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Abstract 

This thesis deals with the nonlinear propagation of shock wave excitations by 

assuming unmagnetized collisionless plasmas. The unmagnetized collisionless 

plasma is assumed by the mixture of (i) inertial pair-ion and inertial-less    

(𝛼, 𝑞)-distributed electrons and (ii) the (𝛼, 𝑞)-distributed electrons, negatively 

charged distributed inertial heavy ions, positively charged distributed 

Maxwellian light ions,  and negatively charged distributed stationary dusts. 

Then, the nonlinear propagation of ion acoustic and dust-ion acoustic shock 

wave excitations is investigated by deriving Burgers equation via the reductive 

perturbation technique. When Burgers equation is unable to describe the shock 

wave excitations in the considered plasmas for the critical values of any specific 

parameters, the modified forms of Burgers equation involving higher-order 

nonlinearity or composition of nonlinearities are derived by taking the      

higher-order correction of the reductive perturbation technique. Based on the 

useful solutions of Burgers equation involving higher-order nonlinearity or the 

composition of nonlinearities, the effect of plasma parameters is investigated 

not only around the critical values but also at the composition of critical values. 

This thesis also deals with the progress in understanding the propagation of 

shock wave excitations for the super critical values of any specific parameter 

that accompany an unmagnetized collisionless four-component dusty multi-ion 

nonextensive plasma. To accomplish this goal, the formation of a modified 

Burgers-type equation with quartic nonlinearity via the reductive perturbation 

method and its analytical solution have been obtained. It is found that the 

compressive electrostatic shocks are supported not only around the             

super critical values but also at the super critical values of the specific 

parameters. The outcomes of this thesis are expected to contribute to an           

in-depth understanding of shock wave excitations in many astrophysical and 

space environments in general. Moreover, it is expected that the outcomes of 

this research work will be useful in understanding the nature of shock wave 

propagation in plasmas and further laboratory verification. 
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বিমূর্ ত 

GB w_wmmwU Pz¤^Knxb msNl©nxb cøvRgv we‡ePbv K‡i kK I‡qf D‡ËRbvi A‰iwLK 

প্রকম্প‡নi mv‡_ m¤úwK©Z| Pz¤^Knxb msNl©wenxb cøvRgv (i) Ro hyMjÑAvqb Ges  

Ro-nxb (𝛼, 𝑞) e›UbK…Z B‡jKUªb Ges (ii) (𝛼, 𝑞) -ew›UZ B‡jKUªb, FbvZ¥K PvR© 

e›UbK…Z fvix Avqb, abvZ¥K PvR© e›UbK…Z g¨v·I‡qwjqvb Av‡jv Avqb, Ges 

FbvZ¥K PvR© e›UbK…Z ‡স্টkbvix ডাস্ট Gi wgkÖY we‡ePbv Kiv nq| Zvic‡i, Avqb 

A¨v‡Kvw÷K kK I‡qf D‡ËRbvi A‰iwLK প্রকম্পন‡K wiWvw±f cU©v‡ek©b †KŠk‡ji 

gva¨‡g Burgers mgxKiY ˆZix K‡i অনুসন্ধান Kiv nq| hLb Burgers mgxKib 

†Kvb wbw`©ó c¨vivwgUv‡ii wµwUK¨vj gv‡bi Rb¨ we‡ewPZ cøvRgv¸wj‡Z kK I‡qf 

D‡ËRbv eY©bv Ki‡Z Aÿg nq, ZLb Burgers mgxKi‡Yi cwiewZ©Z iæc¸wj hvi 

g‡a¨ D”P µg A‰iwLKZv ev A‰iwLKZvi mswgkÖb RwoZ _v‡K Zv D”P µg ms‡kvab 

K‡i wiWvw±f cU©v‡ek©b †KŠk‡ji gva¨‡g অনুসন্ধান Kiv nq| Burgers mgxKi‡bi 

`iKvix mgvavb¸wji Dci wfwË K‡i hvi g‡a¨ D”P µg A‰iwLKZvi mswgkÖY RwoZ, 

cøvRgv c¨vivwgUv‡ii cÖfve ïaygvÎ wµwUK¨vj gvb¸wji Pvicv‡k bq eis wµwUK¨vj 

gvb¸wji mswgkÖYI অনুসন্ধান Kiv nq| GB w_wmmwU †Kvb নননদ িষ্ট c¨vivwgUv‡ii mycvi 

wµwUK¨vj gvb¸wji Rb¨ kK I‡qf D‡ËRbvi প্রকম্পন †evSvi AMÖMwZ wb‡qI KvR 

K‡i hv GKwU Pz¤^Kwenxb msNl©wenxb Pvi-উপাদান নিনিষ্ট ডাস্ট gvwë-Avqb          

bb-G·‡Ubwmf cøvRgv we‡ePbv Kiv nq| GB jÿ AR©‡bi Rb¨, Burgers 

mgxKi‡Yi cwiewZ©Z iæc গঠন K‡i hvi g‡a¨ †KvqvwU©K bbwjb¨vwiwU i‡q‡Q এিং 

wiWvw±f cviUv‡ek©b c×wZi gva¨‡g Gi we‡kølYvZ¥K mgvavb cvIqv †M‡Q| GwU 

cvIqv hvq †h, ms‡KvPbg~jK B‡j‡±ªv÷¨vwUK kK¸wj kaygvÎ mycvi wµwUK¨vj 

gvb¸wji Pvicv‡kB bq eis wbw`©ó c¨vivwgUvi¸wji mycvi wµwUK¨vj gvb¸wj‡ZI 

mgw_©Z| GB w_wm‡mi djvdj¸wj mvaviYfv‡e A‡bK A¨v‡÷ªvwdwRKvj Ges gnvKvk 

cwi‡e‡k kK I‡qf D‡ËRbv Mfxifv‡e ‡evSvi Rb¨ Ae`vb ivL‡e e‡j Avkv Kiv 

n‡”Q| AwaKš‘, GwU cÖZ¨vwkZ †h GB M‡elYv Kv‡Ri djvdj¸wj cøvRgv¸wj‡Z kK 

I‡qf cÖPv‡ii cÖK…wZ eyS‡Z Ges Av‡iv cixÿvMvi hvPvBKi‡Y Kvh©Ki n‡e|  
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Figure 4.1 The contour of the shock wave (a) amplitude and (b) 

thickness in the (𝜈ℎ𝑖, 𝑉𝑟ℎ) plane with 𝜌𝑁𝑟1
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=

0.05, 𝜏𝑒𝑖 = 0.1 and 𝑞 = 5. 
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Figure 4.2 The variation of shock profile with regards (a) 𝜒 and 𝑉𝑟ℎ 
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𝜌𝑁𝑟2
= 0.05 and 𝑞 = 5. 
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Figure 4.3 The variation of shock profiles with regards to (a) 𝜒 and 

𝜏𝑒𝑖 around and at SCV (𝜏𝑒𝑖𝐶) with 𝜌𝑁𝑟1
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=
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Figure 4.4 The variation of shock profiles with regards to (a) 𝜒 and 

𝜌𝑁𝑟1
 around and at SCV (𝜌𝑁𝑟1𝐶
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=
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Chapter 1 

Introduction 

 

1.1 Background and motivation 

When the blood is free to the number of its corpuscles, then it appears like 

crystal clear fluid, which was named by the great researcher Johannes Purkinje 

as ‘plasma’ which means ‘moldable substance’ or ‘jelly’. Foremost, Nobel Prize 

winning American chemist I. Langmuir mentioned the word plasma in 1928 at 

the time of his research on gas characteristics in tubes that carry charge in the 

case of the ion swinging to and fro noticed in the tube in viscous nature. Plasma 

is the 4th physical condition of matter, is defined as a quasi-neutral ionized gas 

consisting of charged particles as well as neutral molecules, and is usually 

supposed to be a different phase of matter. As per [1], a suitable expression is 

like this: a plasma is considered a quasi-neutral ionized gas (partially ionized 

gas) along with charged and neutral molecules, which demonstrates collective 

attributes. It is able to transmit electricity because of its internal electric charges, 

which strongly interact with both magnetic and electric fields. It can be 

elaborately categorized as partially ionized plasma based on the low degree of 

ionization, fully ionized plasma based on the high degree of ionization. Based 

on temperature, plasma is classified as thermal plasma (𝑇𝑒 ∼ 𝑇ℎ, where 𝑇𝑒 

denote electron temperature and 𝑇ℎ denote neutral temperatures) and           

non-thermal plasma (𝑇𝑒 ≫ 𝑇ℎ). Plasma can also be classified as unmagnetized 

plasmas, in which neither the self-consistent magnetic field nor the ambient 

magnetic field exist, and magnetized plasmas, in which the magnetic field is 

strong enough to effect the motion of charged particles and is unaffected by 

Debye shielding. In addition, plasmas can enter the complex regime when they 

contain dust of nanometer to micrometer size, which is called the dusty   
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plasma [2]. The mentioned plasmas can be widely divided based on their 

presence and position as space and astrophysical plasmas (interstellar medium, 

the sun and other stars, Saturn rings, sun-from core to corona, solar wind, 

interstellar space stars, nuclear fusion, interplanetary medium, intergalactic 

medium, accretion discs and so on), terrestrial plasmas (lightning, ball 

lightning, flames as plasmas, auroras, magnetosphere, ionosphere, polar wind 

and so on) and artificially produced plasma (fluorescent lights, neon signs, 

confined fusion plasma, plasmas displays, plasma ball, ion thruster, medical 

science, textile industries, agriculture, materials processing, water and 

wastewater treatments, etc.). More than 99% of the matter in the apparent 

Universe is probably in the plasma state. The problem studied herein will focus 

on astrophysical and space plasmas. Significant variations are evident in plasma 

sources, particle flow velocities, average thermal energy, and a number of other 

physical properties in the broad and multi-scale physical domain. To fully 

comprehend the associated processes, there are still significant physical 

challenges to be overcome.  

          Due to a couple of issues, including the first fact that plasmas are 

electrostatic fluids and their molecules come into contact with each other 

through a long-range both magnetic and electrical fields rather than just 

collisions, plasma science has a reputation for being extremely challenging to 

fully comprehend. This is almost certainly correct when compared to fluid 

dynamics or electro-magnetic in dielectric media. The fields are altered by the 

plasma as a whole, and plasma particles might move to protect one another 

from forced electric fields, making this more challenging than handling charged 

ions at that moment, like in an electron beam. Second, most plasmas are too thin 

and hot to be regarded to continuous fluids like air or liquid (both of which 

have an approximate density of 3 × 1022 𝑐𝑚−3 or 3 × 1019 𝑐𝑚−3[1, 2]). Plasmas 

with high particle densities (109−13𝑐𝑚−3) don't necessarily behave like 
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continuous fluids. Since plasma contains free charge particles (e.g., electrons, 

protons, and ions), it responds to either electric or electromagnetic fields, can 

carry a current of electricity, and has a distinct space potential. The densities 

(e.g., ion density (𝑛𝑖), neutral density (𝑛𝑎) and electron density (𝑛𝑒)) are 

applicable to describe such plasma. Instead of charge amounts, the densities of 

particles are applicable to determine the degree of ionization. The key criteria of 

plasma are its quasi-neutrality, which refers to the fact that the densities of 

positive and negative species are nearly equal, despite the fact that charged 

particles will always find a way to move in order to avoid coming into contact 

with strong potentials. It mostly refers to the Debye length (𝜆𝐷) at which 

plasma's mobile charge carrier’s screen out electric fields. In other words, the 

Debye length is the distance over which the thermal particle energy usually 

disrupts charge neutrality and the electrostatic potential energy coming due to 

charge separation, which seeks to restore charge neutrality, are in equilibrium.  

    The existence of plasma must satisfy the following four basic criteria: 

(i) Quasi-neutrality:  For the existence of plasma, the quasi neutrality 

condition is 𝜆𝐷 ≪ 𝐿, where 𝐿 denote linear dimension caused by the 

ionized gas [1]. 

(ii) Collective behaviors: Existence of plasma requires the criteria 

“collective behaviors”, which arises because of long-range 

interactions (i.e., Coulomb potential and magnetic fields), which 

means that local disturbances in equilibrium can have a strong 

influence on remote regions of the plasma. In other words, 

microscopic fields usually dominate over short-lived microscopic 

fluctuations, and a net charge imbalance in the overall density as    

𝜌 = 𝑒(𝑛𝑖 − 𝑛𝑒) will immediately give rise to an electrostatic field, 

according to  

∇. 𝑬 =
𝜌

𝜀0
,  
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where 𝑬 is the electric field, and 𝜀0 is the permittivity of vacuum.  

Likewise, the same set of charges moving with motion 𝑣𝑒 (electron 

velocity) and 𝑣𝑖 (ion velocity) will give rise to a current density        

𝑗 = 𝑒(𝑛𝑖𝑣𝑖 − 𝑛𝑒𝑣𝑒). Therefore, elements of force exerted on a particle 

will affect not only in the intermediate area but also much further 

afield. The condition for collective behavior demands 𝑁𝐷 ≫ 1, where 

𝑁𝐷 denotes the number of plasma particles within Debye’s sphere. 

