam, the Bending Moment is the sum of each external force 

multiplied by the distance that is perpendicular to the direction of the force. In a 

cantilever beam, shear force at any section is equal to the sum of the loads between 

the sections and the free end. Bending moment at a given section is equal to the sum 

of the moments about the section of all the loads between the section and the free 

end of the cantilever. Shear Force (SF) at any cross-section of the beam is the 

algebraic sum of all vertical forces on the beam, acting on the right or left side of the 

domain. Sagging from both sides i.e. Left or Right; upward force will produce 

positive BM. 

 

Shear and bending moment diagrams are analytical tools used in conjunction 

with structural analysis to help perform structural design by determining the value of 

shear force and bending moment at a given point of a structural element such as a 

beam. 

 

Figure 2.13: Shear Forces (SF) and Bending Moment (BM) for various types of 

loads 
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2.13 Castigliano’s Theorem 

 

Italian engineer Alberto Castigliano (1847 – 1884) developed a method of 

determining deflection of structures by Strain Energy Method (SEM). His theorem 

of the derivatives of internal work of deformation extended its application to the 

calculation of relative rotations and displacements between points in the structure 

and to the study of beams in flexure. Energy of structure is its capacity of doing 

work and strain energy is the internal energy in the structure because of its 

deformation [31]. By the principle of conservation of energy, 

U = Wi 

Where, U denotes the strain energy and Wi represents the work done by internal 

forces. The expression of strain energy depends therefore on the internal forces that 

can develop in the member due to applied external forces. 

  

2.13.1   Castigliano’s Theorem for Beam Deflection 

 

For linearly elastic structures, the partial derivative of the strain energy with 

respect to an applied force (or couple) is equal to the displacement (or rotation) of 

the force (or couple) along its line of action. When a body is elastically deflected by 

any combination of loads, the deflection at any point and in any direction is equal to 

the partial derivative of strain energy (computed with all loads acting) with respect to 

a load located at that point and acting in that direction. 

U
or

P







   

U

M







 

Where δ is the deflection at the point of application of force P in the direction of P, θ 

is the rotation at the point of application of the couple M  in the direction of M , and 

U is the strain energy. 

 

2.14 Euler–Bernoulli Beam theory  

The Euler- Bernoulli beam theory is a model of how beams behave under 

axial forces and bending. (It is also known as engineer's beam theory or classical 

beam theory) [32] which is a simplification of the linear theory of elasticity which 
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provides a means of calculating the load-carrying and deflection characteristics of 

beams. It covers the case for small deflections of a beam that are subjected to lateral 

loads only.  

This theory relies on a couple major assumptions. Of course, there are other 

more complex models that exist (such as the Timoshenko beam theory); however, 

the Euler- Bernoulli assumptions typically provide answers that are 'good enough' 

for design in most cases. It was first enunciated circa 1750, but was not applied on a 

large scale until the development of the Eiffel Tower and the Ferris wheel in the late 

19th century [33]. Following these successful demonstrations, it quickly became a 

cornerstone of engineering and an enabler of the Second Industrial Revolution. 

 

2.14.1 Euler- Bernoulli Assumptions 

 

The two primary assumptions made by the Euler- Bernoulli beam theory are 

that “Plane Sections Remain Plane” and that deformed beam angles (slopes) are 

small. The plane sections remain plane assumption is illustrated in Figure 2.14. It 

assumes that any section of a beam (i.e. a cut through the beam at some point along 

its length) that was a flat plane before the beam deforms will remain a flat plane after 

the beam deforms. This assumption is generally relatively valid for bending beams 

unless the beam experiences significant shear or torsional stresses relative to the 

bending (axial) stresses. Shear stresses in beams may become large relative to the 

bending stresses in cases where a beam is very deep and short in length [34].  

 

 

Figure 2.14: The Plane Sections Remain Plane Assumption 

 

https://learnaboutstructures.com/Bernoulli-Euler-Beam-Theory#fig:Plane-Sections
https://learnaboutstructures.com/sites/default/files/images/4-Deflections/Plane-Sections.png
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The plane sections remain plane assumption also assumes that any section of a beam 

that was perpendicular to the neutral axis before the beam deforms will remain 

perpendicular to the neutral axis after the beam deforms. 

 

2.14.2 The Euler- Bernoulli Beam Equation 

 

The out-of-plane displacement ω of a beam is governed by the Euler-Bernoulli Beam 

Equation, 

2 2

2 2

d d
EI p

dx dx

 
 

 
 

Where, p is the distributed loading (force per unit length) acting in the same 

direction as y (and ω), E is the Young's modulus of the beam, and I is the area 

moment of inertia of the beam's cross section. 

If E and I do not vary with x along the length of the beam, then the beam equation 

simplifies to, 

4

4

d
EI p

dx


    

 

2.15 Timoshenko Beam Theory  

Timoshenko beam theory is one of several classical structural models in solid 

mechanics. It was first developed in 1921, and was refined in 1922 by Timoshenko 

[35, 36]. Since then, it has been revised and extended for broad applications in 

vibration analysis of beam-like structures of homogeneous, composite, and 

functionally graded materials [37]. Since Timoshenko beam theory actually accounts 

for the first order shear deformation in an average sense [38], the First-Order Shear 

Deformation Theory (FSDT) is also included as a generalization of Timoshenko 

theory. In recent years, the Timoshenko theory has been modified to an on local 

theory for vibration analysis of Micro-and Nano-structures [39]. 



48 

 

 

 

The model takes into account shear deformation and rotational bending 

effects, making it suitable for describing the behavior of thick beams, sandwich 

composite beams, or beams subject to high-frequency excitation when the 

wavelength approaches the thickness of the beam. The resulting equation is of fourth 

order but, unlike Euler–Bernoulli beam theory, there is also a second-order partial 

derivative present. Physically, taking into account the added mechanisms of 

deformation effectively lowers the stiffness of the beam, while the result is a larger 

deflection under a static load and lower predicted Eigen frequencies for a given set 

of boundary conditions [40].  

Timoshenko beam theory is a simple extension to Euler-Bernoulli Beam theory. 

Shear deformations, which are absent in Euler-Bernoulli beam theory, are included 

in Timoshenko beam theory.  

 

 

Figure 2.15: Deformation of a Timoshenko beam (blue) compared with that of an 

Euler-Bernoulli beam (red). 

In static Timoshenko beam theory without axial effects, the displacements of the 

beam are assumed to be given by, 

(x, y, z) z (x)xu   ; (x, y,z) 0yu   ; (x, y) (x)zu   

where (x,y,z) are the coordinates of a point in the beam, ux , uy , uz are the 

components of the displacement vector in the three coordinate directions,  φ is the 

angle of rotation of the normal to the mid-surface of the beam, and ω is the 

displacement of the mid-surface in the z-direction. 
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The governing equations are the following coupled system of ordinary differential 

equations: 

2

2
(x)

d d
EI q

dx dx

 
 

 
 

1d d d
EI

dx AG dx dx

 




 
   

 
 

The Timoshenko beam theory for the static case is equivalent to the Euler-Bernoulli 

theory when the last term above is neglected, an approximation that is valid when 

2

1
1

L AG
 

Where, 

L = length of the beam. 

A = cross section area. 

E = elastic modulus. 

G = shear modulus. 

I = second moment of area. 

κ, called the Timoshenko shear coefficient, depends on the geometry. Normally, κ = 

5/6 for a rectangular section. 

q(x) =  distributed load (force per length). 

Combining the two equations gives, for a homogeneous beam of constant cross-

section, 

4 2

4 2
(x)

d EI d q
EI q

dx AG dx




   

The bending moment Mxx and the shear force Qx in the beam are related to the 

displacement ω and the rotation φ. These relations, for a linear elastic Timoshenko 

beam, are- 

xxM EI
x




     and   xQ AG

x


 



 
   

 
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2.16 Numerical Methods for Computation 

 

Computational Numerical methods is the branch of numerical analysis that studies 

the numerical solution of partial differential equations (PDEs).  

Some Numerical methods for Computation mentioned below- 

i. Finite Difference Method 

ii. Finite Volume Method 

iii. Boundary Element Method 

iv. Finite Element Method 

 

2.16.1  Finite Difference Method 

 

In numerical analysis, Finite Difference Methods (FDM) are a class of 

numerical techniques for solving partial differential equations (PDE) by 

approximating derivatives with finite differences. It has been used to solve a wide 

range of problems. The application of FDM is not difficult as it involves only simple 

arithmetic in the derivation of the discretization equations and in writing the 

corresponding programs [41]. Finite difference methods convert ordinary differential 

equations (ODE) or partial differential equations (PDE), which may be nonlinear, 

into a system of linear equations that can be solved by matrix algebra techniques, 

and the value of the solution is approximated by solving algebraic equations 

containing finite differences and values from nearby points. Today, FDM are one of 

the most common approaches to the numerical solution of PDE, along with Finite 

Element Methods [42]. 

 

2.16.2  Finite Volume Method  

 

The Finite Volume Method (FVM) is also a method for representing and 

evaluating partial differential equations in the form of algebraic equations. Similar to 

the finite difference method or finite element method, values are calculated at 

discrete places on a meshed geometry. "Finite volume" refers to the small volume 

surrounding each node point on a mesh. In the finite volume method, volume 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Finite_element_method
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integrals in a partial differential equation that contain a divergence term are 

converted to surface integrals, using the divergence theorem. These terms are then 

evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a 

given volume is identical to that leaving the adjacent volume, these methods 

are conservative. Another advantage of the finite volume method is that it is easily 

formulated to allow for unstructured meshes. The method is used in 

many computational fluid dynamics packages [43]. 

 

2.16.3 Boundary Element Method 

 

The Boundary Element Method (BEM) is another numerical computational 

method of solving linear partial differential equations which have been formulated as 

integral equations (i.e. in boundary integral form) including fluid mechanics, 

acoustics, electromagnetics (Method of Moments), fracture mechanics and contact 

mechanics. The boundary element method is well suited for analyzing cracks in 

solids. There are several boundary element approaches for crack problems.  The 

boundary element method is derived through the discretization of an integral 

equation that is mathematically equivalent to the original partial differential 

equation. The essential reformulation of the PDE that underlies the BEM consists of 

an integral equation that is defined on the boundary of the domain. The former is 

termed a Boundary Integral Equation (BIE) and the BEM is often referred to as the 

Boundary Integral Equation Method or Boundary Integral Method [44]. 

 

2.16.4 Finite Element Method 

 

The Finite Element Method (FEM) is the most widely used method for 

solving problems of engineering and mathematical models. Typical problem areas of 

interest include the traditional fields of structural analysis, heat transfer, fluid flow, 

mass transport, and electromagnetic potential. The FEM is a particular numerical 

method for solving partial differential equations in two or three space variables (i.e., 

some boundary value problems). To solve a problem, the FEM subdivides a large 

system into smaller, simpler parts that are called finite elements. This is achieved by 

https://en.wikipedia.org/wiki/Divergence
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Divergence_theorem
https://en.wikipedia.org/wiki/Conservation_law_(physics)
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Mathematical_models
https://en.wikipedia.org/wiki/Structural_analysis
https://en.wikipedia.org/wiki/Heat_transfer
https://en.wikipedia.org/wiki/Fluid_flow
https://en.wikipedia.org/wiki/Electromagnetic_potential
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Boundary_value_problem
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a particular space discretization in the space dimensions, which is implemented by 

the construction of a mesh of the object: the numerical domain for the solution, 

which has a finite number of points. The Finite Element Method formulation of a 

boundary value problem finally results in a system of algebraic equations. The 

method approximates the unknown function over the domain. The simple equations 

that model these finite elements are then assembled into a larger system of equations 

that models the entire problem. FEA is a good choice for analyzing problems over 

complicated domains, when the domain changes (as during a solid-state reaction 

with a moving boundary), when the desired precision varies over the entire domain, 

or when the solution lacks smoothness. FEA simulations provide a valuable resource 

as they remove multiple instances of creation and testing of hard prototypes for 

various high fidelity situations [45].  

 

2.16.4.1     Types of analysis done by Finite Element Method 

 Structural Analysis 

 Vibrational Analysis 

 Fatigue Analysis 

 Heat Transfer Analysis 

 

2.16.4.2 History of Finite Element Method 

 

Finite Element Analysis simulation concept developed from the theoretical 

basis established by the finite element method (FEM), which was founded with the 

publication of a set of scientific papers in the 1940s. Created as numerical techniques 

for finding approximate solutions to boundary value problems for partial differential 

equations, FEM software is based on a problem domain’s subdivision into simpler 

parts called finite elements, and on the calculus of variational methods to minimize 

an associated error function. 

The scientific pillars of the finite element method are a direct result of the 

need to solve complex elasticity and structural analysis problems in civil and 

aeronautical engineering. The first development can be traced back to the work of A. 

Hrennikoff in 1941 [46] and R. Courant in 1943 [47]. Although these pioneers used 

https://en.wikipedia.org/wiki/Discretization
https://en.wikipedia.org/wiki/Types_of_mesh
https://en.wikipedia.org/wiki/Algebraic_equation
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different perspectives in their finite element approaches, they each identified the one 

common and essential characteristic: mesh discretization of a continuous domain 

into a set of discrete sub-domains, usually called elements. Another fundamental 

mathematical contribution to the FEM is represented by the book “An Analysis of 

the Finite Element Method” by Gilbert Strang and George Fix, first published in 

1973 [48]. Since then, FEM has been generalized for the numerical modeling of 

physical systems in many engineering disciplines including electromagnetism, heat 

transfer, and fluid dynamics. Benefits of the Finite Element Method (FEM). Many 

specializations under the umbrella of mechanical engineering, such as the 

aeronautical, biomechanical, and automotive industries, are commonly using 

integrated FEM in product design and development. Several modern FEM packages 

include specific components such as thermal, electromagnetic, fluid, and structural 

working environments. For example, in a structural simulation, the FEM helps in 

“producing stiffness and strength visualizations and also in minimizing weight, 

materials, and costs” [49]. The main capability of FEM is its detailed visualization of 

bending and twisting places for a structure, indicating stresses and displacement 

distribution. Modern FEM applications software offer a variety of simulation options 

for modeling and analysis. 

Over the course of modern engineering history, FEM algorithms were 

embedded in many powerful design tools, contributing to raising the standards of 

engineering and significantly improving the design process. Using FEM algorithms 

integrated into FEA applications, any engineering structure design can be developed, 

tested, and modified in advance, long before the manufacturing of product 

prototypes. 

2.16.4.3 Role of Finite Element Method 

 

FEM helps the designer know all the theoretical stresses within the structure 

by showing all the problem areas in detail and thus helping the designer to predict 

the failure of the structure. It is an economic method of determining the causes of 

failure and the way the failures can be avoided. In our study we are analyzing the 
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cracked beam in the FEM method by using a software known as COMSOL. It has 

several application in mechanical event simulation and computation.  

 

There are various types of numerical method to solve computational problem. 

We use the Finite Element Method (FEM) instead of the Finite Difference Method 

(FDM), Boundary Element Method (BEM) and Finite Volume Method (FVM) from 

various numerical techniques. In general, the Finite Difference Method (FDM) 

applies only to simple geometry problems. In addition, the Boundary Element 

Method is a more efficient and precise method that reduces the problem's 

dimensionality by one and requires a unique solution to the problem. The Finite 

Element Method thus provides a better approximation for complex geometries 

compared to other numerical approaches. 

 

2.17 Computational Modelling 

2.17.1 Modelling  

 

Modelling is the process of representing a model which includes its 

construction and working. This model is similar to a real system, which helps the 

analyst predict the effect of changes to the system. In other words, modelling is 

creating a model which represents a system including their properties. It is an act of 

building a model. 

 

2.17.2 Simulation 

 

Simulation of a system is the operation of a model in terms of time or space, 

which helps analyze the performance of an existing or a proposed system. In other 

words, simulation is the process of using a model to study the performance of a 

system. It is an act of using a model for simulation [50].  
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2.17.3 Steps of Computational Modelling by Finite Element Method 

 

There are some important steps in the computational modelling of any physical 

process:  

 

(i) Problem definition,  

(ii) Mathematical Modelling,  

(iii) Computer Simulation, and  

(iv) Result and Decision. 

 

 

Figure 2.16: Steps of Computational Modelling 
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2.18 Method for Simulation using COMSOL Multiphysics 

 

The simulation of computers has become an important part of science and 

engineering. A model is constructed for a real or theoretical physical structure in this 

discipline of design, implementing the model and analyzing the execution 

performance. Researchers today use everything from the standard programming 

language to sophisticated approaches in high-level packages. 

 

COMSOL Multiphysics is such like a solver and simulation software 

package based on Finite Element Analysis used for different physics and engineering 

applications, particularly in combined phenomena or multiphysics. In addition to 

traditional user interfaces focused on physics, COMSOL Multiphysics also enables 

Partial Differential Equations (PDEs) combined systems to be implemented. One can 

access the partial differential equations directly or using the theoretical basis. 

 

COMSOL Multiphysics is a versatile framework that enables users to design 

all the physical aspects of their models that are important. In order to develop 

optimal protection applicable to their particular situations, experienced users should 

go wider and use their expertise. COMSOL provides the assurance to construct the 

model with real world accuracy with this kind of complete modeling environment 

[51]. There are some task oriented advantages of COMSOL Multiphysics. Using 

COMSOL at the beginning of a new project allows the user to understand this 

concept. Different geometric and physical features of a model may be evaluated, 

thereby improving the user's major structural challenges. By optimizing every 

element of our model, we can carry our simulation to the production level. So it can 

be say that, COMSOL is a total problem solving method. 

 

In this work we choose COMSOL Multiphysics Software to simulate the 

concrete beam to detect crack in different location, deflection and others 

requirements of computation. 
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2.19 Previous Studies 

 

Many extensive researches on crack detection in different method have been 

performed theoretically and experimentally till today. 

  

Kim and Zhao [52] studied a very distinctive crack detection technique 

employing a harmonic response, where the displacement and slope modes of a 

cracked cantilever beam are thought of 1st, that the approximate formula for 

displacement and slope response under single-point harmonic excitation comes. 

They conclude that the slope response incorporates a pointy amendment with the 

crack location and additionally the depth of the crack. 

  A new idea has developed by Lee and Chung [53] that how to look out the 

lowest four natural frequencies of the cracked structure by FEM and additionally the 

approximate crack location is obtained by exploitation. Later, Owolabi et al. [54] 

have experimentally investigated of the possessions of cracks and damages on the 

dependability of structures.  

An analytical and experimental approach for the damage detection in 

cantilever beams like structure by vibration analysis has developed by Nahvi [55]. 

Presently numerous analytical, numerical and experimental techniques are in use for 

crack detection throughout a fiber-reinforced composite, laminated composites and 

non-composite structures for its vibration analysis.  

In the same case I. Goda [56], has applied numerical study exploitation finite 

parts is performed to research the free vibration response of laminated composite 

beams. They had a tendency to perform dynamic modeling of the laminated beams 

by associate eigenvalue analysis, exploitation associate eight-node bedded shell part 

to simulate the free vibrations. The major importance of their study was for the 

mechanical designer to conceive and optimize composite structures subjected to 

dynamic loadings.  

Prasad et al. [57] discussed the effect of location of crack from the free end to 

the fixed end on crack growth rate along vibrating cantilever beam and a 
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mathematical model was developed using dimensional analysis to find out the value 

of the crack growth rate along vibrating cantilever beam.  

Rizos et al. [58] suggested a method for using measured amplitudes at two 

points of a cantilever beam vibrating at one of its natural modes to identify crack 

location and depth. They investigated the flexural vibrations of a cantilever beam 

with a rectangular cross-section having a transverse surface crack which is modeled 

as a mass less rotational spring. They also assumed that the crack is fully open and 

has uniform depth. As an experimental study, they forced the beam by a harmonic 

exciter to vibrate at one of the natural modes of vibration and measured the 

amplitudes at two positions. 