(iii) Plasma parameter (𝑔𝑝): The ratio of the potential energy of a plasma 

particle on the Debye’s sphere to translational kinetic energy of the 

plasma particle on the surface of Debye’s sphere is known as the 

plasma parameter 𝑔𝑝. For the existence of strongly coupled plasma, 

the value of 𝑔𝑝 should be much less than one i.e., 𝑔𝑝 ≪ 1. 

(iv) Electromagnetic force: There is another criterion for the existence of 

plasma is electromagnetic force acting on plasma particles should 

dominate over the forces due to collisions. 

Let, 𝜔 = frequency of plasma oscillation and 𝜏 =mean time between 

collisions with neutral atoms. Then, for existence of plasma  

                                         𝜔𝜏 > 1 i.e., 
2𝜋

𝑇
× 𝜏 > 1 i.e., 𝜏 >

𝑇

2𝜋
 

where 𝑇 = time period of oscillation of plasma particles. 

 

1.2    Waves in plasma 

Plasma waves, or plasma oscillations, are the terms used to describe the sound 

waves in a charged particle liquid. Usually fluids can uphold the characteristics 

of acoustic waves associated with pressure, temperature, and velocity 

variations, whereas plasma waves are considered an interrelated bunch of 

molecules and fields that are characterized as frequent fashion that repeated 

periodically. Plasma is also considered a fluid in complex form, so it ensures 

different wave modes, and in that case, the recovery energies are thought to be 
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composed of dynamic pressure and electrical and magnetic forces. Therefore, 

the propagation of not merely electrostatic waves but also electromagnetic 

waves exists in plasma. So, the existence of an enormous amount is plausible 

because the wave phase velocity depends on the wave frequency as well as its 

angle of propagation with regards to the background magnetic field. As a 

consequence, in the absence or presence of an oscillating magnetic field, waves 

in plasmas can be categorized as electrostatic or electromagnetic. An 

electrostatic wave necessarily be completely longitudinal, while an 

electromagnetic wave is probably partially longitudinal in that it contains 

transverse material. On the other hand, if plasma consists of the attributes of 

oscillation, then waves could be pursued by differentiability. Based on the 

hypothesis, the electron temperature is greater than the ion temperature, and in 

the case of a significantly lower mass of the electron, one can observe that the 

movement of the electrons is much more rapid than that of the ions. The mode 

closely related to the motility of the electron depends on the mass of the 

electron, but the ions may be supposed to be immobile due to their greater 

inertia. The mode of an ion depends on its mass, whereas electrons are 

considered to be massless, and based on the Boltzmann relation, they reassign 

themselves instantly. Different modes can be categorized as corresponding to 

the event that they generate in an unmagnetized plasma or as parallel, vertical, 

or diagonal to an immobile magnetic field. Plasma is also supported by 

nonlinear waves because it is supposed to be a medium of complex form. The 

aforementioned nonlinear effects are responsible for generating wavelike 

perturbations, which are not the likely form of the above. Plasma waves are 

observed in almost all objects of the solar system, such as planets and their 

satellites, comets, the interplanetary medium, the earth's ionosphere, interstellar 

media, protostellar disks, molecular clouds, asteroid areas, and nebula [3-6]. 

Plasma has many degrees of freedom, so it supports many wave modes, e. g., 

ion acoustic waves (IAWs), dust ion acoustic waves (DIAWs), electron acoustic 
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waves, positron acoustic waves, dust acoustic waves, etc. The description of 

some of the acoustic wave modes, especially IAWs and DIAWs, is given below. 

1.2.1 Ion acoustic wave 

In the physics of plasma, an Ion acoustic wave (IAW) is considered a kind of 

longitudinal wave in which the ions and electrons are oscillated, similar to 

acoustic waves or regular sound waves moving through neutral gas. In that 

case, the restoring force is determined by the stress of lighter species (such as 

electrons, positrons, etc.), and the inertia is provided by the mass density of the 

ion species. Such waves are generated due to the compression and rarefaction 

of the medium. However, normal collisions happen when waves propagate 

through positively charged ions, according to the interaction of IAWs and their 

electromagnetic fields. Again, IAWs can travel across the medium, which is 

thought to be collision-free since the ions interact with electrostatic or 

electromagnetic fields at long distances. Plasma contains electrons, and because 

of their high mobility relative to ions, electrons have an impact on wave 

dispersion. They do this by quickly observing the mobility of ions, which 

preserves the neutrality condition. The slight electric field that is produced by 

the plasma is responsible for the mobility of electrons due to the variation in the 

local ion density. If one considers a single ion species as well as a large 

wavelength boundary, the velocity of the waves in the case of dispersionless 

(𝜔 = 𝑣𝑠𝑘) is 𝑣𝑠 = √𝛾𝑒𝑘𝐵𝑇𝑒/𝑀𝑖 , where the notation 𝑘𝐵 is the Boltzmann 

constant, 𝑀𝑖 is the ion mass and 𝑇𝑒 is the electron temperature. Generally, 𝛾𝑒 is 

assumed as unity because the case that satisfied the condition of isothermality, 

which relies on the ion acoustic wave time scale, is that electrons are massive 

enough. In collisionless plasma, the ions are frequently cooler than the 

electrons. It was found that the group velocity of IAWs is equal to the phase 

velocity, and it exists only when there are thermal motions of charged particles. 

In IAWs, the ions may oscillate, overcoming their large inertia owing to the 

https://en.wikipedia.org/wiki/Longitudinal_wave
https://en.wikipedia.org/wiki/Boltzmann_constant
https://en.wikipedia.org/wiki/Boltzmann_constant
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restoring force, which is determined by the stress of lighter species. Nonlinear 

IAWs have considered in Ref. [7], where he studied the basic features were 

studied using a mechanical analogy. In space plasmas, the highly energetic 

particles streaming upstream of planetary bow shock fronts are observed as 

IAWs [8]. There are various types of IAWs in plasmas, such as solitons, shock 

waves, double layers, and so on, that are important for the knowledge of the 

physics concerned. 

1.2.2 Dust-ion acoustic wave 

The presence of dust grains modifies the regular ion acoustic waves, which are 

known as dust ion acoustic waves (DIAWs), which are a very low-frequency, 

longitudinal compressional wave originating from a balance of dust particle 

inertia and plasma pressure and involving the motions of the dust particles. Rao 

et al. [9] have announced the existence of dust acoustic waves in                  

multi-component collisionless dusty plasma made up of negatively charged 

electrons, ions and dust grains. The electron and ion thermal speeds are 

substantially faster than the phase velocity of such waves. Shukla and Silin [6] 

first identified the DIA waves in 1992. They have shown that the electron 

thermal speeds as well as the thermal speeds of ions, and dust are significantly 

lighter (heavier) than the phase velocity of DIA waves. They have also 

established the following DIA wave dispersion relation: 

1 +
𝑘𝐷𝑒

2

𝑘2
−

𝜔𝑝𝑖
2 + 𝜔𝑝𝑑

2

𝜔2
= 0,                                                  (1.1) 

where, 𝑘𝐷𝑒 = 1/𝜆𝐷𝑒 and 𝜆𝐷𝑒 denote electron Debye radius. Furthermore, 𝜔 and 

𝑘 are the frequency and the wave vector of the DIA wave, respectively. Since, 

the ion plasma frequency (𝜔𝑝𝑖) is significantly larger than the dust plasma 

frequency (𝜔𝑝𝑑) due to the massive bulk of the dust grains. Thus, they have also 

expressed the DIA wave frequencies as follows: 
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𝜔2 =
𝑘2𝐶𝑠

2

1 + 𝑘2𝜆𝐷𝑒
2 ,                                                                (1.2) 

where 𝐶𝑠 = 𝜔𝑝𝑖𝜆𝐷𝑒 = (𝑛𝑖0 𝑛𝑒0)⁄ 1/2
𝑐𝑠 is dust ion acoustic speed and 𝑐𝑠 = 𝑘𝐵𝑇𝑒/𝑀𝑖 

is the ion acoustic speed. In the long wavelength limit (namely 𝑘2𝜆𝐷𝑒
2 ≪ 1),      

Eq. (1.2) reduces to 

𝜔 = 𝑘 (
𝑛𝑖0

𝑛𝑒0
)

1

2
𝑐𝑠.                                                               

Where, 𝑛𝑖0 and 𝑛𝑒0 represent the unperturbed ion density and unperturbed 

electron density, respectively. If the condition 𝑛𝑖0 > 𝑛𝑒0 holds for negatively 

charged dust grains, the phase speed (𝑉𝑝 = 𝜔 𝑘⁄ ) of the DIA waves will greater 

than 𝑐𝑠. The decrease in the number of electrons in the surrounding plasma, 

which causes the electron Debye radius to grow, is blamed for the change in 

phase speed. Further, the greater phase speed of the DIA waves is caused by 

what seems to be a more powerful space charge electric field. If the condition 

𝑘𝑉𝑇𝑖 ≪ 𝜔 ≪ 𝑘𝑉𝑇𝑒 (𝑉𝑇𝑖 and 𝑉𝑇𝑒 represent thermal speed for ion and electron, 

respectively) holds in dusty plasmas, the latter are subject to negligible electron 

and ion Landau damping [2]. Nakamura [8] and Barkan et al. [10] have 

experimentally observed DIA waves in laboratory.  

1.2.3 Shock wave 

Shock waves are a special class of nonlinear waves, also known as strong 

pressure waves, produced by a quick transfer of pressure, temperature, and 

density in a thin area moving through a material medium, particularly air, 

caused by an explosion or by a body traveling faster than the speed of sound. 

The formation of shock waves is obtained in nature when it satisfies the 

equations of continuity of mass, momentum, and energy. Due to this, one can 

distinguish the propagation of shock waves from that of ordinary acoustic 

waves. The shock wave’s energy decreases more quickly than that of a sound 

wave since the energy of the shock wave is used to heat the medium through 
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which it travels. When the amplitude of a strong shock wave is high, it reduces 

by obeying the law of inverse square as long as the wave turns weak, and then 

it follows the law of acoustic waves. Lightning, thunder, earthquakes, meteor 

strikes, solar wind, volcanic eruptions, etc. are naturally generated shocks, 

while on the other hand, nuclear or chemical explosions, the sonic boom of a 

supersonic aircraft, any supersonic flying projectile, a bullet pushing the air in 

the barrel of a rifle, etc. are artificially generated shocks [11]. 

         Shock formation can be understood by considering the nonlinear terms in 

the fluid equations. Due to the high-velocity component's tendency to overtake 

the low-velocity wave profile caused by these nonlinear terms, a discontinuity 

finally forms and causes wave steepening. This process of steeping continues 

only until nonlinearity is balanced by dissipative mechanisms, for instance, 

kinematic viscosity and thermal conductivity. In plasma, shock waves can be 

excited when a large-amplitude mode propagates in the presence of strong 

dissipation, such as due to collisions with neutrals, viscosity, or Landau 

damping. In both collisional and collisionless plasmas, shock waves can occur. 

It is assumed that dilute hot gases are in fully ionized plasma states, which are 

the appropriate states where collisionless shocks appear [12]. The solar wind, 

plasma flow from the sun, etc. are considered collisionless relativistic shocks 

[13] that are immensely supersonic at the time of facing sphere magnetic fields. 

Anyway, a bulk of shock types in astrophysics are produced in highly dilute 

matter that is generally collisionless on earth, for instance, the earth bow shock. 

The evidence of astrophysical shock phenomena reproduced in the laboratory is 

given in Figure 1.1. Since shock wave excitations are supported not only in 

astrophysical and space environments but also in laboratories, one can study 

the various kinds of acoustic shock wave excitations in the plasmas. But this 

work will focus on the propagation of IA and DIA shock wave excitation in 

collisionless unmagnetized plasmas under various plasma assumptions.  
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1.3     Distribution functions in plasma 

The single-particle descriptions serve to demonstrate the fundamental 

kinematical phenomena in a plasma, but due to the large number of particles 

included, they are inadequate for a comprehensive explanation of the plasma 

dynamics. Each species of plasma is represented in fluid modelling by a 

distribution function 𝑓(𝑥, 𝑣, 𝑡) over the six-dimensional phase space, which 

varies with time. There are different distribution functions, such as Maxwell 

distribution (thermal), Crains distribution (non-thermal), Kappa distribution 

(super-thermal), 𝑞-distribution (nonextensive), (𝛼, 𝑞)-distribution (generalized), 

etc. Furthermore, this work is confined to the (𝛼, 𝑞)-velocity distribution (VD) 

function; hence, only the (𝛼, 𝑞)-VD function is described in the next section. 