Lee [59] presented a method to detect a crack in a beam. The crack was not 

modeled as a massless rotational spring, and the forward problem was solved for the 

natural frequencies using the boundary element method. The inverse problem was 

solved iteratively for the crack location and the crack size by the Newton-Raphson 

method. The present crack identification procedure was applied to the simulation 

cases which use the experimentally measured natural frequencies as inputs, and the 

detected crack parameters are in good agreements with the actual ones. The present 

method enables one to detect a crack in a beam without the help of the massless 

rotational spring model. 

Owolabi et al. [60] used natural frequency as the basic criterion for crack 

detection in simply supported and fixed beams. The method suggested has been 

extended to cantilever beams to check the capability and efficiency. There is need to 

see if this approach can be used for fixed-free beams. 

The research group of Kisa [61] analyzed the vibrational characteristics of a 

cracked Timoshenko beam. The study integrates the FEM and component mode 

synthesis. The beam divided into two components related by a flexibility matrix 

which incorporates the interaction forces. The forces were derived from fracture 

mechanics expressions as the inverse of the compliance matrix is calculated using 

stress intensity factors and strain energy release rate expressions. 
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Ratcliffe [62] also developed a technique for identifying the location of 

structural damage in a beam using a 1D FEA. A finite difference approximation 

called Laplace’s differential operator was applied to the mode shapes to identify the 

location of the damage. 

Sadettin and Murat [63] assumed an exponential stress distribution in the 

vicinity of the crack and applied a variational principle to study the dynamic 

behavior of the system. If the stress distribution be known, it would have made this 

method very rational. The exponential approximation is valid only for notches and 

the exponent is estimated experimentally.  

The research group of Shayanfar [64] used time-domain responses for 

damage detection of a bridge structure. The method proposed by them include, 

measuring acceleration responses of the time-domain and also creating a finite 

element model of the structure, based on the equations of motion of the bridge under 

a moving load. Afterwards, an objective function for solving the inverse problem of 

damage detection was defined; and by using ECBO algorithm, the problem was 

solved.  

In the study of Sabuncu et al. [65], the effects of number of stories, static and 

dynamic load parameters, crack depth and crack location, on the in-plane static and 

dynamic stability of cracked multi-storey frame structures subjected to periodic 

loading, were investigated numerically using the Finite Element Method. 

Dharmaraju et al.[66] considered Euler-Bernoulli beam element in the finite 

element analysis. In this the transverse surface crack is considered to remain open. A 

local compliance matrix of four degrees of freedom is considered for the modeling of 

a crack. This compliance matrix contains diagonal and off-diagonal terms. A 

harmonic force of given amplitude and frequency is used to excite dynamically the 

beam.  

Sekhar [67] has presented a review work on multi-crack identification 

techniques in structures such as beams, rotors, pipes. Cahsalevris and Papadopoulos 

[68] have studied the dynamic behavior of a cracked beam with two transverse 
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surface cracks. Each crack was characterized by its depth, position, and relative 

angle. The compliance matrix was calculated for all angles of rotation.  

Singh and Tiwari [69] have developed a two-step multi-crack identification 

algorithm which was based on forced responses from a non-rotating shaft, the 

Timoshenko beam theory is used to model the shaft by using the finite element 

method. The methodology identifies very well the presence of cracks and also 

estimates quite accurately the location and the size of cracks on the shaft. 

  Most recently, Al-Shudeifat and Butcher [70] have proposed an accurate 

mechanism for breathing crack model. A new time-varying function of the breathing 

crack model was introduced. They applied this new model using the FEM, and 

formed an actual periodically time-varying stiffness matrix for a breathing crack and 

then merged it into the stiffness matrix of the global system matrix. This model drew 

on the principle of reducing second moment of area locally, which proposed by 

Mayes and Davis in 1984 [71]. 

Machorro, Adams et al [72] have identified damaged shafts by using active 

sensing simulation and experimentation, which were based on Timoshenko beam 

theory. Various kinds of defects such as transverse cracks, imbalance, misalignment, 

bent shafts and a combination of them were considered. 

Chondros et al. [73] developed a continuous cracked beam theory for free 

vibration analysis; their basic assumption was that the crack  caused  a  continuous  

change  in  flexibility  in  its  neighborhood  which  they  modelled  by incorporating 

a consistent displacement field with singularity. A different but related approach in 

which  a  crack  in  rotational  shaft  is  replaced  by  a  mass-less  spring-link  

located  at  the  crack position became popular due to much effort by Dimarogonas 

and Papadopolous [74].  

Aktas  and  Sumer [75] modelled  pre-damaged  Reinforced Concrete (RC)  

beams  in finite element program and indicated that inclusion of pre-damage levels 

by means of cracks into the cross sections have significant effect on beams moment 

capacity.  
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Gerist et al. [76] presented a new method to detect the structural damages. In  

this method, the sensitivity matrices of structural responses with respect to  

elemental damages were evaluated by finite difference method with various finite  

difference  increments. Then, various systems of equations were formed for the 

structure and solved by BP.  

Shakti et al. [77].They investigated the influence of parameters  like  crack  

depth  and  crack  inclination  angles,  on  the  dynamic  behaviour  of deteriorated 

structures excited by time-varying mass. Analysis of the structure was carried out at 

constant transit mass and speed.  

Ryu et al [78] conducted fire tests and residual strength tests on Reinforced 

concrete (RC) beams having different fire exposure time periods and sustained load 

levels. To detect the automated cracks, surface images of the fire damaged beam 

surfaces are taken with digital cameras and an automatic crack detection method is 

developed using a Convolutional Neural Network (CNN). They found that the 

quantity of the automatically detected cracks is numerically related to the 

temperatures inside the beams as well as the stiffnesses obtained from the residual 

strength tests.  

Al-Saffar et al [79] tried to discover the variations of depth, shapes and 

locations of the crack on the natural frequency of thirty-two cracked Aluminium 

shafts have 25 mm diameter and 45 mm length cantilever circler shaft with 1,2,4,5 

mm crack depths and different positions on the beam. The results showed that 

increasing the depth of crack reduces the frequency of shaft for same mode number. 

While, at the small crack depth, there is no influence of crack position on the first 

and second modes of frequencies.  

Sahu and Rohini [80] considered a square area of mild steel specimen to 

examine the act of cracks on the free vibration of cantilever shaft. FEM in MATLAB 

environment was used and from theory of linear elastic fracture, a local flexibility 

matrix was added to the total flexibility matrix. In the study of Liu et al [81], they 

detect crack by the analysis of the measured tensile strain profiles is in excellent 

agreement with the visually observable cracks mapped during the test. A Distributed 
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Optical Fiber (DOF) sensing system with Rayleigh Optical Frequency Domain 

Reflectometry (OFDR) technique was deployed to a member of RC structure in a 

full-scale laboratory experiment, which was subjected to a monotonic lateral load. 

This confirms the ability of the optical fiber inside of RC members to capture cracks 

on concrete surface.  

Chaudhari  et al [82] has studies on modal parameters like natural frequency, 

damping and mode shape. In their work, cantilever beam having line crack with 

changing depth and changing crack position is compared with non-defective beam. 

The vibration signals from defect-free and line crack beam were equated in the 

frequency domain with the help of Fast Fourier Transform in Lab-View.  

Saleh et al [83] presents  the  use  of  Frequency  Response  Functions  

(FRFs)  to  determine  damage index and crack damage in reinforced concrete beam 

structures using vibration signals based  on  the  Mode  Shape  Curvature  Square 

(MSCS) method. The damage index and crack detection based on the numerical 

computation were determined by subtracting the MSCS between undamaged to 

damaged beams. The resulting accuracy of the damage index used to define the level 

of damage and damage location was absolutely achieved by comparing the 

numerical and observed experimental results.   

Long et al [84] is presents a new model which is established by the finite 

element displacement method for studying the effects of crack parameters on the 

dynamics of a cracked beam structure. The stiffness matrix of the cracked beam 

element is firstly derived by the displacement method. Starting with a finite element 

model of cracked beam element, the equation of strain energy of a cracked beam 

element is formed by the displacement method combined with the linear fracture 

mechanics. Their results shows that the dynamic model discovers the internal 

relation between the dynamic characteristics of cracked beam structure and structural 

parameters, material parameters, and crack parameters. 

Jiang et al [85] presented an overview of a stress wave-based active sensing 

method to detect the crack in FRP (Fiber Reinforced Polymer) reinforced concrete 

beams. The embedded Smart Aggregates (SAs), which utilize Lead Zirconate 
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Titanate (PZT) as transducers, are employed in this research to generate and sense 

the stress wave. Signals received by the SA sensors are analyzed in both time 

domain and frequency domain. Experimental results show the test specimens 

experience crushing failure when the concrete compression exceeds its compressive 

strength. Increasing the contact area between FRP bar and concrete can effectively 

improve the cracking load of the FRP-reinforced concrete beam and reduce the 

cracking speed and depth of FRP-reinforced concrete beam. 

A special reinforced concrete beam structure was designed by Zhang et al 

[86] for crack detection under load. Four continuous distributed optical fibers are 

fixed on the steel skeleton, which is located within the reinforced concrete beam. 

Three Fiber Bragg Grating (FBG) sensors are fixed on the lower surface of the beam, 

near its center. By analyzing the sensor data, it can be found that the Brillouin 

Optical Frequency Domain Analysis (BOFDA) -distributed fiber can be used to 

detect internal cracking before surface cracking, and the difference between scans 

can be used to judge the time of onset of internal cracking. 

 

This chapter provides a summary of the possibility of cracks, crack forms, 

and the complex behavior of structural and industrial bodies when cracks occur. The 

types of non-destructive crack identification techniques are classified and 

introduced, especially the vibration-based techniques that are specifically identified 

and demonstrated because of the important role of these techniques in structural 

system crack investigations. A comprehensive review on the approaches, techniques 

and models that researchers have developed for the identification of cracks in 

concrete structural systems. All studies suggest that the region of crack identification 

in shafts is active and desperately needs more expertise to establish accurate 

techniques, despite the great advances that researchers have made in crack 

identification, because there is no accepted (or reliable) model or technique that can 

be used to identify all different types of cracks in mechanical shafts. Furthermore, 

the literature shows that more studies are required for modelling aspects of crack 

propagation and residual life estimation. Several investigations have been presented 
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using only numerical simulations which require to be validated experimentally. 