 

Figure 1.1: An interstellar collisionless bow shock in the Orion Nebula. Image credit: 

NASA and the Hubble Heritage Team (STScI/AURA). Link: 

https://news.mit.edu/2019/collisionless-shock-reproduced-astrophysics-0807. 
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1.3.1 (𝜶, 𝒒)-velocity distribution function 

The (𝛼, 𝑞)-velocity distribution functions are very useful to describe the energy 

of electrons in all cases of thermality. Since the energies of the electrons may be 

isothermal, nonthermal, or have a smaller (subthermal) or superior 

(superthermal) amount of isothermality. As a result, the (𝛼, 𝑞)-velocity 

distribution (VD) of electrons is assumed [14]. The (𝛼, 𝑞)-VD function is defined 

by the composition of Tsallis and Cairns VD functions as  

𝑦(𝑣𝑥) = 𝑘 (1 + 𝛼
𝑣𝑥

4

𝑣𝑡
4) × {1 − (𝑞 − 1)

𝑣𝑥
2

2𝑣𝑡
2},                             (1.3) 

where 𝑣𝑡 = (𝑘𝐵𝑇𝑒/𝑚𝑒)1/2 is the electron thermal velocity, 𝑣𝑥 = (2𝑒Φ/𝑚𝑒)1/2 is 

the velocity vector, 𝑞 is the nonextensivity strength, 𝛼 represents the population 

of faster electrons, 𝑘𝐵 is defined as the Boltzmann constant, and 𝑘 is the 

normalized constant [14]. Hence, the electron density (𝑁𝑒) function can be 

written by integrating (which includes an additional potential term of 

interacting electrons) the above equation over velocity space [14] as 

𝑁𝑒 = 𝑁𝑒0 [1 + (𝑞 − 1) (
𝑒Φ

𝑘𝐵𝑇𝑒
)]

(𝑞+1)

2(𝑞−1)

× 

[1 −
16𝑞𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
(

𝑒Φ

𝑘𝐵𝑇𝑒
) +

16𝑞(2𝑞 − 1)𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
(

𝑒Φ

𝑘𝐵𝑇𝑒
)

2

] , (1.4) 

where Φ, 𝑇𝑒, and 𝑒 are the electrostatic potential function, electron temperature, 

and magnitude of the electron charge, respectively. One can determine the 

Maxwellian [9], nonextensive [15] and Cairns et al. [16] distributed electron 

density functions from the above expression as  

𝑁𝑒 = 𝑁𝑒0 exp (
𝑒Φ

𝑘𝐵𝑇𝑒
),                                                                          (1.5) 

𝑁𝑒 = 𝑁𝑒0 [1 + (𝑞 − 1) (
𝑒Φ

𝑘𝐵𝑇𝑒
)]

(𝑞+1)

2(𝑞−1)

,                                              (1.6) 

and 

𝑁𝑒 = 𝑁𝑒0 [1 − (
4𝛼

1 + 3𝛼
) (

𝑒Φ

𝑘𝐵𝑇𝑒
) + (

4𝛼

1 + 3𝛼
) (

𝑒Φ

𝑘𝐵𝑇𝑒
)

2

] exp (
𝑒Φ

𝑘𝐵𝑇𝑒
),          (1.7) 
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for the case of 𝛼 = 0, 𝑞 = 1; 𝛼 = 0 and 𝑞 = 1, respectively. The proper ranges of 

𝛼 and 𝑞 are obtained based on the physical cut-off obligatory by 𝑞 ≥ 5/7, and 

𝛼𝑀𝑎𝑥 = (2𝑞 − 1)/4 as (i) 𝑞 = 1, 0 < 𝛼 < 0.35 (nonthermality case), (ii) 𝑞 = 1,  

𝛼 = 0 (isothermality case), (iii) 0.33 < 𝑞 < 1, 𝛼 = 0 (superthermality case), and 

(iv) 𝑞 > 1, 𝛼 = 0 (subthermality case), respectively.  

On the other hand, one major characteristic associated with collisoinless space 

plasmas is the development of non-Maxwellian velocity distribution that in 

many circumstances can be described by 𝜅 function characterized by the 𝜅 

parameters. Hence, the electron density (𝑁𝑒) function can be written by 

integrating Kappa velocity distribution function [17] over velocity space [14] as 

𝑁𝑒 = 𝑁𝑒0 [1 − (
𝑒Φ

𝑘𝐵𝑇𝑒
) /(𝜅 −

3

2
) ]

−𝜅+1/2

,                                         (1.8) 

where 𝜅 > 1.5. It is noted that the presence of superthermal electrons in 

astrophysical plasmas that are modelled by not only nonextensive distribution 

along with −1 < 𝑞 < 1  but also Kappa distribution along with 𝜅 > 1.5. 

1.4    Formation of fluid model equation  

To study the aforementioned physical issues (especially shock wave 

phenomena), one can use the equations which are briefly discussed in the 

following under various types of plasma assumptions to study the basic feature 

of acoustic wave phenomena in the unmagnetized collisonless                      

multi-component plasma. 

1.4.1   Conservation of mass or fluid equation of continuity 

According to the principle of conservation of matter, a volume 𝑉 is limited to a 

change in the total amount of particles 𝑁 if there is a net particle flux across the 

surface 𝑆 enclosing that volume. The law of conservation of mass allows one to 

acquire 

𝜕𝑛

𝜕𝑡
+ 𝛻. (𝑛𝒖) = 0,                                                                (1.9) 
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where 𝑛 and 𝒖 denote the number density and thermal velocity of the particles, 

respectively. This well-known equation of continuity, which first arose in 

plasmas, expresses the concept of mass conservation in differential form. It 

should be noted that the second term in Eq. (1.9) indicates the divergence of net 

particle flux out of volume, whereas the first term in the equation (1.9) 

represents the rate of change of particle concentrations within a volume. 

1.4.2   Conservation of energy-momentum or equation of motion neglecting 

collisions and thermal motion  

(i) Equation of motion for a single particle with velocity 𝑣⃗ 

𝑚
𝑑𝑣⃗

𝑑𝑡
= 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗),                                          (1.10) 

All particles in a fluid element move together with average velocity 𝑢⃗⃗, because 

one can neglect collisions and thermal effects. We can also take 𝑢⃗⃗ = 𝑣⃗, and 

equation of motion for fluid element of particle density 𝑛 is: 

𝑚𝑛
𝑑𝑢⃗⃗

𝑑𝑡
= 𝑛𝑞(𝐸⃗⃗ + 𝑢⃗⃗ × 𝐵⃗⃗),                                                (1.11) 

where time derivative is to be taken at the position of the particles (fluid 

element) which not very convenient. We wish to have an equation for fluid 

elements fixed in space. 

(ii) Transform to variables in a fixed frame that move with fluid element.  

To make the transformation to variables in a fixed frame, consider 𝐺⃗(𝑥, 𝑡) to be 

any property of a fluid in one-dimensional x space. The change of 𝐺⃗ with time 

in a frame moving with the fluid is the sum of two terms: 

𝑑𝐺⃗(𝑥, 𝑡)

𝑑𝑡
=

𝜕𝐺⃗

𝜕𝑡
+

𝜕𝐺⃗

𝜕𝑥

𝑑𝑥

𝑑𝑡
=

𝜕𝐺⃗

𝜕𝑡
+ 𝑢𝑥

𝜕𝐺⃗

𝜕𝑥
 ,                         (1.12) 
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The first term on the right represents the change of 𝐺⃗ at a fixed point in space, 

and the second term represents the change of 𝐺⃗ as the observer moves with the 

fluid into a region in which 𝐺⃗ is different. In three dimensions Eq. (1.12) one can 

be written as: 

𝑑𝐺⃗

𝑑𝑡
=

𝜕𝐺⃗

𝜕𝑡
+ (𝑢⃗⃗. 𝛻)𝐺⃗ 

This is called the convective derivative. 

In the case of a plasma, we take 𝐺⃗ to be the fluid velocity 𝑢⃗⃗, 

𝑚𝑛 [
𝜕𝑢⃗⃗

𝜕𝑡
+ (𝑢⃗⃗. 𝛻)𝑢⃗⃗] = 𝑛𝑞(𝐸⃗⃗ + 𝑢⃗⃗ × 𝐵⃗⃗) 

In absence of ambient magnetic field or self-consistent magnetic field due to 

plasma current then 𝐵 → 0 one can obtained as: 

[
𝜕𝑢⃗⃗

𝜕𝑡
+ (𝑢⃗⃗. 𝛻)(𝑚𝑢⃗⃗)] = 𝑞𝐸⃗⃗ 

In the similar manner, the equation of motion including thermal effects 

(pressure term, which is denoted by 𝑝) one can be obtained as:       

𝑚𝑛 [
𝜕𝑢⃗⃗

𝜕𝑡
+ (𝑢⃗⃗. 𝛻)𝑢⃗⃗] = 𝑛𝑞(𝐸⃗⃗ + 𝑢⃗⃗ × 𝐵⃗⃗) − 𝛻𝑝 

1.4.3    Poisson’s equation 

The Maxwell equations is written as 

∇. 𝑬 =
𝜌

𝜀0
,                                                                         (1.13) 

where 𝜌 and 𝜀0 are the overall charge density and permeability, respectively. 

The electrical potential 𝜙 is directly connected to the electric field 𝑬 and is 

defined as   

 𝑬 = −𝛻𝜙,                                                                 (1.14)                                                          
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Using equation (1.13) and (1.14), we have 

                                                               𝛻2𝜙 =
𝜌

𝜀0
 

This is the well-known Poisson’s equation. It should be emphasized that the 

charge quasi-neutrality condition can be used to derive a governing equation 

from which one can investigate the wave structure and propagation properties 

of plasmas. 

1.5     Literature review 

The wave propagation in a multi-component plasma has become an interesting 

focus point for plasma physics researchers over the last few decades. Already, a 

large number of authors [18-36] have studied the properties of nonlinear waves 

in plasmas by considering different plasma models. Because nonlinearities 

contribute to the localization of waves, they lead to different types of interesting 

coherent nonlinear wave structures, namely solitary waves, shock waves, 

double layers, vortices, etc., which are important from both the theoretical and 

experimental points of view. For instance, wave structures have been reported 

in laser plasma interactions in the form of nonlinear electrostatic [28] or 

electromagnetic waves [29], collisionless shocks [30], ions and electrons in phase 

space holes [31], etc. It may arise out of the interplay between some of the 

mechanisms in physical systems, such as diffraction, dispersion, weakly 

transverse dispersion, and dissipation, in the presence of nonlinearity. Solitary 

waves (propagates without any temporal evolution in shape or size when 

viewed in the reference frame moving with the group velocity of the wave) are 

mainly formed due to the balance between the effects of nonlinearity and 

dispersion, where the dissipation is negligible. On the other hand, a soliton 

(nonlinear solitary wave with the additional property that the wave retains its 

permanent structure, even after interacting with another soliton) or solitary 

wave is a self-reinforcing hump or dip-shaped nonlinear wave that maintains 
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its shape and size while it propagates at a constant speed. When the dissipative 

effects are comparable to or even dominant over the dispersive effects, 

nonlinear propagation of acoustic waves may appear in the form of shock 

structures instead of solitary structures. The shock wave can occur both in 

collisional and collisionless plasmas. Collisionless shocks appear [30] basically 

in dilute hot gases, which are in the state of fully ionized plasmas. Owing to the 

significance of IA- and DIA-shock waves for understanding the physical issues 

in many environments, such wave phenomena have studied by many 

researchers in different types of plasma environments [31-42]. Luo et al. [36, 37], 

have confirmed the production of ion acoustic and dust ion acoustic shock 

waves in the Q-machine with negative ions. Adak et al. [38, 39] have reported 

the nonlinear IA shock in a pair-ion (𝐶60
+  + , 𝐶60

− ) plasma by deriving the 

Korteweg–de Vries equation Burgers (KdVB) equation in the presence of 

weakly dissipative media. Jannat et al. [40] have investigated the ion-acoustic 

shock waves (IASWs) in pair-ion plasma in the presence of nonextensive 

electrons. Hussain et al. [43] have reported the propagation of IASWs in a 

plasma with inertial pair-ions having kinematic viscosities of both positive and 

negative ion species and inertialess non-extensive electrons. Hafez et al. [44] 

have investigated the oblique propagation of ion acoustic shock waves in 

weakly and highly relativistic plasmas with nonthermal electrons and 

positrons. Hafez et al. [45] have reported ion acoustic shock in highly relativistic 

plasmas with nonextensive electrons and positrons. Shukla and Silin [6] initially 

theorized the presence of low-frequency DIA waves, the researchers became 

interested in DIAWs because of their significance in space as well as their 

laboratory of study [10, 46-48]. Bharuthram et al. [49] have studied how the 

large amplitude of DIAWs propagates. Shukla [50] has explored DIA shocks 

made of dust ions and sound. In addition, Borah et al. [51] have investigated 

DIA shock waves in a three-component dusty plasma system and found that as 

the dynamic viscosity of the plasma constituent increases, the steepness of the 
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shock structures decreases. In their analysis of DIA shock waves and solitary 

waves in the presence of super-thermal electrons, Haider et al. [52] have shown 

that the beneficial influence associated with DIASWs rises as the                 

super-thermality of the charged particles develops. Furthermore, Along with 

the Maxwellian electron, an investigation of DIA shocks have conducted by 

Duha and Mamun [53]. Several authors [54-58] have investigated the impact of 

confined ion species on DA shock waves in a dusty plasma context.  