 

Despite so much advancement in vibration based techniques, new and 

reliable fault diagnostics need to be developed in simulation tools. Investigations are 

required on the crack sensitivity variables for condition monitoring. Studies are 

needed to model a crack under the influence of the interaction of impact forces and 

surface friction due to the closing and opening of cracks during movement.  
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CHAPTER III 

 

COMPUTATIONAL MODELING OF A CRACKED BEAM WITH 

DIFFERENT LOCATION  

 

3.1 Introduction 

 

Nowadays Concrete is used literally to develop the growing infrastructural, 

structural and in civil engineering industries [1]. But the presence of a crack indicate 

a serious threat to the performance of structures. A crack in an elastic structural 

element like concrete, steel, iron etc introduces considerable local flexibility due to 

the strain energy concentration in the vicinity of the crack tip under load [2]. Since 

most of the structural failures are due to presence of crack or material fatigue. For 

this reason, methods allowing early detection and localization of cracks have been 

the subject of intensive investigation. Coherent ultrasonic methods have been found 

ineffective in concrete due to its high concentration of scatterers and heterogeneous 

nature, so a different approach is needed [3]. So, as a promising tool Vibration 

analysis has been emerged for monitoring and classification of damage in machine 

and equipment. This technique is well prepared for solving inverse variational 

problems in the context of monitoring and crack detection because of their pattern 

recognition and interpolation capabilities. A crack in a structural member introduces 

local flexibility that would affect vibration response of the structure [5]. This 

property may be used to detect existence of a crack together its location and depth in 

the structural member. 

 

Vibration analysis on a beam with and without crack is carried out in this 

work. These cracks introduce new boundary conditions for the structures at the 

location of the cracks. These boundary conditions are derived from strain energy 

equation using Castiligiano’s theorem. Presence of crack also causes reduction of 

stiffness of the structures which has been derived from stiffness matrix [4]. Euler-

Bernoulli beam theory is used for dynamic characteristics of beams with transverse 
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cracks. Modified boundary conditions due to presence of crack have been used to 

find out the theoretical expressions for natural frequencies and mode shape for the 

beams. It causes reduction in natural frequencies and changes in mode shapes of 

vibrations. Any analysis of these changes makes it possible to identify cracks.  

 The purpose of the present work is to establish a method for predicting the 

location and depth of a crack in a cantilever beam using experimental vibration data 

and to establish the mode shape curvatures behavior of a composite beam with a 

transverse open crack subjected to free vibration. We will follow the discussion with 

solutions of beam subjected to distribute loading and comparing finite element 

solution to an exact solution for a beam subjected to a distributed loading. 

 

3.2 Stiffness Matrix 

 

 Familiarity with the stiffness matrix is essential to understanding the stiffness 

method. We define the stiffness matrix as follows: For an element, a stiffness matrix 

[k] is a matrix such that 

    f k d  

Where [k] relates nodal displacements  d to nodal forces  f  of a single element, 

such as the spring. For a continuous medium or structure comprising a series of 

elements, stiffness matrix [K] relates global coordinate (x,y,z)  nodal displacements 

 d to global forces  F  of the whole medium or structure, such that 

    F K d  

Where [K] represents the stiffness matrix of the whole body assemblage. 

 

3.3 Beam Stiffness 

 

A beam is a long, slender structural member generally subjected to transverse 

loading that produces significant bending effects as opposed to twisting or axial 
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effects. This bending deformation is measured as a transverse displacement and a 

rotation. 

 

Consider the beam element shown in the following Figure 3.1. The beam is of length 

L with axial local coordinate x and transverse local coordinate y. The local 

transverse nodal displacements are given by vi and the rotations by θi. The local 

transverse nodal displacements are given by qi and the bending moments by mi as 

shown. We infinitely neglect all axial effects. 

 

Figure 3.1: Beam theory sign conventions for shear forces and bending moments 

 

 

 

 

Figure 3.2: Beam element with positive nodal displacement, rotations, forces and 

moments 

At all nodes, the following sign conventions are used: 

1. Moments are positive in the counterclockwise direction. 

2. Rotations are positive in the counterclockwise direction. 

3. Forces are positive in the positive y direction 

4. Displacements are positive in the positive y direction. 

 

Figure 3.2 indicates the sign conventions used in simple beam theory for positive 

shear forces V and bending moments m. 

 

Le 

 

 

 

x Lc 

Le 
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3.4 Beam Stiffness Matrix Based on Euler-Bernoulli Beam theory 

 

The differential equation governing elementary linear-elastic beam behavior 

which is called Euler-Bernoulli beam is based on plane cross sections perpendicular 

to the longitudal centroidal axis of the beam before bending occurs remaining plane 

and perpendicular to the longitudal axis after bending occurs. In the Figure 3.3 

,where a plane through vertical line a-c (Figure 3.3(a)) is perpendicular to the 

longitudinal x axis before bending, and this same plane through a-c (rotating through 

angle φ in Figure 3.3(b)) remains perpendicular to the bent x axis after bending. This 

occurs in practice only when a pure couple or constant moment exists in the beam. 

However it is a reasonable assumption that yields equations quite accurately predict 

beam behavior for most practical beams. 

 

  

(a) Undeformed beam under load w(x) (b) Deformed beam due to applied loading 

 

(c) Differential beam element 

Figure 3.3: Beam under distributed load 

 

The different differential equation is derived as follows. Consider the beam shows in 

Figure 3.3 subjected to a distributed loading ω(x) (force/length).From the force and 
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moment equilibrium of a differential element of the beam, show in Figure 3.3(c) we 

have, 

 0 : ( ) 0yF V V dV x dx                  (3.1) 

Or,  ( ) 0dV x dx    

Or,  ( )
dV

x
dx

                   (3.2) 

2 0: ( ) 0
2

dx
M Vdx dM x dx      

Or, 
dM

V
dx

                  (3.3) 

The final form of equation (3.3) relating the shear force to the bending moment, is 

obtained by dividing the left equation by dx and then taking the limit of the equation 

as dx approaches 0. The ω(x) term then disappears. 

Also, the curvature κ of the beam is related to the moment by 

1 M

EI



                   (3.4) 

Where ρ is the radius of the deflected curve shown in the Figure 3.4, υ is the 

transverse displacement function in the y-direction, E is the modulus of elasticity and 

I is the principle moment of inertia about z-axis (where the z-axis is perpendicular to 

the x and y axes). (
3

12

bh
I   for a rectangular cross section of base b and height h 

shown in Figure 3.4(c)). 
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(a) Portion of deflected curve of beam (b) Radius of deflected curve at v(x) 

 

(c) Typical rectangular cross section of beam 

Figure 3.4: Deflected curve of beam 

The curvature for small slope 
d

dx


   is given by 

2

2

d

dx


                   (3.5) 

Using equation (3.4) and (3.5) we obtain  

2

2

d M

dx EI


                  (3.6) 

Solving equation (3.6) for M and substituting this result into (3.3) and (3.4) we 

obtain 
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2 2

2 2
( )

d d
EI x

dx dx




 
 

 
               (3.7) 

For constant EI and only nodal Forces and Moments equation (3.7) becomes 

4

4
0

d
EI

dx


                  (3.8) 

We will now follow the steps to develop the stiffness matrix and equations for a 

beam element and then to illustrate complete solutions for beam. 

 

3.5 Mathematical Model 

 

The principle that certain variables can be tracked within a physical system is 

a fundamental instrument for deriving the equations of analytical mathematics and 

physics. Popular examples include mass, energy, and balance of strength or force 

conservation. We can now derive differential equations for detecting any failure in 

order to familiarize themselves with this way of thinking. The modeling of all these 

physical phenomena leads to the issue of the two-point boundary value, as we can 

see. Many physical phenomena are described by the same partial differential 

equations, and therefore the methods and mathematical theory can often be 

developed for certain model problems and still be applied to a wide range of 

different applications [6].  

 

A mathematical model is developed on the basis of a unified boundary-

integral approach for the main stages of the non-destructive process of deepened 

three-dimensional crack detection with arbitrary orientation in a homogeneous 

medium and horizontal interface cracks detection. The construction of source field 

asymptotics and the calculations of both load dissipation coefficient and deflection 

are described. 

 

The equation of motion in matrix form for vibration of a beam under load is given by 

[11], 
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2

2

(x)
[M] [K] P[K ] {q} 0g

d q

dx

 
      

 
             (3.9) 

Where,  

[M]= Consistent mass matrix  

[K] = Bending stiffness matrix of the beam  

[Kg] = Geometric stiffness matrix  

{q}= Displacement vector 

P = External force vector 

For free vibration the forcing function P = 0. So the Equation (3.9) can be written as 

[11], 

 
2

2

(x)
[M] K {q} 0

d q

dx

 
  

 
             (3.10) 

 In-plane, the load P(t) can be expressed in the form as shown below, 

(t) S tP P P Cos t                            (3.11) 

Where, 

Ps = the static portion of P.  

Pt = the amplitude of the dynamic portion of P and 

Ω = the frequency of excitation. 

 

Equation (3.10) represents an eigen value problem and the roots of the equation give 

rise to square of the natural frequency given by the equation, 

 

2[ ] ( ) [ ] 0nK M                           (3.12) 
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3.6 Finite Element Approximation 

 

We will now follow the steps to develop the stiffness matrix and equations 

for a beam element and then to illustrate complete solutions for beam. 

 

Step-01: Discretization and Topology of Finite Element Mesh 

 

In this analysis two noded beam elements with two degree of freedom (slope 

and deflection) per node is considered [7].  