     Most of the researchers in their earlier literature ignored studying the 

acoustic wave not only around the critical values (CVs) but also at the 

composition of CVs for any specific plasma parameters due to the cumbersome 

mathematical formulation in the plasmas. On the other hand, Mamun [59] has 

clearly shown that the investigation of a DA or DIA shock wave by using the 

stretching of not only the kinematic viscosity coefficient but also any 

parameters is not usually valid. The valid stretching coordinates supported 

only the Burgers equation but not the Korteweg-de Vries Burger (KdVB) 

equation [59], which divulges the formation of shock structures in the plasmas. 

It is therefore essential to study shock wave propagation in the plasmas by 

deriving the useful nonlinear evolution equations (NLEEs) via the valid 

stretching coordinates along with their appropriate solutions. Thus, this thesis 

work explores how to study the electrostatic nonlinear propagation of IA and 

DIA shock wave excitations by deriving useful NLEEs along with their 

appropriate solutions based on valid stretching coordinates. The effects of some 

parameters on shock wave excitation will also be investigated. 

1.6    Research methodology  

It is well confirmed that the reductive perturbation analysis is widely applicable 

to investigate small but finite-amplitude nonlinear waves. By means of this 

technique, one can derive various types of nonlinear evolution equations 

(NLEEs) through a single dependent variable that look very simple in structure 
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from a physical system. However, the original model equations used to describe 

the physical system are not simple and generally contain several dependent 

variables. To illustrate it, suppose the governing equations contain the fluid 

density 𝑛𝑗(𝑥, 𝑡) and the fluid velocity 𝑢𝑗(𝑥, 𝑡) and perhaps several other 

variables and equations of state as well, depending on whether thermodynamic 

considerations are taken into account or not. One requires 

procedure in a systematic way for reducing such sets of equations to simpler 

forms. The reductive perturbation technique (RPT) [60] is one such method 

because such procedures are usually perturbative in nature. 

1.6.1    Reductive perturbation technique 

In the reductive perturbation method, one introduces new stretching 

coordinates for space and time variables that are appropriate for the description 

of long wave-length phenomena. This rescaling gives the system isolation from 

the relevant equations, which describe how the system reacts on the new space 

and time scales. It is to be noted that RPT has the limitation that it rests on 

experience in knowing how to pick the relevant scale. To overcome such 

limitations, one expands all the dependent variables in terms of a small 

perturbation parameter 𝜀 based on the general principles of the reductive 

perturbation theory [60] on multiple scale expansion. As for example: 

𝑛𝑗 = 𝑛𝑗
(0)

+ 𝜀𝑛𝑗
(1)

+ 𝜀2𝑛𝑗
(2)

+ ⋯

𝑢𝑗 = 𝜀𝑢𝑗
(1)

+ 𝜀2𝑢𝑗
(2)

+ ⋯           
} .                                      (1.15) 

The boundary conditions can usually be controlled by the presence or absence 

of a first term in the above equations. In most of the cases, 𝑛𝑗 → 𝑛𝑗
(0)

 as 𝑥 → ±∞ 

because the density is normally perturbed about its equilibrium value [61] and 

𝑢𝑗 → 0 if there is background flow supports, it is actually dependent on the 

physical circumstances. Besides, the harmonic wave solution can be defined as 

𝑛𝑗 , 𝑢𝑗 , ∼ 𝑒𝑥𝑝(𝑖Ω) with Ω = 𝐾𝑗𝑥 − 𝜔(𝐾𝑗)𝑡 for finding the dispersion or dissipation 
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relations. Note that, 𝜔(𝐾𝑗) satisfies the dispersion or dissipation relation by the 

wave number 𝐾𝑗. Now, one can define the new wave number as 𝐾𝑗 = 𝜀𝑗𝑘𝑗,     

  𝑗 = 1,2,3 … .. for long waves without the loss of generality. As a result, Ω 

becomes Ω = 𝜀𝑗𝑘𝑗𝑥 − 𝜔(𝜀𝑗𝑘𝑗)𝑡. For purely dissipative media, the Taylor 

expansion [61] of 𝜔(𝜀𝑗𝑘𝑗) yields 𝜔(𝜀𝑗𝑘𝑗) = 𝜔′(0)𝜀𝑗𝑘𝑗 + 𝜔′′(0)𝜀2𝑗𝑘𝑗
2 + ⋯ ⋯ .      

In such case, Ω is obtained as Ω = 𝜀𝑗𝑘𝑗(𝑥 − 𝜔′(0) 𝑡) − 𝜔′′(0)𝜀2𝑗𝑘𝑖
2𝑡, where the 

other terms are neglected because 𝜀 is small quantity. Finally, one may consider 

the new stretching for x and t as 𝑋 = 𝜀𝑗(𝑥 − 𝑉𝑝 𝑡) and 𝑇 = 𝜀2𝑗𝑡 since 𝜔′(0) and 

𝜔′′(0) are constants [62]. Thus, one can derive various evolution equations to 

study the shock wave excitations in the plasmas by taking the stretching        

𝑋 = 𝜀𝑗(𝑥 − 𝑉𝑝 𝑡) and 𝑇 = 𝜀𝑛𝑡 along with 𝑛 = 2 ∗ 𝑗;  𝑗 = 1, 2, 3, ⋯. If the evolution 

equation obtained by taking 𝑗 = 1 is unable to examine the basic features of 

shock wave phenomena, then one can derive another evolution equation by 

taking 𝑗 = 2 to overcome such difficulty.   

1.7     Outline of thesis 

The outline of this thesis is as follows:  

Chapter 1 covers the introductory discussions, background and motivations, 

the fundamentals of plasmas, the existence of shock wave excitations, a 

literature review, and reduction perturbation techniques. 

Chapter 2 deals with the features of nonlinear propagation of ion shock wave 

excitations (IASWEs) by deriving Burger's equations involving different 

nonlinear terms via the reductive perturbation method in an unmagnetized 

collisionless pair-ion plasma with -distributed electrons. The effect of plasma 

parameters on the nonlinear propagation of IASWs is investigated by 

determining the solutions of Burger's equations involving various kinds of 

nonlinearity. 
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Chapter 3 concerns the nonlinear features of dust ion acoustic shock wave 

excitations (DIASWEs) by deriving Burger's equations involving different 

nonlinear terms via the reductive perturbation method in a collisionless,       

four-component, unmagnetized, dusty plasma system having generalized   

(𝛼, 𝑞)-distributed electrons, positively charged Maxwellian light ions, 

negatively charged inertial heavy ions, and negatively charged stationary dust 

ions. The effect of plasma parameters on the nonlinear propagation of 

DIASWEs is investigated by determining the solutions of Burger's equations 

involving various kinds of nonlinearity. 

Chapter 4 gives a clear idea how to study DIASWEs for the super-critical values 

of any particular parameter in an unmagnetized collisionless four-component 

dusty multi-ion nonextensive plasma by deriving a Burger’s-type equation with 

quartic nonlinearity. 

Chapter 5 presents the concluding remarks that are found in our previous 

chapters. Additionally, the potential future works for further investigation in 

the plasmas are discussed. 

 



 

 

Chapter-2 

Ion acoustic shock wave excitations in multicomponent 

collisionless unmagnetized plasmas 

 

2.1    Introduction 

Rigorous experimental and theoretical investigations on unmagnetized 

collisionless plasmas having pair-ions and electrons are reported by many 

researchers because of their significant applications in understanding several 

types of collective processors in diverse environments, especially plasmas 

produced by Q-machines [63-66], neutral beam sources [67], semiconductor and 

material processing [68], and so on. To illustrate it, Ichiki et al. [69] and 

Weingarten et al. [70] have experimentally confirmed the production of 

negative ions (NIs) at low temperatures. Sato [64] has also confirmed that the 

NIs with low temperature (≈ 0.2𝑒𝑉) are generated in potassium plasma in the 

Q-machine. Goeler et al. [71] have detected pair ions (𝐶𝑠+, 𝐶𝑙−) in the hot 

tungsten plate of a Q-machine. Furthermore, the NIs exist in space and 

astrophysical objects [72, 73], e.g., in the D-region altitudes, the F-region of the 

Earth’s ionosphere, etc. Wong et al. [74] have experimentally reported ion 

acoustic (IA) waves in the presence of 𝑆𝐹6
− plasma species. In addition, Song et 

al. [75] have already described the IA wave propagation in a plasma produced 

by the Q-machine, which has a pair of ions (𝐾+, 𝑆𝐹6
−) and electrons. They have 

found that the phase velocity of the IA “fast” mode increases with the increase 

in the negative to positive ion density ratio. It is to be noted that the negative 

ion plasma system is mainly formed naturally, and is composed of electrons, 

positive ions (PIs), and NIs in space and astrophysical environments [76-78]. 

For instance, NIs are produced in the lower ionosphere (D region) by the 

attachment of electrons to atoms or molecules in the presence of relatively high 
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pressure [79]. The decrease in electron density allows the night-time reflection 

of radio waves from the E-layer (region of the ionosphere). Andersen et al. [80] 

have also experimentally observed that Landau damping prevented the 

formation of a shock and only a “spreading” of the pulse with equal electron 

and NI temperatures. However, they have found that the Landau damping is 

reduced and the shock structure is formed by increasing electron temperature 

and cooling the ions via ion-neutral collisions. With the increase in wave phase 

velocity, reduced by the wave particle resonance due to the involvement of NIs 

when the electron temperature is greater than the NIs temperature [75]. Due to 

the existence of pair ions not only in laboratories but also in many space and 

astronomical environments, many researchers [37, 39, 43, 81, 82] have 

investigated the propagation of IA shock waves in plasmas composed of 

various types of PIs (e.g.𝐾+, 𝐶𝑠+, 𝐶60
+ , etc.) and NIs (e.g., 𝑆𝐹6

−, 𝐶𝑠−, 𝐶60
−  etc.). 

Actually, ion acoustic shock waves (IASWs) are produced in plasmas because 

the relative velocity between the rarefaction wave and the plasma overtakes its 

IA speed, where the frequency of the rarefaction wave and the surrounding 

medium is comparatively the same. Adak et al. [39] have reported IASWs in the 

(𝐶60
+ , 𝐶60

− ) plasma by obtaining the KdV Burgers equation. Hussain et al. [43] 

have theoretically described IASWs in negative ion plasma with nonextensive 

electrons. Recently, Alam and Talukder [81] investigated IASWs in collisionless 

plasma, which consist of pair ions and isothermal electrons.  

Further, the presence of energetic electrons in a variety of environments and 

measurements of their distribution functions revealed them to be highly 

nonthermal, sub-thermal or superthermal [14, 44, 45, 82-85]. Due to the 

energetic electrons, the electrons have long range interactions with other 

plasma species because the plasma species actually occur in different phase 

spaces [86]. Already, many researchers have examined the IA structures in the 

plasma system by assuming the plasma species are in thermal equilibrium, 

which follows the Maxwell–Boltzmann distribution. However, such an ideal 
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thermal equilibrium assumption is no longer valid when some external agents, 

such as force fields present in natural space environments, wave–particle 

interaction, turbulence, etc., disturb the thermal equilibrium of the plasma 

systems. The fast ions and electrons mode in plasma environments also 

suggests that the particles have a deviated velocity distribution far from the 

Maxwellian distribution. Moreover, systems with the presence of long-range 

interactions as well as long-time memory are intractable within the    

Boltzmann–Gibbs statistics [87]. At these stages, the non-Maxwellian velocity 

distribution functions are an arena for obtaining the electron density function 

when the electron energy is higher or lower than the isothermal energies or the 

electron energy becomes nonthermal. When the energy of electrons becomes 

subthermal or superthermal, one can use the nonextensive velocity distribution 

function to determine the density function of the electron as 

𝑁𝑒 = 𝑁𝑒0[1 + (𝑞 − 1)(𝑒Φ 𝑘𝐵𝑇𝑒⁄ )]
(𝑞+1)

2(𝑞−1), 

where Φ, 𝑁𝑒0, 𝑞, 𝑇𝑒, 𝑒 and 𝑘𝐵 are the electrostatic potential, unperturbed 

electron density, strength of nonextensivity, electron temperature, electron 

charge, and Boltzmann constant, respectively [84]. The effects of electron 

nonextensivity on IA shock waves (IASWs) have already been studied by many 

researchers [45, 84, 85, 88, 89]. For instance, Ferdousi et al. [89] have reported 

the effects of electron nonextensivity on the properties of IASWs in an 

unmagnetized three-component plasma. They have shown that shock wave 

excitations (SWEs) are significantly modified, and both compressive and 

rarefective shock waves are supported by the influence of the strength of 

nonextensivity. But, the nonextensive distribution function fails to address the 

physical issues for the nonthermal electron populations. As a result, one can 

consider modeling an electron distribution with a population of fast particles by 

taking the Cairns velocity distribution function [90-92] leading to 

𝑁𝑒 = 𝑁𝑒0 [1 − (
4𝛼

1 + 3𝛼
) (

𝑒Φ

𝑘𝐵𝑇𝑒
) + (

4𝛼

1 + 3𝛼
) (

𝑒Φ

𝑘𝐵𝑇𝑒
)
2

] exp (
𝑒Φ

𝑘𝐵𝑇𝑒
), 
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where 𝛼 is a parameter determining the fast particles present in the model 

considered. Later, Tribeche et al. [14] have proposed a unique distribution 

function, the so-called the (𝛼, 𝑞)-velocity distribution function, by generalizing 

the work of Cairns et al. [16], which provides a better fit of the space 

observations due to the flexibility provided by the nonextensivity parameter. 

They have obtained electron density by integrating (𝛼, 𝑞)-velocity distribution 

function over all velocity spaces as 

𝑁𝑒 = 𝑁𝑒0 [1 + (𝑞 − 1) (
𝑒Φ

𝑘𝐵𝑇𝑒
)]

(𝑞+1)

2(𝑞−1)

× 

[1 −
16𝑞𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
(
𝑒Φ

𝑘𝐵𝑇𝑒
) +

16𝑞(2𝑞 − 1)𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
(
𝑒Φ

𝑘𝐵𝑇𝑒
)
2

].    (2.1) 

One can easily reduce the above electron density to the nonextensive and 

nonthermal electron densities by setting 𝛼 = 0 and 𝑞 → 1, respectively. Thus, a 

unique distribution function, like the (𝛼, 𝑞)-velocity distribution function [14] 

can be assumed for examining all the cases of electron energies. El-wakil et al. 

[92] have already described IA modulation instability characteristics in negative 

ion plasma with nonthermal electrons. They have also shown that the instability 

conditions are affected by nonthermal electron parameters in the D and F 

regions of the Earth’s ionosphere. It is therefore suggested to extend the 

hydrodynamic fluid model by considering (𝛼, 𝑞)-distributed electrons [14] and 

pair-ions because the (𝛼, 𝑞)-velocity distribution function is not only used for 

superthermal, subthermal, and nonthermal, but also Maxwellian distributed 

electrons. Very recently, Hafez et al. [93] have proposed the NI plasma for 

understanding the nature of overtaking collisions of multi-shocks by deriving a 

Burgers-like equation. They reported that the compressive and rarefactive 

electrostatic shocks are supported in the aforementioned plasma system. But, 

they ignored the features of electrostatic shocks not only around the critical 

values (CVs) but also at the CVs. Also, the shock wave phenomena around CVs 

are reported by incorrectly defined solutions of modified Burgers (mB) and 
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mixed modified Burgers (mmB) equations in most of the previous studies     

[94-96], which is not useful for further verification in laboratory plasmas. 

Mamun [59] has clearly shown that the stretching of kinematic viscosity 

coefficient parameters is not usually valid. The valid stretching coordinates 

supported only the Burgers equation but not the KdV Burgers equation, which 

divulges the formation of shock structures in the plasmas. It is therefore 

essential to study shock wave propagation in the plasmas by deriving the 

useful nonlinear evolution equations (NLEEs) via the valid stretching 

coordinates along with their appropriate solutions. Thus, this work explores 

how to study the electrostatic nonlinear propagation of IASWs by deriving 

useful NLEEs along with their appropriate solutions based on the valid 

stretching coordinates in a pair ion plasma system. The effects of some 

parameters on the SWEs are also investigated. 

2.2    Theoretical model equations with plasma assumptions 

An unmagnetized collisionless plasma composed of inertial pair-ion (e.g.,        

PI (𝐾+) with mass (𝑀+𝑖) and temperature (𝑇+𝑖), and NI (𝑆𝐹6
−) with mass (𝑀−𝑖) 

and temperature (𝑇−𝑖) and inertial-less (𝛼, 𝑞)-distributed electrons, where 𝛼 and 

𝑞 are treated as the population of nonthermal and the strength of                   

non-extensivity electrons, respectively. For the above plasma assumption, one 

obtains the charge neutrality condition as 1 = 𝑁𝑟1 + 𝑁𝑟2, where 𝑁𝑟1 = 𝑁−𝑖0 𝑁+𝑖0⁄ ,          

 𝑁𝑟2 = 𝑁𝑒0 𝑁+𝑖0⁄ . Since 𝑁+𝑖0(𝑁−𝑖0) and 𝑁𝑒0 are the PIs (NIs) and electrons 

unperturbed densities, respectively. To study the nonlinear phenomena in such 

plasmas, the following normalized hydrodynamic continuity and momentum 

equations are obtained by implementing the mass and momentum conservation 

laws along with the above plasma assumptions for PIs and NIs [93]: 

𝜕𝑁+𝑖
𝜕𝑡

+
𝜕(𝑁+𝑖𝑈+𝑖)

𝜕𝑧
= 0,                                                                                              (2.2) 

𝜕𝑁−𝑖
𝜕𝑡

+
𝜕(𝑁−𝑖𝑈−𝑖)

𝜕𝑧
= 0,                                                                                              (2.3) 
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𝜕𝑈+𝑖
𝜕𝑡

+ 𝑈+𝑖
𝜕𝑈+𝑖
𝜕𝑧

+
𝜕𝛷

𝜕𝑧
+ 𝜇+𝑖

𝜕2𝑈+𝑖
𝜕𝑧2

= 0,                                                              (2.4) 

𝜕𝑈−𝑖
𝜕𝑡

+ 𝑈−𝑖
𝜕𝑈−𝑖
𝜕𝑧

+ −𝑀±

𝜕𝛷

𝜕𝑧
+
𝛿𝑒𝑖
𝑁−𝑖

𝜕𝑁−𝑖
𝜕𝑧

+ 𝜇−𝑖
𝜕2𝑈−𝑖
𝜕𝑧2

= 0,                             (2.5) 

𝜕2Φ

𝜕𝑧2
= 𝑁𝑝𝑖 −𝑁𝑛𝑖 − 𝑁𝑟2 × {[1 + (𝑞 − 1)Φ]

𝑞+1

2(𝑞−1)                                                          

× [1 −
16𝑞𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
Φ +

16𝑞(2𝑞 − 1)𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
Φ2]},   (2.6) 

where 

𝑀± =
𝑀+

𝑀−
,          𝛿𝑒𝑖 =

𝑇𝑒
(1 − 𝑁𝑟1)𝑇−𝑖

.                                          (2.7) 

Here, 𝑁+𝑖(𝑁−𝑖) and 𝑁𝑒 are respectively the normalized PIs (NIs) and electrons 

densities normalized by 𝑁+𝑖0, 𝑈+𝑖(𝑈−𝑖) is the normalized PIs (NIs) velocity 

normalized by the PI speed 𝐶+𝑖𝑠 = √𝑘𝐵𝑇𝑒 𝑀±⁄ √(𝑁𝑟1 + 𝑁𝑟2) 𝑁𝑟2(1 − 𝑁𝑟1)⁄ , Φ is 

the normalized electrostatic potential, Φ → 𝑒Φ 𝑘𝐵𝑇𝑒⁄ , 𝑡 is the time variable 

normalized by 𝜔𝑝𝑖
−1 = 𝜆𝐷𝑒 𝐶+𝑖𝑠⁄  is the space variable normalized by                

𝜆𝐷𝑒 = √𝑘𝐵𝑇𝑒 4𝜋𝑁𝑒0𝑒2⁄ , and 𝜇+𝑖(𝜇−𝑖) is the normalized PIs (NIs) kinematic 

viscosity coefficient normalized by 𝜔+𝑖
−1 𝑀±⁄ 𝑁+𝑖0𝐶+𝑖𝑠

2 (𝜔+𝑖
−1 𝑀−𝑖⁄ 𝑁−𝑖0𝐶+𝑖𝑠

2 ). 

Additionally, one can use  (i) 𝑞 → 1 and 𝛼 = 0 for the Maxwell–Boltzmann 

distributed electrons, (ii) 𝑞 → 1 and 𝛼 ≠ 0 for the Cairns distributed electrons 

and (iii) 𝛼 = 0 for superthermal (0 < 𝑞 < 1) and subthermal (𝑞 > 1) electrons, 

respectively, where 𝑞 is the strength of nonextensivity and 𝛼 is measuring the 

population of nonthermal electrons. 

2.3    Formation of Burgers equation 

It is well established that the nonlinear IA wave mode cannot be easily 

described by solving Eqs. (2.2)-(2.6) directly. At this stage, one can use the 

tedious mathematical technique for deriving the nonlinear evolution equations 

(NLEEs) to study the basic features of physical phenomena in diverse 

environment. To derive a NLEE form the aforementioned model, the reduction 
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perturbation technique [59, 84] is allowed to consider the new coordinates 

instead of the scaling of variables as  

𝑋 = 𝜀(𝑧 − 𝑉𝑝𝑡), 𝑇 = 𝜀
2𝑡,                                                                         (2.8) 

From Eq. (2.8), the operators are defined as 

𝜕

𝜕𝑡
= 𝜀2

𝜕

𝜕𝑇
− 𝜀𝑉𝑝

𝜕

𝜕𝑋
,        

𝜕

𝜕𝑧
= 𝜀

𝜕

𝜕𝑋
 ,                                                (2.9) 

Eqs. (2.2)-(2.6) are then converted with the aid of Eq. (2.9) to the following: 

𝜀2
𝜕𝑁+𝑖
𝜕𝑇

− 𝜀𝑉𝑝
𝜕𝑁−𝑖
𝜕𝑋

+ 𝜀
𝜕

𝜕𝑋
(𝑁+𝑖𝑈+𝑖) = 0,                                                                (2.10) 

𝜀2
𝜕𝑁−𝑖
𝜕𝑇

− 𝜀𝑉𝑝
𝜕𝑁−𝑖
𝜕𝑋

+ 𝜀
𝜕

𝜕𝑋
(𝑁−𝑖𝑈−𝑖) = 0,                                                               (2.11) 

𝜀2
𝜕𝑈+𝑖
𝜕𝑇

− 𝜀𝑉𝑝
𝜕𝑈+𝑖
𝜕𝑋

+ 𝜀𝑈+𝑖 (
𝜕𝑈+𝑖
𝜕𝑋

) + 𝜀
𝜕𝛷

𝜕𝑋
+ 𝜀2𝜇+𝑖

𝜕2𝑈+𝑖
𝜕𝑋2

= 0,                        (2.12) 

𝜀2
𝜕𝑈−𝑖
𝜕𝑇

− 𝜀𝑉𝑝
𝜕𝑈−𝑖
𝜕𝑋

+ 𝜀𝑈−𝑖 (
𝜕𝑈−𝑖
𝜕𝑋

) − 𝜀𝑀±

𝜕Φ

𝜕𝑋
+ 𝜀

𝛿𝑒𝑖
𝑁−𝑖

𝜕𝑁−𝑖
𝜕𝑋

+ 𝜀2𝜇−𝑖
𝜕2𝑈−𝑖
𝜕𝑋2

= 0,     

(2.13) 

and 

𝜀4
𝜕2Φ

𝜕𝑋2
= −𝑁𝑟2 {[1 + (𝑞 − 1)Φ]

𝑞+1

2(𝑞−1) × [1 + 𝐵1Φ+ 𝐵2Φ
2]} + 𝑁𝑝𝑖 − 𝑁𝑛𝑖, (2.14) 

where 

𝐵1 = −
16𝑞𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
 and  𝐵2 =

16𝑞(2𝑞 − 1)𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
. 

Again, the expansions for physical quantities are considered [59, 84] as  

[
 
 
 
 
𝑁+𝑖
𝑁−𝑖
𝑈+𝑖
𝑈−𝑖
Φ ]
 
 
 
 

=

[
 
 
 
 
1
𝑁𝑟1
0
0
0 ]
 
 
 
 

+∑𝜀𝑖
∞

𝑖

[
 
 
 
 
 
 𝑁+𝑖

(𝑖)

𝑁−𝑖
(𝑖)

𝑈+𝑖
(𝑖)

𝑈−𝑖
(𝑖)

Φ(𝑖)]
 
 
 
 
 
 

,                                               (2.15) 
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where 𝑉𝑝 and 𝜀 are the linear phase speed of the IA mode and a small quantity 

measuring the weakness of dissipation, respectively. By employing Eq. (2.15) 

into Eqs. (2.10)-(2.14), one can covert Eqs. (2.10)-(2.14) by including the different 

orders of  𝜀, that is 𝛰(𝜀𝑟), 𝑟 = 2,3,4,⋯⋯, as well as the first, second, third, and 

so on perturbed quantities.   

For  𝛰(𝜀2): 

−𝑉𝑝
𝜕𝑁+𝑖

(1)

𝜕𝑋
+
𝜕𝑈+𝑖

(1)

𝜕𝑋
= 0,                                                                       (2.16) 

−𝑉𝑝
𝜕𝑁−𝑖

(1)

𝜕𝑋
+ 𝑁𝑟1

𝜕𝑈−𝑖
(1)

𝜕𝑋
= 0,                                                                (2.17) 

−𝑉𝑝
𝜕𝑈+𝑖

(1)

𝜕𝑋
+
𝜕Φ(1)

𝜕𝑋
= 0,                                                                      (2.18) 

−𝑉𝑝
𝜕𝑈−𝑖

(1)

𝜕𝑋
−𝑀±

𝜕Φ(1)

𝜕𝑋
+
𝛿𝑒𝑖
𝑁𝑟1

𝜕𝑁−𝑖
(1)

𝜕𝑋
= 0,                                         (2.19) 

and 

−𝑁𝑟2𝛺1𝛷
(1) + 𝑁+𝑖

(1) − 𝑁−𝑖
(1) = 0,                                                        (2.20) 

where 

𝛺1 =
𝑞 + 1

2
+ 𝐵1. 