 

 

Figure 3.5:  Beam elemnt with positive nodal displacement, rotations, forces and 

moments 

Suppose that we divide the beam into 3 equally spaced elements and represent the 

beam by labeling nodes at each end and in general by labeling the element number. 

Within each element, there are 2 nodes (left and right ends). Then, we design a 

global numbering scheme for the elements and nodes.  

 

 

 

     Node           1   2                                3                       4  

 

Figure 3.6: Two noded beam with 3 elements with two degree of freedom 

 

1 2 3

2 
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Once the numbering scheme has been established for a finite element mesh, we must 

create the system’s topology – the element definition.  This topology tells how the 

elements are joined together. On the element level, the topology is simply the 

ordered numbering of the nodes. Table 3.1 illustrates the system topology that has 

been established for our model. This information can be easily stored into a two 

dimensional matrix with each row storing the topology of one element.  

 

Table 3.1: System Topology of elements 

Element Numbering  Scheme 

Local Global 

1 

2 

3 

i        j 

i        j 

i        j 

1        2 

2        3 

3        4 

 

Step-02: Select a Displacement Function 

The transverse displacement model taken as the polynomial as the 

polynomial which is itself a cubic equation 

    3 2

1 2 3 4( )x a x a x a x a              (3.13) 

The complete cubic displacement function equation (3.13) is appropriate because 

there are four total degrees of freedom (a transverse displacement i  and a small 

rotation i  at each node). The cubic function also satisfies the basic beam 

differential equation further justifying its selection. In addition, the cubic function 

also satisfies the conditions of displacement and slope continuity at nodes shared by 

two elements.   
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Using the same procedure, we can express υ as a function of the nodal degrees of 

freedom 
1 2 1, ,    and 

2  as follows: 

1 4(0) a    

1 3

(0)d
a

dx


   

3 2

2 1 2 3 4(L) a L a L a L a                             (3.14) 

2

2 1 2 3

(L)
3

d
a L a L a

dx


     

Where  φ = dυ/dx for the assumed small rotation φ.  

So we write it in the matrix form, 

3 2 3 2
1 1

2 1

2 2

3 2

4 2

2 1 2 1

3 2 3 1

0 1 0 0

1 0 0 0

a L L L L

a

L L L La

a









 
    
    
      
    
    
    
  

 

Solving equations (3.14) for a1 through a4 in terms of the nodal degrees of freedom 

and substituting into equation (3.13) we have, 

       3 2

1 2 1 2 1 2 1 2 1 13 2 2

2 1 3 1
2x x x

L L L L
                      

(3.15) 

In matrix form we express equation (3.15) as, 

                                      N d                                          (3.16) 

Where, 

 

1

1

2

2

d









 
 
 

  
 
  

                   (3.17) 
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and         1 2 3 4N N N N N                (3.18) 

So,  

   3 2 3

1 3

1
2 3N x x L L

L
    

   3 2 2 3

2 3

1
2N x L x L xL

L
    

   3 2

3 3

1
2 3N x x L

L
                               (3.19)    

   3 2 2

4 3

1
N x L x L

L
     

 

1N  , 
2N  

3N  and 
4N  are called the shape function for a beam element. These cubic 

shape functions are known as Hermite cubic interpolation or cubic spline functions. 

For the element 1N =1 when evaluated at node 1 and 1N = 0 when evaluated at node 

2. Because 
2N  is associated with

1 . We have from the second of equations (3.19), 

2 1
dN

dx
  when evaluated at node 1. Shape functions  3N  and 4N  have analogous 

results for node 2. 

 

Step-03: Determination of Strain vs Displacement and Stress vs Displacement 

Relationships 

 

Assume the following axial strain/displacement relationship to be valid: 

 ,x

du
x y

dx
                             (3.20) 

Where u is the axial displacement function. 
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Figure 3.7: Beam segment (a) before deformation and (b) after deformation; (c) 

Angle of rotation of cross section ABCD 

 

From the deformed configuration of the beam shown in Figure 3.7 we relate the axial 

displacement to the transverse displacement by, 

d
u y

dx


                                (3.21) 

Where we should recall from elementary beam theory [8] the basic assumption that 

cross sections of the beam that are planar before bending deformation remain planer 

and in general rotate   through a small angle
d

dx


. Using (3.20) and (3.21) we obtain, 

         
2

2
,x

d
x y y

dx


                        (3.22) 

Also using Hook’s law  x xE  and substituting 
2

2

d M

dx EI


  into equation (3.22), 

we obtain the beam flexure or bending stress formula as, 

x

My

I



                       (3.23) 
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3.6.1 String beam theory 

 

For elementary String beam theory, the bending moment and shear force are 

related to the transverse displacement function. This theory is useful to determine the 

force, moment, deflection and twist along the fifth metatarsal when it is subjected to 

both a point wise and a distributed load by using Young’s Modulus and Moments of 

Inertia. Because we will use these relationships in the derivation of the beam element 

stiffness matrix, we now present them as, 

 

2

2
( )

d
m x EI

dx


        and     

3

3

d
V EI

dx


                     (3.24) 

 

       

  

                    

Figure 3.8: Load and diffusion of beam by applying Beam Theory and Stiffness 

Method 

 

Step-04: Derivation of the Element Stiffness Matrix and Equations 

 

At first we derive the element stiffness matrix and equations using a direct 

equilibrium approach. We now relate the nodal and beam theory sign conventions 

for shear  forces and bending moments along with equation (3.15) and (3.24) to 

obtain,  

1 

F2y 
F1y F2y 

F1y 

Stiffness Method 

m1 
m2   m1 

m

2   

2 1 
2 

Beam Theory 

2 

2 

2 

2 

1 
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 
3

1 1 1 2 23 3

(0)
(0) 12 6 12 6y

d EI
F V EI L L

dx L


          

 
2

2 2

1 1 1 2 22 3

(0)
6 4 6 2

d EI
m m EI L L L L

dx L


           

 
3

2 1 1 2 23 3

(L)
(0) 12 6 12 6y

d EI
F V EI L L

dx L


                     (3.25) 

 
2

2 2

2 1 1 2 22 3

( )
6 2 6 4

d L EI
m m EI L L L L

dx L


          

 

Where the minus signs in the second and third of equations (3.25) are the result of 

opposite nodal and beam theory positive bending moment conventions at node 1 and 

opposite nodal and beam theory positive shear force conventions at node 2. 

Equations (3.25) relate the nodal forces to the nodal displacements.  

In matrix form equations (3.25) become 

1 1

2 2

1 1

3

2 2

2 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

y

y

F L L

m L L L LEI

F L LL

m L L L L









    
    

       
      
        

         (3.26) 

Where the Stiffness Matrix is then  

2 2

*

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

L L

L L L LEI
K

L LL

L L L L

 
 


        
 

 

                    (3.27) 

 

3.6.2 Elemental Stiffness matrix for Uncracked Beam 

 

The stiffness matrix for 2 degree of freedom (v,θ) for bending in the xy-plane 

for a two- noded Timoshenko beam finite element with shear deformation is line 

with as [9], 
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    
2 2

2

2 2

12 6 12 6

6 4L 12 6 2L 12

12 6 12 6(L 12 )

6 2L 12 6 4L 12

L L

L LEI
K

L LL

L L

 



 

 
 

  
 
   
 

   

                    (3.28) 

Where,  

L = Length of the element 

E = Young’s modulus of elasticity 

I = Moment of inertia of the section with respect to z-axis, 

And,  

EI

GA



  

 

Where,  

κ = shear correction factor 

G = the shear modulus 

A = area of the cross - section of the element 

 

For Free Vibration: 

α = 0, β = 0 

 

Hence, 

 
2 2

3

2 2

12 6 12 6

6 4L 6 2L

12 6 12 6

6 2L 6 4L

L L

L LEI
K

L LL

L L

 
 


 
   
 

 

                                  (3.29) 

 

3.6.3 Elemental Mass matrix for Uncracked beam 

      
0

TL

M N A N dx   

Or,  
2 2

2 2

156 22 54 13

22 4 13 3

54 13 156 22420

13 3 22 4

l l

l l l lAl
M

l l

l l l l



 
 


 
 
 
   

                      (3.30) 
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Where,  

ρ = Mass density of the beam material 

A= Cross-sectional area of the beam element 

 

3.6.4 Stiffness Matrix for a Cracked Beam Element 

 

The key problem in using FEM is how to accurately obtain the stiffness 

matrix for the cracked beam element. The most feasible method is to obtain the total 

flexibility matrix first and then take inverse of it. The total flexibility matrix of the 

cracked beam element includes two parts. The first part is original flexibility matrix 

of the intact beam. The second part is the additional flexibility matrix due to the 

existence of the crack, which leads to energy release and additional deformation of 

the structure. Elements of the overall additional flexibility matrix Covl . 

 

 

Figure 3.9: Typical Cracked beam element subject to shearing force and bending 

moment. 

 

The above Figure 3.9 shows a typical cracked beam element with a rectangular cross 

section. Two side end node i and j is assumed to be fixed, while the middle portion is 

free. 

 

b = Breath of the beam  

h = Depth of the beam  

a = crack depth 

Lc= Distance between the right hand side end node j and the crack location 

Le= Length of the beam element 
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ξ = Distance of the crack form left hand side end node i 

A = Cross-sectional area of the beam 

I= Moment of inertia 

 

According to Dimarogonas [10] the additional strain energy due to existence of 

crack can be expressed as, 

        
C C

A

GdA                        (3.31) 

Where,  

G = the strain energy release rate and 

AC = the effective cracked area. 

 

2 2 2
2 2 2

1 1 1

1
In IIn IIIn

n n n

G K K k K
E   

      
                

                        (3.32) 

 

Where, 

E E   for plane stress 

21

E





    for plane strain 

k = 1 + υ 

KI, KII and KIII   = stress intensity factors for opening, sliding and tearing type cracks 

respectively. 