For  𝛰(𝜀3): 

𝜕𝑁+𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁+𝑖
(2)

𝜕𝑋
+
𝜕𝑈+𝑖

(2)

𝜕𝑋
+
𝜕

𝜕𝑋
(𝑁+𝑖

(1)𝑈+𝑖
(1)) = 0,                             (2.21) 

𝜕𝑁−𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁−𝑖
(2)

𝜕𝑋
+ 𝑁𝑟1

𝜕𝑈−𝑖
(2)

𝜕𝑋
+
𝜕

𝜕𝑋
(𝑁−𝑖

(1)𝑈−𝑖
(1)) = 0,                       (2.22) 

𝜕𝑈+𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈+𝑖
(2)

𝜕𝑋
+ 𝑈+𝑖

(1) 𝜕𝑈+𝑖
(1)

𝜕𝑋
+
𝜕Φ(2)

𝜕𝑋
+ 𝜇+𝑖

𝜕2𝑈+𝑖
(1)

𝜕𝑋2
= 0,            (2.23) 
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𝜕𝑈−𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈−𝑖
(2)

𝜕𝑋
+ 𝑈−𝑖

(1) 𝜕𝑈−𝑖
(1)

𝜕𝑋
−𝑀±

𝜕Φ(2)

𝜕𝑋
+                                                

𝛿𝑒𝑖
𝑁𝑟1

𝜕𝑁−𝑖
(2)

𝜕𝑋
−
𝛿𝑒𝑖

𝑁𝑟1
2 𝑁−𝑖

(1) 𝜕𝑁−𝑖
(1)

𝜕𝑋
+ 𝜇−𝑖

𝜕2𝑈−𝑖
(1)

𝜕𝑋2
= 0,        (2.24) 

and 

−𝑁𝑟2𝛺1Φ
(2) − 𝑁𝑟2𝛺2[Φ

(1)]
2
+ 𝑁+𝑖

(2) − 𝑁−𝑖
(2) = 0,                          (2.25) 

where 

𝛺2 =
𝑞 + 1

2
𝐵1 +

(𝑞 + 1)(3 − 𝑞)

8
+ 𝐵2. 

Now, the solutions for 𝛰(𝜀2) from Eqs. (2.16)-(2.19) are obtained as 

𝑁+𝑖
(1) =

1

𝑉𝑝2
Φ(1), 𝑈+𝑖

(1) =
1

𝑉𝑝
Φ(1)

𝑁−𝑖
(1)
= −

𝑁𝑟1𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖
Φ(1), 𝑈−𝑖

(1)
= −

𝑉𝑝𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖
Φ(1)

}
 
 

 
 

,          (2.26) 

By inserting the different values of Eq. (2.26) in Eq. (2.20), the linear phase 

velocity is obtained as 

𝑉𝑝 = ±√
(𝑁𝑟2𝛺1𝛿𝑒𝑖 + 𝑁𝑟1𝑀± + 1) ± √𝑅

2𝑁𝑟2𝛺1
.                                (2.27) 

The positive value of phase velocity indicates fast mode, and the negative value 

of phase velocity indicates slow mode. But in our work, we consider it fast 

mode. Where 𝑅 = (𝑁𝑟2𝛺1𝛿𝑒𝑖 + 𝑁𝑟1𝑀± + 1)
2 − 4𝑁𝑟2𝛺1𝛿𝑒𝑖. Eq. (2.27) clearly 

indicates that 𝑉𝑝 is strongly dependent only on 𝑁𝑟1, 𝑀±, 𝛿𝑒𝑖, 𝑁𝑟2, 𝛼 and 𝑞. 

Moreover, it is validated only if 𝑅 = (𝑁𝑟2𝛺1𝛿𝑒𝑖 + 𝑁𝑟1𝑀± + 1)
2 − 4𝑁𝑟2𝛺1𝛿𝑒𝑖 ≥ 0. 

Now, one can easily derive the following equations from Eqs. (2.21)-(2.25) by 

using the values of Eq. (2.26): 

1

𝑉𝑝2
𝜕Φ(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁+𝑖
(2)

𝜕𝑋
+
𝜕𝑈+𝑖

(2)

𝜕𝑋
+
2

𝑉𝑝
3Φ

(1)
𝜕Φ(1)

𝜕𝑋
= 0,                                  (2.28) 
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1

𝑉𝑝

𝜕Φ(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈+𝑖
(2)

𝜕𝑋
+
𝜕Φ(2)

𝜕𝑋
+
1

𝑉𝑝2
Φ(1)

𝜕Φ(1)

𝜕𝑋
+
𝜇+𝑖
𝑉𝑝

𝜕2Φ(1)

𝜕𝑋2
= 0,        (2.29) 

−
𝑁𝑟1𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕Φ(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁−𝑖
(2)

𝜕𝑋
+ 𝑁𝑟1

𝜕𝑈−𝑖
(2)

𝜕𝑋
+
2𝑁𝑟1𝑉𝑝𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)2
Φ(1)

𝜕Φ(1)

𝜕𝑋
= 0, (2.30) 

−
𝑉𝑝𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕Φ(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈−𝑖
(2)

𝜕𝑋
+
𝛿𝑒𝑖
𝑁𝑟1

𝜕𝑁−𝑖
(2)

𝜕𝑋
−𝑀±

𝜕Φ(2)

𝜕𝑋
+

𝑉𝑝
2𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)2
Φ(1)

𝜕Φ(1)

𝜕𝑋

−
𝛿𝑒𝑖𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)2
Φ(1)

𝜕Φ(1)

𝜕𝑋
−
𝜇−𝑖𝑉𝑝𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕2Φ(1)

𝜕𝑋2
= 0,                             (2.31) 

and 

−𝑁𝑟2𝛺1Φ
(2) − 𝑁𝑟2𝛺2[Φ

(1)]
2
+ 𝑁+𝑖

(2) − 𝑁−𝑖
(2) = 0.                              (2.32) 

Multiplying Eq. (2.28) by 𝑉𝑝 and then adding Eq. (2.29), one can obtain as 

2

𝑉𝑝

𝜕Φ(1)

𝜕𝑇
− 𝑉𝑝

2
𝜕𝑁+𝑖

(2)

𝜕𝑋
+
3

𝑉𝑝2
Φ(1)

𝜕Φ(1)

𝜕𝑋
+
𝜕Φ(2)

𝜕𝑋
+
𝜇+𝑖
𝑉𝑝

𝜕2Φ(1)

𝜕𝑋2
= 0,                 (2.33) 

Again, multiplying Eq. (2.30) by 𝑉𝑝 and multiplying Eq. (2.31) by 𝑁𝑟1, then 

adding, one can obtain as 

−
2𝑁𝑟1𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕Φ(1)

𝜕𝑇
− (𝑉𝑝

2 − 𝛿𝑒𝑖)
𝜕𝑁−𝑖

(2)

𝜕𝑋
+ [

3𝑁𝑟1𝑉𝑝
2𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)2
−
𝛿𝑒𝑖𝑁𝑟1𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)2
]Φ(1)

𝜕Φ(1)

𝜕𝑋

− 𝑁𝑟1𝑀±

𝜕Φ(2)

𝜕𝑋
−
𝜇−𝑖𝑉𝑝𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕2Φ(1)

𝜕𝑋2
= 0,                                               (2.34) 

Differentiating Eq. (2.32) with respect to 𝑋 and multiplying Eq. (2.33) by  
1

𝑉𝑝
2, 

then adding, one can obtain 

2

𝑉𝑝
3

𝜕Φ(1)

𝜕𝑇
+ [

3

𝑉𝑝4
+ 2𝑁𝑟2𝛺2]Φ

(1)
𝜕Φ(1)

𝜕𝑋
+ [

2

𝑉𝑝2
− 𝑁𝑟2𝛺1]

𝜕Φ(2)

𝜕𝑋
+
𝜇+𝑖

𝑉𝑝
3

𝜕2Φ(1)

𝜕𝑋2
Φ(2)

−
𝜕𝑁−𝑖

(2)

𝜕𝑋
= 0,                                                                                                (2.35) 
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Finally, multiplying Eq. (2.34) by 
1

(𝑉𝑝
2−𝛿𝑒𝑖)

 and then subtracting Eq. (2.35) from it, 

the following NLEEs is obtained as follows: 

𝜕Φ(1)

𝜕𝑇
+ 𝐵Φ(1)

𝜕Φ(1)

𝜕𝑋
= 𝐶

𝜕2Φ(1)

𝜕𝑋2
,                                                 (2.36) 

where 

𝐵 = [
3

𝑉𝑝4
−
3𝑁𝑟1𝑉𝑝

2𝑀±
2

(𝑉𝑝2 − 𝛿𝑒𝑖)3
+
𝛿𝑒𝑖𝑁𝑟1𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)3
− 2𝑁𝑟2𝛺2] ÷ [

2

𝑉𝑝
3 +

2𝑁𝑟1𝑉𝑝𝑀±

(𝑉𝑝2 − 𝛿𝑒𝑖)2
] , (2.37) 

𝐶 = − [
𝜇+𝑖

𝑉𝑝
3 +

𝜇−𝑖𝑁𝑟1𝑉𝑝𝑀±

(𝑉𝑝2 − 𝛿𝑒𝑖)2
] ÷ [

2

𝑉𝑝
3 +

2𝑁𝑟1𝑉𝑝𝑀±

(𝑉𝑝2 − 𝛿𝑒𝑖)2
],                                         (2.38) 

It is to be noted that Eq. (2.36) divulges only the shock wave structures in 

plasmas because it is a Burgers equation. 

2.3.1     Solution of Burgers equation 

To determine the shock wave solution of Burgers equation, one can convert   

Eq. (2.36) by using the travelling wave transform as Φ(1)(𝑋, 𝑇) = 𝑓(𝜉) with           

𝜉 = 𝑋 − 𝑉𝑟𝑇 (𝑉𝑟 is the speed of the reference frame) with 𝑓 → 0, 𝑓′ → 0, 𝑓″ → 0 as 

𝜉 → ±∞ to the following form: 

−𝑉𝑟
𝑑𝑓

𝜕𝜉
+ 𝐵𝑓

𝑑𝑓

𝜕𝜉
= 𝐶

𝑑2𝑓

𝑑𝜉2
 

or,
𝐶𝑑𝑓

1

2
𝐵𝑓2 − 𝑉𝑟𝑓

= 𝑑𝜉 

or,
2𝐶

𝐵

𝑑𝑓

𝑓 (𝑓 −
2𝑉𝑟

𝐵
)
= 𝑑𝜉 

or,
𝐶

𝑉𝑟
[

1

𝑓 −
2𝑉𝑟

𝐵

−
1

𝑓
] 𝑑𝑓 = 𝑑𝜁 

or,
𝐶

𝑉𝑟
∫[

1

𝑓 −
2𝑉𝑟

𝐵

−
1

𝑓
] 𝑑𝑓 = ∫ 𝑑𝜉 



 

32 
 

or, 𝑙𝑛 (𝑓 −
2𝑉𝑟
𝐵
) − 𝑙𝑛 𝑓 =

𝑉𝑟
𝐶
𝜉 

or, 𝑓 −
2𝑉𝑟
𝐵
= 𝑓 𝑒𝑥𝑝 (

𝑉𝑟
𝐶
𝜉) 

or, 𝑓 [𝑒𝑥𝑝 (
−𝑉𝑟
𝐶
𝜉) − 1] =

2𝑉𝑟
𝐵
𝑒𝑥𝑝 (

−𝑉𝑟
𝐶
𝜉) 

or, 𝑓 = −
2𝑉𝑟
𝐵

𝑒𝑥𝑝 (
−𝑉𝑟

𝐶
𝜉)

1 − 𝑒𝑥𝑝 (
−𝑉𝑟

𝐶
𝜉)

 

or, 𝑓 = −
2𝑉𝑟
𝐵

𝑒𝑥𝑝 (
−𝑉𝑟

2𝐶
𝜉)

𝑒𝑥𝑝 (
𝑉𝑟

2𝐶
𝜉) − 𝑒𝑥𝑝 (

−𝑉𝑟

2𝐶
𝜉)

 

or, 𝑓 =
𝑉𝑟
𝐵
[1 −

𝑒𝑥𝑝 (
𝐴𝑉𝑟

2𝐶
𝜉) + 𝑒𝑥𝑝 (

−𝐴𝑉𝑟

2𝐶
𝜉)

𝑒𝑥𝑝 (
𝐴𝑉𝑟

2𝐶
𝜉) − 𝑒𝑥𝑝 (

−𝐴𝑉𝑟

2𝐶
𝜉)
] 

∴ 𝑓 =
𝑉𝑟
𝐵
[1 − 𝑡𝑎𝑛 ℎ (

𝑉𝑟
2𝐶

𝜉)] 

Therefore the solution of Eq. (2.36) is obtained as 

Φ(1) = Φ𝐴 [1 − 𝑡𝑎𝑛 ℎ (
𝜉

Φ𝑊
)],                                                   (2.39) 

where Φ𝐴 = (𝑉𝑟 𝐵⁄ )  and Φ𝑊 = (2𝐶 𝑉𝑟)⁄  are the amplitude and width of SWEs. 

2.4    Formation of modified Burgers type equation 

Eq. (2.39) is clearly shown that Burgers equation is unable to describe the shock 

wave phenomena when Φ𝐴 → ∞ as 𝐵 → 0. By considering 𝐵 = 0, one can easily 

determine the critical values of any specific parameter. To overcome such 

difficulty, one may derive Burgers equation involving higher order 

nonlinearity. As a result, in order to study the shock wave phenomena around 

the critical values, one can consider the stretching coordinates by taking the 

higher-order correction of the reductive perturbative method [59, 84] as                                        

𝑋 = 𝜀2(𝑧 − 𝑉𝑝𝑡),         𝑇 = 𝜀
4𝑡,                                                             (2.40) 
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From Eq. (2.40), the operators are defined as 

𝜕

𝜕𝑡
= 𝜀4

𝜕

𝜕𝑇
− 𝜀2𝑉𝑝

𝜕

𝜕𝑋
,        

𝜕

𝜕𝑧
= 𝜀2

𝜕

𝜕𝑋
 ,                                          (2.41) 

Eqs. (2.2)-(2.6) are then converted with the aid of Eq. (2.41) to the following: 

𝜀4
𝜕𝑁+𝑖
𝜕𝑇

− 𝜀2𝑉𝑝
𝜕𝑁+𝑖
𝜕𝑋

+ 𝜀2
𝜕

𝜕𝑋
(𝑁+𝑖𝑈+𝑖) = 0,                                        (2.42) 

𝜀4
𝜕𝑁−𝑖
𝜕𝑇

− 𝜀2𝑉𝑝
𝜕𝑁−𝑖
𝜕𝑋

+ 𝜀2
𝜕

𝜕𝑋
(𝑁−𝑖𝑈−𝑖) = 0,                                        (2.43) 

𝜀4
𝜕𝑈+𝑖
𝜕𝑇

− 𝜀2𝑉𝑝
𝜕𝑈+𝑖
𝜕𝑋

+ 𝜀2𝑈+𝑖 (
𝜕𝑈+𝑖
𝜕𝑋

) + 𝜀2
𝜕Φ

𝜕𝑋
+ 𝜀4𝜇+𝑖

𝜕2𝑈+𝑖
𝜕𝑋2

= 0, (2.44) 

𝜀4
𝜕𝑈−𝑖
𝜕𝑇

− 𝜀2𝑉𝑝
𝜕𝑈−𝑖
𝜕𝑋

+ 𝜀2𝑈−𝑖 (
𝜕𝑈−𝑖
𝜕𝑋

) − 𝜀2𝑀±

𝜕Φ

𝜕𝑋
+ 𝜀2

𝛿𝑒𝑖
𝑁−𝑖

𝜕𝑁−𝑖
𝜕𝑋

+ 𝜀4𝜇−𝑖
𝜕2𝑈−𝑖
𝜕𝑋2

= 0,                                                                                                                 (2.45) 

and 

𝜀4
𝜕2Φ

𝜕𝑋2
= −𝑁𝑟2 {[1 + (𝑞 − 1)Φ]

𝑞+1

2(𝑞−1) × [1 + 𝐵1Φ+ 𝐵2Φ
2]} + 𝑁𝑝𝑖 − 𝑁𝑛𝑖, (2.46) 

Inserting Eq. (2.15) into Eqs. (2.42)-(2.46), one can coverts Eqs. (2.42)-(2.46) by 

including the different orders of 𝜀, that is 𝛰(𝜀𝑟), 𝑟 = 3,4,⋯⋯. For 𝛰(𝜀3),  one 

obtains the same equations as in Eqs. (2.16)-(2.20) and their solutions are given 

in Eq. (2.26). The linear phase velocity is obtained in the same form as in          

Eq. (2.27).  

For  𝛰(𝜀4): 

−𝑉𝑝
𝜕𝑁+𝑖

(2)

𝜕𝑋
+
𝜕𝑈+𝑖

(2)

𝜕𝑋
+
𝜕

𝜕𝑋
(𝑁+𝑖

(1)𝑈+𝑖
(1)) = 0,                                           (2.47) 

−𝑉𝑝
𝜕𝑁−𝑖

(2)

𝜕𝑋
+ 𝑁𝑟1

𝜕𝑈−𝑖
(2)

𝜕𝑋
+
𝜕

𝜕𝑋
(𝑁−𝑖

(1)𝑈−𝑖
(1)) = 0,                                    (2.48) 

−𝑉𝑝
𝜕𝑈+𝑖

(2)

𝜕𝑋
+ 𝑈+𝑖

(1) 𝜕𝑈+𝑖
(1)

𝜕𝑋
+
𝜕Φ(2)

𝜕𝑋
= 0,                                                   (2.49) 

−𝑉𝑝
𝜕𝑈−𝑖

(2)

𝜕𝑋
+ 𝑈−𝑖

(1) 𝜕𝑈−𝑖
(1)

𝜕𝑋
−𝑀±

𝜕Φ(2)

𝜕𝑋
+
𝛿𝑒𝑖
𝑁𝑟1

𝜕𝑁−𝑖
(2)

𝜕𝑋
−
𝛿𝑒𝑖

𝑁𝑟1
2 𝑁−𝑖

(1) 𝜕𝑁−𝑖
(1)

𝜕𝑋
= 0, (2.50) 

 

and 

−𝑁𝑟2𝛺1Φ
(2) − 𝑁𝑟2𝛺2[Φ

(1)]
2
+ 𝑁+𝑖

(2) − 𝑁−𝑖
(2) = 0.                     (2.51) 
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For  𝛰(𝜀5): 

𝜕𝑁+𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁+𝑖
(3)

𝜕𝑋
+
𝜕𝑈+𝑖

(3)

𝜕𝑋
+
𝜕

𝜕𝑋
(𝑁+𝑖

(1)𝑈+𝑖
(2)) +

𝜕

𝜕𝑋
(𝑁+𝑖

(2)𝑈+𝑖
(1)) = 0,        (2.52) 

𝜕𝑁−𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁−𝑖
(3)

𝜕𝑋
+ 𝑁𝑟1

𝜕𝑈−𝑖
(3)

𝜕𝑋
+
𝜕

𝜕𝑋
(𝑁−𝑖

(1)𝑈−𝑖
(2)) +

𝜕

𝜕𝑋
(𝑁−𝑖

(2)𝑈−𝑖
(1)) = 0, (2.53) 

𝜕𝑈+𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈+𝑖
(3)

𝜕𝑋
+ 𝑈+𝑖

(1) 𝜕𝑈+𝑖
(2)

𝜕𝑋
+ 𝑈+𝑖

(2) 𝜕𝑈+𝑖
(1)

𝜕𝑋
+
𝜕Φ(3)

𝜕𝑋
+ 𝜇+𝑖

𝜕2𝑈+𝑖
(1)

𝜕𝑋2
= 0, (2.54) 

𝜕𝑈−𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈−𝑖
(3)

𝜕𝑋
+ 𝑈−𝑖

(1) 𝜕𝑈−𝑖
(2)

𝜕𝑋
+ 𝑈−𝑖

(2) 𝜕𝑈−𝑖
(1)

𝜕𝑋
−𝑀±

𝜕Φ(3)

𝜕𝑋
+
𝛿𝑒𝑖
𝑁𝑟1

𝜕𝑁−𝑖
(3)

𝜕𝑋
                  

−
𝛿𝑒𝑖

𝑁𝑟1
2 𝑁−𝑖

(1) 𝜕𝑁−𝑖
(2)

𝜕𝑋
−
𝛿𝑒𝑖

𝑁𝑟1
2 𝑁−𝑖

(2) 𝜕𝑁−𝑖
(1)

𝜕𝑋
+
𝛿𝑒𝑖

𝑁𝑟1
3 (𝑁−𝑖

(1))
2 𝜕𝑁−𝑖

(1)

𝜕𝑋
+ 𝜇−𝑖

𝜕2𝑈−𝑖
(1)

𝜕𝑋2
= 0, (2.55) 

and 

−𝑁𝑟2𝛺1Φ
(3) − 2𝑁𝑟2𝛺2Φ

(1)Φ(2) − 𝑁𝑟2𝛺3[Φ
(1)]

3
+ 𝑁+𝑖

(3)
−𝑁−𝑖

(3)
= 0,   (2.56) 

where, 

𝛺3 =
𝑞 + 1

2
𝐵2 +

(𝑞 + 1)(3 − 𝑞)(5 − 3𝑞)

48
+
(𝑞 + 1)(3 − 𝑞)

8
𝐵1. 

Now, one can easily derive the following equations from Eqs. (2.47)-(2.51) by 

using the values of Eq. (2.26): 

−𝑉𝑝
𝜕𝑁+𝑖

(2)

𝜕𝑋
+
𝜕𝑈+𝑖

(2)

𝜕𝑋
+
2

𝑉𝑝
3Φ

(1)
𝜕Φ(1)

𝜕𝑋
= 0,                                           (2.57) 

−𝑉𝑝
𝜕𝑁−𝑖

(2)

𝜕𝑋
+ 𝑁𝑟1

𝜕𝑈−𝑖
(2)

𝜕𝑋
+
2𝑁𝑟1𝑉𝑝𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)2
Φ(1)

𝜕Φ(1)

𝜕𝑋
= 0,                    (2.58) 

−𝑉𝑝
𝜕𝑈+𝑖

(2)

𝜕𝑋
+
𝜕Φ(2)

𝜕𝑋
+
1

𝑉𝑝2
Φ(1)

𝜕Φ(1)

𝜕𝑋
= 0,                                             (2.59) 

−𝑉𝑝
𝜕𝑈−𝑖

(2)

𝜕𝑋
+
𝛿𝑒𝑖
𝑁𝑟1

𝜕𝑁−𝑖
(2)

𝜕𝑋
−𝑀±

𝜕Φ(2)

𝜕𝑋
+

𝑉𝑝
2𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)2
Φ(1)

𝜕Φ(1)

𝜕𝑋
                    

−
𝛿𝑒𝑖𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)2
Φ(1)

𝜕Φ(1)

𝜕𝑋
= 0,                (2.60) 

and 

−𝑁𝑟2𝛺1Φ
(2) − 𝑁𝑟2𝛺2[Φ

(1)]
2
+ 𝑁+𝑖

(2) − 𝑁−𝑖
(2) = 0,                               (2.61)  
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The solutions of the Eqs. (2.57)-(2.60) are obtained as 

𝑁+𝑖
(2) =

1

𝑉𝑝2
[
3

2𝑉𝑝2
{Φ(1)}

2
+Φ(2)],                                                     (2.62) 

𝑈+𝑖
(2) =

1

𝑉𝑝
[
1

2𝑉𝑝2
{Φ(1)}

2
+Φ(2)],                                                      (2.63) 

𝑁−𝑖
(2) =

𝑁𝑟1𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖
[
𝑀±(3𝑉𝑝

2 − 𝛿𝑒𝑖)

2(𝑉𝑝2 − 𝛿𝑒𝑖)2
{Φ(1)}

2
−Φ(2)],                     (2.64) 

𝑈−𝑖
(2)
=

𝑉𝑝𝑀±

𝑉𝑝
2 − 𝛿𝑒𝑖

[
𝑀±(𝑉𝑝

2 + 𝛿𝑒𝑖)

2(𝑉𝑝
2 − 𝛿𝑒𝑖)

2
{Φ(1)}

2
−Φ(2)],                        (2.65) 

and inserting the values of  Eq. (2.62) and Eq. (2.64) in Eq. (2.61), one can obtain  

[
3

𝑉𝑝4
−
3𝑁𝑟1𝑀±

2𝑉𝑝
2

(𝑉𝑝2 − 𝛿𝑒𝑖)3
+
𝑁𝑟1𝑀±

2𝛿𝑒𝑖
(𝑉𝑝2 − 𝛿𝑒𝑖)3

− 2𝑁𝑟2𝛺2] {Φ
(1)}

2
= 0.             (2.66) 

Now, Eq. (2.66) gives 

–𝐶𝑓{Φ
(1)}

2
= 0,                                                        (2.67) 

where 

𝐶𝑓 =
3

𝑉𝑝4
−
3𝑁𝑟1𝑀±

2𝑉𝑝
2

(𝑉𝑝2 − 𝛿𝑒𝑖)3
+
𝑁𝑟1𝑀±

2𝛿𝑒𝑖
(𝑉𝑝2 − 𝛿𝑒𝑖)3

− 2𝑁𝑟2𝛺2 = 0.                          (2.68) 

  

Finally, using the values from Eq. (2.26) and from Eqs. (2.62)-(2.65),                

Eqs. (2.52)-(2.56) provides the following equations: 

1

𝑉𝑝2
𝜕Φ(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁+𝑖
(3)

𝜕𝑋
+
𝜕𝑈+𝑖

(3)

𝜕𝑋
+
6

𝑉𝑝
5 {Φ

(1)}
2 𝜕Φ(1)

𝜕𝑋
+
2

𝑉𝑝
3

𝜕

𝜕𝑋
[Φ(1)Φ(2)] = 0, (2.69) 