 
2 2

1 2 1

1
I I IIG K K K

E
   
 

                                (3.33) 

The expressions for stress intensity factors from earlier studies are given by, 

1
1 12

6 C
I

PL
K F

bh h




 
  

 
 

2
2 12

6
I

P
K F

bh h




 
  

 
                            (3.34) 

2
1II II

P
K F

bh h




 
  

 
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Where, 

 

4

0.923 0.199 1 sintan
22

cos
2 2

I

ss

F s
s s



 

    
     

     
    
    

     

     

                       (3.35) 

 
2 31.122 0.561 0.085 0.180

1
II

s s s
F s

s

  



 

Here, S
h


  (crack depth during the process of penetrating from zero to final depth), 

and F1(s) and FII(s) are the correction factors for stress intensity factors. 

From definition, the elements of the overall additional flexibility matrix Cij can be 

expressed as, 

                           

2

(i, j 1,2)i C
ij

j i j

C
P P P

  
  
  

         (3.36) 

Substituting Equation (3.33) in Equation (3.34) and subsequently in Equation (3.31) 

we get, 

2 22

1 2 1
1 12 2

6 6C
ij II

i j

PL P Pb
C F F F d

E P P bh h bh h bh h

  
   

          
                        

        

(3.37) 

Substituting i, j (1,2) values, we get 

   
2

2 2

11 12 0 0

362 a a
h hC

II

L
C xF x dx xF x dx

E b h

  
  

  
   

 2

12 1 212 0

72 a
hCL

C xF x dx C
E bh

  
    

                             (3.38) 

 2

22 12 0

72 a
hC xF x dx

E bh

  
    

  

 

Now, the overall flexibility matrix Covl is given by, 
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11 12

21 22

ovl

C C
C

C C

 
  
 

                                            (3.39) 

 

3.6.5 Flexibility matrix Cintact of the intact beam element 

            

3 2

int 2

3 2

2

e e

act

e e

L L

EI EI
C

L L

EI EI

 
 
 
 
 
 

                                                     (3.40) 

 

3.6.6 Total flexibility matrix Ctot of the cracked beam element 

  inttotal act ovlC C C                                                                (3.41) 

3 2

11 12

2

21 22

3 2

2

e e

total

e e

L L
C C

EI EI
C

L L
C C

EI EI

 
  

 
 

  
 

 

 

ie. The Element stiffness matrix due to bending, 

      
0

TL

e
K B D B dx                             

Or,   
2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

e

l l

l l l lEI
K

l ll

l l l l

 
 


 
   
 

 

                      (3.42) 

The stiffness matrix Kcrack or Kc of a cracked beam element: From equilibrium 

condition as in Figure 3.2. 

 

Where, 

1 0

1

1 0

0 1

e

e

L
L

 
 

 
 
 
 

                                   (3.43) 
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Hence the stiffness matrix Kcrack  or Kc of a cracked beam element can be obtained, 

                                         
1 T

C totalK LC L                                                         (3.44) 

 

The cracked element stiffness matrix becomes, 

22 22 21 22 21

2

22 21 22 21 12 11 22 12 21 11

22 22 21 22 2111 22 12 21

12 12 11 12 11

( )

( ) (C ) ( ) ( )1
[K ]

( )

( )

e

e e e e e e

e

e

e

C C L C C C

C L C L C L C L C C L C C L C

C C L C C CC C C C

C C L C C C

  
 

       
 
    
 

  
 

(3.45) 

 

Step-05: Introducing Boundary Conditions 

 

Since two end sided of beam are fixed and no deformation will occur so 

1 1 3 3 0       . At that point there is no bending moment, shear force so the 

loading condition 1 1 3 3 0F M F M    .  We include a node at midlength because applied 

force and moment exist at the crown edge and at midlength. At this times, loads are 

assumed to be applied transversely at nodes. So, only the load applied in the middle 

portion and the bending moment M2 and the cracked position of the beam will 

remain active. There are three faces present bounding the calculation domain which 

are thin Elastic Layer. 

 

3.7 Conclusion 

 

In this chapter we discussed the procedures of Finite Element Method for 

predicting the location and depth of a crack in a cantilever beam using experimental 

vibration data and to establish the mode shape curvatures. We began this chapter by 

developing the stiffness matrix for the bending of a beam element, the most common 

of all structural elements as evidenced by its prominence in constructional sector. 

The beam element is considered straight and have constant cross-sectional area. At 

first we derived the beam element stiffness matrix by using the principles that 
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developed for simple beam theory. Then we present simple beam element stiffness 

matrices and the solution of beam problems by the direct stiffness method. The 

solution of a beam problem illustrates that the degrees of freedom associated with a 

node are a transverse displacement and a rotation. We included the nodal shear 

forces and bending moments and the resulting shear forces and bending moment 

diagrams as part of the total solution. According to this procedures we get the global 

stiffness matrices for both cracked and uncracked beam. Finally, we discussed the 

procedure for handling distributed loading, because beams and frames are often 

subjected to distribute loading as well as concentrated nodal loading. The concepts 

presented in this chapter are prerequisite to understanding the concepts for frame 

analysis and simulation. 
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CHAPTER IV 

 

NUMERICAL SIMULATION, RESULTS AND DISCUSSION 

 

4.1 Introduction 

The concrete beam plays a vital role in real-world industrial construction and 

civil engineering activities. In many industrial and structural applications, crack is a 

normal phenomenon. Most of the structural failures are due to material fatigue, 

cracks present a significant challenge to the performance of structures. For this 

reason, in the last two decades, methods allowing early detection and localization of 

cracks have been the subject of intensive study [1]. In Chapter III, we presented a 

mathematical model based on the vibration-based approach approximation to get an 

in-depth understanding of vibration, beam deflection and their dynamic behavior. 

 

 Concrete structural components require an understanding of the responses to a 

number of loadings of these components. From both theoretical and computational 

approaches, there are a variety of methods to design concrete structures. Analysis of 

Finite Elements (FE) is a numerical analysis commonly applied to concrete 

structures focused on the use of materials' nonlinear behavior. FEA offers a method 

that can analyze the responses of concrete and pre-stressed concrete members and 

predict them [2].  

 

The dynamics of the structure will change at each moment of passing the 

beam due to the position of the crack, which leads to the elements of both the mass 

and stiffness matrices being modified (or changed). However, when a crack is 

presented, the mass matrix elements will not be affected by the severity and location 

of the crack as much as the stiffness matrix elements will be affected at each time the 

location of the beam is changed. That is, in comparison to the stiffness matrix, which 

will be entirely different in its value when there is a crack or no crack, the mass 
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matrix will behave the same way if there is a crack or no crack during the crossing of 

the beam along the shaft. 

 

In this chapter, we have analyzed the magnitude of frequencies, distribution of 

applied load, locations of crack and stress numerically. A numerical simulation using 

the Finite Element Method (FEM) has been done to determine the frequencies to 

detect the crack in the concrete beam. A vibration-based model is employed to 

simulate the results by using COMSOL Multiphysics. We also discussed about the 

deflection of the beams due to different amount of load. 

 

4.2 Mathematical Modelling 

 

During the last few decades vibration based crack detection methods are 

mostly used due to their simplicity for implementation. Most of the techniques are 

based on vibration measurement and analysis because the vibration based methods 

can offer an effective and convenient way to detect fatigue cracks in structures [3]. 

In this constant study we used vibration based method to identify crack in our 

considered domain. This approach is mainly based on changes in dynamic 

characteristics, such as natural frequency and crack position parameter. 

The equation of motion in matrix form for vibration of a beam under load is given by 

[6], 

2

2

(x)
[M] [K] P[K ] {q} 0g

d q

dx

 
      

 

                            (4.1) 

Where,  

[M]= Consistent mass matrix  

[K] = Bending stiffness matrix of the beam  

[Kg] = Geometric stiffness matrix  

{q}= Displacement vector 

P = External force vector 

For free vibration the forcing function P = 0. So the Equation (4.1) can be written as, 

 
2

2

(x)
[M] {q} 0

d q
K

dx

 
  

 
               (4.2) 
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In-plane, the load P(t) can be expressed in the form as shown below, 

(t) S tP P P Cos t                   (4.3)

                             

Where, 

Ps = the static portion of P.  

Pt = the amplitude of the dynamic portion of P and 

Ω = the frequency of excitation. 

 

Equation (4.2) represents an eigen value problem and the roots of the equation give 

rise to square of the natural frequency given by the equation, 

 

2[ ] ( ) [ ] 0nK M                  (4.4) 

 

ie. The Element stiffness matrix due to bending, 

0
[ ] [ ] [ ][ ]

L
T

eK B D B dx 
 

 

 
2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

e

l l

l l l lEI
K

l ll

l l l l

 
 


 
   
 

 

              (4.5) 

       

where, 

 

1 0

1

1 0

0 1

e

e

L
L

 
 

 
 
 
 

                (4.6) 

 

Hence the stiffness matrix Kcrack  or Kc of a cracked beam element can be obtained, 

 

1 T

C totalK LC L                  (4.7) 
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The local stiffness matrix can be obtained by taking inverse of compliance matrix,  

Defining the flexibility influence co-efficient Cij per unit depth, 

1/22

/2 0

( )

hw

i
ij c

i i w

u
C J h dhdz

h P P

 

  


                   (4.8) 

where, 

Uc = strain energy  

C
C

U
J

h




  = strain energy release rate. 

so that   
1

0

( )

h

i c

i

u J h dh
P





 
  

  
  

 

Using the value of strain energy release rate (Jc) we get, 

12
2

1 2

0

(K )

h

ij I I

i i

B
C K dh

E P P



 
     

The local stiffness matrix can be obtained by taking inverse of compliance matrix,  

1

11 12 11 12

21 22 21 22

[ ]
K K C C

K
K K C C



   
    
   

           (4.9) 

The stiffness matrix of first crack,           

1

11 12

21 22

[ ]
C C

K
C C


  

     
        (4.10) 

The stiffness matrix of Second crack,    

1

22 23

32 33

[ ]
C C

K
C C


  

     
        (4.11) 

 

The cracked element stiffness matrix becomes, 

22 22 21 22 21

2

22 21 22 21 12 11 22 12 21 11

22 22 21 22 2111 22 12 21

12 12 11 12 11

( )

( ) (C ) ( ) ( )1
[K ]

( )

( )

e

e e e e e e

e

e

e

C C L C C C

C L C L C L C L C C L C C L C

C C L C C CC C C C

C C L C C C

  
 

       
 
    
 

  
 

(4.12) 
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4.2.1 Equation of free vibration 

 

The natural frequency of the cracked beam can be evaluated using the crack 

model and boundary conditions. These equations can be written in compact form as, 

 

[Q]{A}= {0}            (4.13) 

 

Where [Q] is the coefficient matrix defined in terms of the cracked beam parameters 

and Ai is the constants to be determined by the boundary conditions. 

 

4.2.2  Boundary Conditions 

  

Since two end sided of beam are fixed and no deformation will occur so q1= 

θ1= q3= θ3 = 0. At that point there is no bending moment, shear force so the loading 

condition F1= F3 = M1 = M3 = 0. Only the load applied in the middle portion, F2 = 

500 N and the bending moment M2 and the cracked position of the beam will remain 

active. 

There are three faces present bounding the calculation domain which are thin Elastic 

Layer (Boundary 6; see Appendix :Figure-iv). 

 

Symmetry thin Elastic Layer,      n . u = 0            (4.14) 

Outlet boundary,                  2 . i

Vu S F e              (4.15) 

 

4.3 Computational Domain and Mesh Design 

 

A design of computational domain without crack and with crack are shown in 

Figure 4.1(a) and Figure 4.1(b). The computational domain is considered as a 

concrete beam with length 0.12m, width 0.015m and thickness 0.008m.  
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Figure 4.1(a): The geometry of the cracked computational domain 

 

 

 

Figure 4.1(b): The geometry of the uncracked computational domain 

 

 

The geometry and a suitable mesh are generated by COMSOL Multiphysics 

Software are shown in Figure 4.2. To reach a satisfactory computational exactness 

we continually change the mesh design until the outcomes obtained. The Mesh 

element becomes higher near the cracked positions have shown in Figures 4.2 (a)-

(c).  

 

 

 

a) Along the cracked concrete beam 
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b) Along the uncracked concrete beam 

 

     

c) Mesh design for the inlet boundary of the computational domain 

Figure 4.2:  Mesh design of The Computational Domain 

The finite element mesh design for the computational domain (see Appendix Figure-

vii) along the bar is shown in Figure 4.2 (a) and mesh design for inlet boundary is 

shown in Figure 4.2(b). 

 

 

4.4 Simulation Results 

 

The COMSOL Multiphysics has been used to simulate the load distribution 

and location of crack (see Appendix). We applied the load at the crown edge of the 

domain. Here concrete structural beam has been used to detect crack in its body. 

Because Concrete beams are the choice shape for structural builds because of their 

high functionality [4]. The shape of concrete beams makes them excellent for 

unidirectional bending parallel to the web. While the mesh and simulation properties 

of computational domain are shown in Table 4.1 and Table 4. 2.  
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Table 4.1: Mesh Properties of the computational domain 

 

Description Value 

Minimum element quality 0.2093 

Average element quality 0.6135 

Tetrahedron 1424 

Triangle 863 

Edge element 232 

Vertex element 32 

 

 

Table 4.2: Properties of the simulation of computational domain 

 

Description Value 

Number of degrees of freedom solved for 10093 

Space dimension 3 

Number of domains 1 

Number of boundaries 23 

Number of edges 52 

Number of vertices 32 

Space dimension 3 

 

 

As our domain with defect is complicated thus computer processor capacity becomes 

a significant issue for the computational study. The finer mesh is used along the 

whole computational model for numerical simulation. We used 16 GB DDR3 RAM, 

Intel core i5 processor based computer for our simulation. The simulation was run 

for half an hour. We have analyzed the natural frequencies, stress, mode shape and 

the deformation of the body. In this part we also discuss about the deflection for 

different loads. 



109 

 

 

 

4.5. Numerical results and Discussions 

 

In this study, we have investigated the frequency of the concrete beam 

containing double crack using Finite Element Method. For our simulation, we 

construct a solid concrete beam and have used different parameter values according 

to the Table 4.3 and Table 4.4. 

 

Table 4.3: Properties of Domain 

 

Description of Beam Value 

Length of the beam (L) 0.12m 

Width of the beam (h)  0.015m 

Thickness of the beam (H) 0.008m 

Depth of  First crack (D1) 0.001m 

Length of First crack  (c1l) 0.001m 

Height of First crack (c1h) 0.008m 

Depth of the second crack (D2) 0.017m 

Length of second crack (c2l) 0.001m 

Height of second crack (c2h) 0.001m 

 

 

Table 4.4 Properties of Materials 

 

Material Properties Value 

Density of concrete 1570  kg/m³ 

Young's modulus 122.7 [GPa] 

Poisson's ratio 0.2 

Shear modulus 3.7 [GPa] 

Tensile strength (σ) 2 – 5 Mpa 

Shear strength (τ) 6 - 17 MPa 
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Figure 4.3: Applying load on the crown edge of the computational domain 

 

In Figure 4.3 it is shown that a load of 500 N is applied vertically on the top phase of 

the concrete beam. Figure 4.4 shows that the deflection and the phase of the 

computational domain after applying load. After applying the load, it is found that 

the load affects the body and frequency variability is observed essentially in the 

affected area [5]. 

 

 

 

 

Figure 4.4: Deflection of the computational domain after applying load 

 

Load (F) 
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(a) The position of first crack is at 0.01m and 

second crack is at 0.06m 

(b) The position of first crack is at 0.02m and 

second crack is at 0.07m 

  

(c) The position of first crack is at 0.03m and 

second crack is at 0.08m 

(d) The position of first crack is at 0.04m and 

second crack is at 0.09m 

  

(e) The position of first crack is at 0.05m and 

second crack is at 0.10m 

(f) The position of first crack is at 0.06m and 

second crack is at 0.11m 
 

 

Figure 4.5: Load absorbs and Frequency gained in the respective crack position 
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The Figure 4.5 shown that different magnitudes of stress applied in the domain and 

corresponding deflection due to load. It is observed that, after applying load on the 

beam, a vibration on the structural body is created. The natural frequencies becomes 

maximum at the crack position due to the presence of vibration on that point. The 

maximum portion of load are absorbed in the middle part on the body, so there will 

be maximum absorption of load on that point. It is also noted that maximum load 

creates much vibration, which is the major causes to creating crack on any structural 

body. 
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(i) The position of first crack is at 0.01m and second crack is at 0.06 m 

 

(a) Slices of the load distributions at different position of crack  

 

(b) Cross section of the load distributions at different position of the domain 

 

(c) Line graph of the relative position of crack v/s Frequency  

Figure 4.6: Load distributions and Line graph of the computational domain where 

the position of first crack is at 0.01m and second crack is at 0.06 m 



114 

 

 

 

(ii) The position of first crack is at 0.02m and second crack is at 0.07 m 

 

(a) Slices of the load distributions at different position of crack  

 

(b) Cross section of the load distributions at different position of the domain 

 

(c) Line graph of the relative position of crack v/s Frequency  

Figure 4.7: Load distributions and Line graph of the computational domain where 

the position of first crack is at 0.02m and second crack is at 0.07 m 
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(iii) The position of first crack is at 0.03m and second crack is at 0.08 m 

 

(a) Slices of the load distributions at different position of crack 

 

(b) Cross section of the load distributions at different position of the domain 

 

(c) Line graph of the relative position of crack v/s Frequency 

Figure 4.8: Load distributions and Line graph of the computational domain where 

the position of first crack is at 0.03m and second crack is at 0.08 m 
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(iv)The position of first crack is at 0.04m and second crack is at 0.09 m 

  

(a) Slices of the load distributions at different position of crack 

 

(b) Cross section of the load distributions at different position of the domain 

 

(c) Line graph of the relative position of crack v/s Frequency 

Figure 4.9: Load distributions and Line graph of the computational domain where 

the position of first crack is at 0.04m and second crack is at 0.09 m 
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(v) The position of first crack is at 0.05m and second crack is at 0.10m 

 

(a) Slices of the load distributions at different position of crack 

 

(b) Cross section of the load distributions at different position of the domain 

 

(c) Line graph of the relative position of crack v/s Frequency 

Figure 4.10: Load distributions and Line graph of the computational domain where 

the position of first crack is at 0.05m and second crack is at 0.10m 
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(vi) The position of first crack is at 0.06m and second crack is at 0.11m 

 

(a) Slices of the load distributions at different position of crack 

 

(b) Cross section of the load distributions at different position of the domain 

 

(c) Line graph of the relative position of crack v/s Frequency 

Figure 4.11: Load distributions and Line graph of the computational domain where 

the position of first crack is at 0.06m and second crack is at 0.11m 
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The Figure (4.6-4.11) shows that the slices and Cross section of the load 

distributions at different position of the domain and the line graph of frequency at 

the respective cracked position of crack. 

 

We observed the load is maximum at the bottom of the domain. It is also found that 

the load was applied at the crown edge of the domain and distributed to bottom edge 

especially at the cracked position with high vibration and differs the frequency. But 

there is a difference is formed for the (f) that, after the load the beam distorted and 

deflected. So due to double deflection in this situation, the applied loads distributed 

into two end sides. Finally we observed that, at the cracked position vibration and 

frequencies are increased as the load increased and the presence of crack affects the 

natural frequency of the structure. 

 

Comparing the frequency line graph at different position we observed that, the 

natural frequency graph shows irregularity at the crack positions. According to the 

graph Figure 4.6(c)-4.11(c) we found that, at the respective crack position the graph 

is fluctuated. So, we can say that at irregular of frequency curve identify the position 

of crack. It is also seen that as long as the crack changes its position (goes to end 

points) its frequencies are also increases gradually. Finally from the graph it is clear 

to us that natural frequencies of the beam is directly affected by the location of the 

cracks. 
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Figure 4.12: Line curve of Frequency vs Load 
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According to Figure 4.12, we find that, at a cracked point, the frequencies of beam 

increase proportionally to applied load. So, the changes of the natural frequency is 

directly influenced by the different location of the crack and applied loads. 

 

4.6 Validation of the study 

 

Table 4.5: Comparison among Priyadarshini , Kisa and Present Analysis 

 

Serial 

no 

Distance 

between 

cracks 

(m) 

Crack 

position 

of first 

crack 

(m) 

Crack 

position 

of 

second 

crack 

(m) 

Priyadarshini 

A 

Frequency 

(Hz) 

Kisa 

et al. 

Frequency 

(Hz) 

 

Present 

analysis 

FEA 

Frequency 

(Hz) 

1st 0.05 0.01 0.06 6465.83 6458.34 6356.1 

2nd 0.05 0.02 0.07 6470.53 6457.4 6423.6 

3rd 0.05 0.03 0.08 6465.81 6454.48 6485.5 

4th 0.05 0.04 0.09 6451.41 6448.18 6442.3 

5th 0.05 0.05 0.10 6397.71 6436.01 6398.3 

6th 0.05 0.06 0.11 6211.68 6174.71 6233.2 

 

 

 

Figure 4.13: A Comparison of the frequencies in different positions of the crack of 

present analysis with Priyadarshini A[6] and Kisa et al.[7] experiments. 
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According to the Figure 4.13 it is observed that when the position of the crack moves 

from the fixed end towards the free end of the beam, the effect of the crack also 

decreases gradually. In order to check the accuracy of the present analysis, we tried 

to compare our experiment with the experiment done by Priyadarshini A [6] and 

Kisa et al. [7] the case is considered to validate the program. The presence and 

position of the crack are typically detected from the comparison of the basic modes 

of cracked beam. It should be mentioned here that they have used different models 

and different computational method for their experiments. 

 

 By comparing with the study of Priyadarshini A [6] and Kisa et al.[7] our 

results shows an agreement with their results though initially different approach for 

first two cracks. The analysis was performed on the first six mode shapes. Results of 

this research on the effectiveness of the damage detection technique applied to 

higher vibration modes lead to the conclusions that, in practical the presence of crack 

affects the natural frequency of the structure. The changes of the natural frequency is 

directly influenced by the different location of the crack. 

 

4.7  Conclusion  

 

The results of simulations and experiments of this study show that the 

considered beam enhances the small changes in the natural frequencies resulting 

from a crack. To explain physically why the concrete beam enhances the dynamics 

of a system at the crack location, first and foremost, it is necessary to know the 

physical meaning of modes, which are used as a simple and effective tool to 

characterize resonant vibration. It is essential to understand the accurate realistic 

behavior of cracked body phenomena to predict something in industry for proper 

production. In such case to get an approximation we need to solve some Initial and 

Boundary Value Problem by using a proper computational model with the help of 

computer. In this work, we developed a model and the simulation was done using the 

COMSOL Multiphysics Software [8].  

We found that the magnitude of frequencies is higher at the cracked portion 

of the beam and lowest at the boundary of the domain. Modes are defined as inherent 
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material properties of a structure. In principle, the material properties (mass, stiffness 

and damping properties), and boundary conditions govern (or determine) the 

resonances of a structure during vibration. That is, a natural (or resonant) frequency, 

modal damping, and a mode shape are the intrinsic factors that define each mode. 

Thus, modes of a structure will change if either material properties or the boundary 

conditions of the structure change. We also observed the pressure and shear rate 

distribution of load. A linear pressure drop is found from the inlet to the outlet and 

the shear rate is decreased with a small fluctuation along the beam. There are 

different change in the behavior of the beam due to different locations of cracks. 
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CHAPTER V 

 

CONCLUSION 

 

The significant achievements and major conclusions of our work are 

summarized in this chapter and recommendations are given for future research in the 

field. In this work, we presented a mathematical model considering the natural 

frequencies by using the Finite Element Method based on a non-destructive method 

namely the vibration analysis method to detect the crack in the industrial application 

sector. We found that, the presence of crack affects the natural frequency of the 

structure distinctly. The changes in the natural frequency are directly influenced by 

the crack depth and crack location. 

 

A vertical load about 500N applied on the crown edge of the domain and is 

considered to simulate the dynamical flow of load. The crack survey was performed 

on the computational domain is considered as a concrete beam with a length of  

0.12m, width of 0.015m and thickness of 0.008m. The simulation has been running 

for 30 minutes using the COMSOL Multiphysics package. Relative natural 

frequency was calculated varying the crack locations. Finite element analysis in 

COMSOL was used to extract natural frequency and mode shapes of various end 

supports. The dynamic behavior including stress profiles, deformations, shear rates 

and load distributions at different times were investigated. 

 

This thesis provides a correlation between cracking in beam, age and 

sustainability of beam structure and concrete properties. Also, the actual crack 

widths from the crack survey at different locations were compared. The load and 

cracking applications are complex phenomena and difficult to find a solution 

analytically. Due to many variables involved, sometimes it becomes difficult to point 

out one specific concrete property, mix design, construction practices or curing 

method that increased the likelihood of cracking, we depend on computational fluid 
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dynamics which uses different numerical methods. Out of those methods, the finite 

element method gives better approximation and so we have used the finite element 

method based on the non-destructive method to get a standard result. As the 

COMSOL Multi-Physics software is based on structural mechanisms, we used that 

software to validate our model. 

 

In Chapter II, we have described a details overview of different types of 

cracks in structure, reasons of creating cracks, several types of crack detection 

methods specially focus on a non-descriptive method by using different modern 

tools. The functional and technical overview of deformation and load distribution is 

given detail. With some previous studies, some important computational methods 

and basic essential terminologies are also given. 

     

Chapter III presents the development of a mathematical model for vibration 

of a beam under load. The equations are developed based on the Finite Element 

Method (FEM).  

 

The details of our main studies are described in chapter IV.  In this work, we 

present vibration analysis based model by considering the natural frequencies of the 

domain. The geometry of a real structure is complex. In my study, a simplified 

model of a subdomain of the concrete beam has been constructed. In view of the 

geometry's complexity, we used FEM to evaluate frequencies under load for better 

approximation. Using COMSOL Multiphysics Program, the simulation was carried 

out. We have investigated deflection, shear rate, load distribution, damage location 

and thickness of the cracks which are important to understand to increase the 

average life of any structural body.   

 

From our simulation, the frequency and load were found higher at the 

cracked point of the domain. The presence and location of the crack have been 

detected from the comparison of the fundamental modes between the cracked and 

uncracked beam. The frequency of the cracked beam decreases with an increase in 

the crack depth for all modes of vibration. The shear stress and load distribution was 
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investigated for the entire domain and observed the shear rate decreases gradually 

with small fluctuations and maximum load absorbs in the fatigue points. Also the 

frequency line raises at the highest point at the cracked point. 

 

On the basis of the model and the simulation the dynamic behavior of concrete beam 

the following conclusion can be made: 

 

The model can be implemented to detect very small sizes (near 0.05 mm) hidden or 

visible crack in the structural beam and will provide us about the sustainability of a 

structural beam which plays a vital role in our daily life. The technique is also 

applicable to any linear structure that can be accurately modeled using the Finite 

Element Method. 
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SUGGESTIONS FOR FUTURE WORKS 

 

In the present study, a mathematical model is developed to analyze the crack 

detection and structural health monitoring of a concrete beam is assumed for the 

computation. There are options to consider a Column Structure and different types of 

metallic bodies to our model and make a comparison of the behavior of the metal 

among them. One can also work by changing the geometry of the computational 

domain. With our current model, we intend to research steel and iron as a 

computational material by increasing parameters. 

 

This method can be used extensively- 

 

 to conduct periodic inspections for the automatic inspection of remote 

structure systems or for those operating under extreme conditions. 

 

 to monitor crack growth, taking the initially undamaged structure as the 

foundation for further observations. 
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APPENDIX 

 

CONSTRUCTION OF THE COMPUTATIONAL MODEL   

 

To study the dynamic behavior of a concrete beam, we created a computational 

model in COMSOL Multiphysics for our simulation. At first the geometry of the 

domain is constructed which is a rectangular beam of 0.12 m length , 0.015m width 

and 0.008 m height. 

 

Figure i: Geometry of Computational domain 

 

Figure ii: Internal Geometry of Computational Domain 
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Figure iii: Internal Geometry of Computational Domain 

 

 

 

Then input the materials by right clicking the materials icon and left click to the desire 

materials. It is repeated for two or more materials and rename the materials as needed. 

Then input the basic properties of the materials. Here the materials are concrete and 

iron. 

 

Figure iv: Inlet layer of Computational Domain 
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After that click on the Solid Mechanics, Load on edge and put the required data value 

in structural properties and initial value sections After completing those steps, the 

boundary conditions are set up for wall, inlet and outlet portion respectively. Then the 

load are applied vertically on the crown edge of the domain. 

 

 

Figure v: Selection of crown edge of Computational Domain 

 

 

 

 

Figure vi: Selction of elastic layer in Computational Domain 
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After completing the above steps, it is essential to design the mesh of the domain 

which may be physics controlled or user defined.  

 

Figure vii: Meshing 

 

 

 

 

 

Figure viii: Selection of Eigen frequency 
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Figure ix: Selection of Eigan frequency modal 

 

 

 

Now its time to place the time range and relative tolerance in time dependent portion in 

study 2 for the computation and click on the compute button.  

 

Figure x:Time selection of simulation 
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Therefore, we have got our expected results after computing the simulation 

successfully for the specified time. 

 

Figure xi: Line graph of the relative position of crack v/s Frequency 

 

 

 

 

Figure xii: Contour Graph 

 

 



137 

 

 

 

 

 

Figure xiii: Load on Horizontal Crack 

 

 

 

 

 

 

Figure xiv: Load on Vertical Crack 
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Figure xv: Deformation of Domain after applying transverse load 

 

 

 

 

 

 

 

Figure xvi: Deflection of beam with load absorbtion 
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Figure xvii: Cross section of the load distributions at different position of the domain 

 

 

 

 

 

 

 

Figure xviii: Slices of the load distributions at different position of crack 

 