−
𝑁𝑟1𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕Φ(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁−𝑖
(3)

𝜕𝑋
+ 𝑁𝑟1

𝜕𝑈−𝑖
(3)

𝜕𝑋
−
6𝑁𝑟1𝑉𝑝

3𝑀±
3

(𝑉𝑝2 − 𝛿𝑒𝑖)4
{Φ(1)}

2 𝜕Φ(1)

𝜕𝑋
 

+
2𝑁𝑟1𝑉𝑝𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)2
𝜕

𝜕𝑋
[Φ(1)Φ(2)] = 0,                                                          (2.70) 

1

𝑉𝑝

𝜕Φ(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈+𝑖
(3)

𝜕𝑋
+
𝜕Φ(3)

𝜕𝑋
+

3

2𝑉𝑝4
{Φ(1)}

2 𝜕Φ(1)

𝜕𝑋
+
1

𝑉𝑝2
𝜕

𝜕𝑋
[Φ(1)Φ(2)]            

+
𝜇+𝑖
𝑉𝑝

𝜕2Φ(1)

𝜕𝑋2
= 0,                                                                                       (2.71) 
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−
𝑉𝑝𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕Φ(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈−𝑖
(3)

𝜕𝑋
+
𝛿𝑒𝑖
𝑁𝑟1

𝜕𝑁−𝑖
(3)

𝜕𝑋
−𝑀±

𝜕Φ(3)

𝜕𝑋
+

𝑀±
2

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕

𝜕𝑋
[Φ(1)Φ(2)] 

−[−
3𝑉𝑝

2𝑀±
3(𝑉𝑝

2 + 𝛿𝑒𝑖)

2(𝑉𝑝2 − 𝛿𝑒𝑖)4
+
3𝛿𝑒𝑖𝑀±

3(3𝑉𝑝
2 − 𝛿𝑒𝑖)

2(𝑉𝑝2 − 𝛿𝑒𝑖)4
−

𝛿𝑒𝑖𝑀±
3

(𝑉𝑝2 − 𝛿𝑒𝑖)3
] × 

{Φ(1)}
2 𝜕Φ(1)

𝜕𝑋
−
𝜇−𝑖𝑉𝑝𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕2Φ(1)

𝜕𝑋2
= 0,                           (2.72) 

and 

−𝑁𝑟2𝛺1Φ
(3) − 2𝑁𝑟2𝛺2Φ

(1)Φ(2) − 𝑁𝑟2𝛺3[Φ
(1)]

3
+ 𝑁+𝑖

(3) − 𝑁−𝑖
(3) = 0, (2.73) 

Multiplying Eq. (2.69) by 𝑉𝑝 and then adding Eq. (2.71), one can obtain as 

2

𝑉𝑝

𝜕Φ(1)

𝜕𝑇
− 𝑉𝑝

2
𝜕𝑁+𝑖

(3)

𝜕𝑋
+
15

2𝑉𝑝4
{Φ(1)}

2 𝜕Φ(1)

𝜕𝑋
+
3

𝑉𝑝2
𝜕

𝜕𝑋
[Φ(1)Φ(2)] +

𝜕Φ(3)

𝜕𝑋
+
𝜇+𝑖
𝑉𝑝

𝜕2Φ(1)

𝜕𝑋2

= 0,                                                                                                                 (2.74) 

Again, multiplying Eq. (2.70) by 𝑉𝑝 and multiplying Eq. (2.72) by 𝑁𝑟1, then 

adding, one can obtain as 

−
2𝑁𝑟1𝑀±𝑉𝑝

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕Φ(1)

𝜕𝑇
− (𝑉𝑝

2 − 𝛿𝑒𝑖)
𝜕𝑁−𝑖

(3)

𝜕𝑋
+ [

2𝑁𝑟1𝑉𝑝
2𝑀±

2

(𝑉𝑝2 − 𝛿𝑒𝑖)2
+
𝑁𝑟1𝑀±

2

𝑉𝑝2 − 𝛿𝑒𝑖
]
𝜕

𝜕𝑋
[Φ(1)Φ(2)]   

− [
6𝑁𝑟1𝑉𝑝

4𝑀±
3

(𝑉𝑝2 − 𝛿𝑒𝑖)4
+
3𝑁𝑟1𝑉𝑝

2𝑀±
3(𝑉𝑝

2 + 𝛿𝑒𝑖)

2(𝑉𝑝2 − 𝛿𝑒𝑖)4
−
3𝑁𝑟1𝛿𝑒𝑖𝑀±

3(3𝑉𝑝
2 − 𝛿𝑒𝑖)

2(𝑉𝑝2 − 𝛿𝑒𝑖)4

+
𝛿𝑒𝑖𝑁𝑟1𝑀±

3

(𝑉𝑝2 − 𝛿𝑒𝑖)3
] {Φ(1)}

2 𝜕Φ(1)

𝜕𝑋
− 𝑁𝑟1𝑀±

𝜕Φ(3)

𝜕𝑋
−
𝑁𝑟1𝜇−𝑖𝑉𝑝𝑀±

𝑉𝑝2 − 𝛿𝑒𝑖

𝜕2Φ(1)

𝜕𝑋2
 

= 0,                                                                                                                 (2.75) 

Differentiating Eq. (2.73) with respect to 𝑋 and multiplying Eq. (2.74) by  
1

𝑉𝑝
2, 

then adding, one can obtain 

2

𝑉𝑝
3

𝜕Φ(1)

𝜕𝑇
+ [

15

2𝑉𝑝
6 − 3𝑁𝑟2𝛺3] {Φ

(1)}
2 𝜕Φ(1)

𝜕𝑋
+ [

3

𝑉𝑝
5 − 3𝑁𝑟2𝛺2]

𝜕

𝜕𝑋
[Φ(1)Φ(2)] −

𝜕𝑁−𝑖
(3)

𝜕𝑋

+ (
1

𝑉𝑝2
− 𝑁𝑟2𝛺1)

𝜕Φ(3)

𝜕𝑋
+
𝜇+𝑖

𝑉𝑝
3

𝜕2Φ(1)

𝜕𝑋2
= 0,                                          (2.76) 

Finally, multiplying Eq. (2.75) by 
1

(𝑉𝑝
2−𝛿𝑒𝑖)

 and then subtracting Eq. (2.76) from it, 

the following NLEEs is obtained as follows: 

𝜕Φ(1)

𝜕𝑇
+ 𝐵′{Φ(1)}

2 𝜕Φ(1)

𝜕𝑋
= 𝐶′

𝜕2Φ(1)

𝜕𝑋2
 ,                                 (2.77) 
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which is the modified Burgers (mB)-type equation. The coefficients of Eq. (2.77) 

are determined as 

𝐵′ = [
15(𝑉𝑝

2 − 𝛿𝑒𝑖)

2𝑉𝑝4
− 3𝑁𝑟2𝛺3𝑉𝑝

2(𝑉𝑝
2 − 𝛿𝑒𝑖)

+
3𝑁𝑟1𝑉𝑝

2𝑀±
3(5𝑉𝑝

4 − 2𝑉𝑝
2𝛿𝑒𝑖 + 𝛿𝑒𝑖

2 )

2(𝑉𝑝2 − 𝛿𝑒𝑖)4
+
𝛿𝑒𝑖𝑁𝑟1𝑀±

3𝑉𝑝
2

(𝑉𝑝2 − 𝛿𝑒𝑖)3
]

÷ [
2(𝑉𝑝

2 − 𝛿𝑒𝑖)

𝑉𝑝
+
2𝑁𝑟1𝑉𝑝

3𝑀±

(𝑉𝑝2 − 𝛿𝑒𝑖)
],                                                               (2.78) 

𝐶′ = − [
𝜇+𝑖(𝑉𝑝

2 − 𝛿𝑒𝑖)

𝑉𝑝
+
𝑁𝑟1𝜇−𝑖𝑉𝑝

3𝑀±

(𝑉𝑝2 − 𝛿𝑒𝑖)
] ÷ [

2(𝑉𝑝
2 − 𝛿𝑒𝑖)

𝑉𝑝
+
2𝑁𝑟1𝑉𝑝

3𝑀±

(𝑉𝑝2 − 𝛿𝑒𝑖)
],             (2.79) 

2.4.1    Solution of modified Burgers type equation 

In the previous literature [94-96], the solution of mB-type equation (see 

Appendix A) is incorrectly defined, which is not useful for further verification 

in laboratory plasmas. To determine the correct stationary shock wave solution 

of Eq. (2.77), one can convert Eq. (2.77) by considering Φ(1)(𝑋, 𝑇) = 𝜓(𝜉) with 

𝜉 = 𝑋 − 𝑉𝑟𝑇 (𝑉𝑟 is the speed of the reference frame) with 𝜓 → 0, 𝜓′ → 0, 𝜓″ → 0 

as 𝜉 → ±∞ to the following form: 

−𝑉𝑟
𝑑𝜓

𝜕𝜉
+ 𝐵′𝜓2

𝑑𝜓

𝜕𝜉
= 𝐶′

𝑑2𝜓

𝑑𝜉2
 

or, −𝑉𝑟𝜓 +
1

3
𝐵′𝜓3 = 𝐶′

𝑑𝜓

𝑑𝜉
 

or,
𝐶′𝑑𝜓

1

3
𝐵′𝜓3 − 𝑉𝑟𝜓

= 𝑑𝜉 

or,
3𝐶′

𝐵′

𝑑𝜓

𝜓 (𝜓2 −
3𝑉𝑟

𝐵
)
= 𝑑𝜉 

or,
𝐶′

2𝑉𝑟
[

2𝜓

𝜓2 −
3𝑉𝑟

𝐵′

−
2

𝜓
] 𝑑𝜓 = 𝑑𝜉 

or, 𝑙𝑛 (𝜓2 −
3𝑉𝑟
𝐵′
) − 𝑙𝑛 𝜓2 =

2𝑉𝑟
𝐶′
𝜉 
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or, 𝜓2 −
3𝑉𝑟
𝐵′

= 𝜓2 𝑒𝑥𝑝 (
2𝑉𝑟
𝐶′
𝜉) 

or, 𝜓2 [𝑒𝑥𝑝 (
−2𝑉𝑟
𝐶′

𝜉) − 1] =
3𝑉𝑟
𝐵′
𝑒𝑥𝑝 (

−2𝑉𝑟
𝐶′

𝜉) 

or, 𝜓2 = −
3𝑉𝑟
𝐵′

𝑒𝑥𝑝 (
−2𝑉𝑟

𝐶′
𝜉)

1 − 𝑒𝑥𝑝 (
−2𝑉𝑟

𝐶′
𝜉)

 

or, 𝜓2 = −
3𝑉𝑟
𝐵′

𝑒𝑥𝑝 (
−𝑉𝑟

𝐶′
𝜉)

𝑒𝑥𝑝 (
𝑉𝑟

𝐶′
𝜉) − 𝑒𝑥𝑝 (

−𝑉𝑟

𝐶′
𝜉)

 

or, 𝜓2 =
3𝑉𝑟
2𝐵′

[1 −
𝑒𝑥𝑝 (

𝑉𝑟

𝐶′
𝜉) + 𝑒𝑥𝑝 (

−𝑉𝑟

𝐶′
𝜉)

𝑒𝑥𝑝 (
𝑉𝑟

𝐶′
𝜉) − 𝑒𝑥𝑝 (

−𝑉𝑟

𝐶′
𝜉)
] 

∴ 𝜓 = √
3𝑉𝑟
2𝐵′

[1 − 𝑡𝑎𝑛 ℎ (
𝑉𝑟
𝐶′
𝜉)],                                                     (2.80) 

From Eq. (2.80), the stationary shock wave solution of Eq. (2.77) is obtained as 

Φ(1) = √Φ𝐴 {1 − 𝑡𝑎𝑛 ℎ (
𝜉

Φ𝑊
)},                                           (2.81) 

Where Φ𝐴 = (3𝑉𝑟 2𝐵′⁄ ) and Φ𝑊 = (𝐶′ 𝑉𝑟⁄ ) are respectively the amplitude and 

width of IASWs around the critical values. The verification of the obtained 

solution is given in Appendix A. 

2.5    Formation of mixed modified Burgers type equation 

One can easily find that Eq. (2.80) is not useful to study the shock wave 

phenomena not only at CVs but also around CVs. In such situation, one needs 

to derive another evolution equation. To do so, one can take 𝐶𝑓
0 for 𝑞 (say) 

around its 𝑞𝑐 as 

𝐶𝑓
0 = ℎ (

𝜕𝐶𝑓

𝜕𝑞
)
𝑞=𝑞𝑐

|𝑞 − 𝑞𝑐| = 𝑆𝐺𝜀,                                       (2.82) 
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where |𝑞 − 𝑞𝑐| ≡ 𝜀 (because |𝑞 − 𝑞𝑐| is small quantity). 𝑆 = 1(−1) for               

𝑞 > 𝑞𝑐(𝑞 < 𝑞𝑐) and 𝐺 = (
𝜕𝐶𝑓

𝜕𝑞
)
𝑞=𝑞𝑐

. As a result, one can re-evaluate from            

Eq. (2.56) by adding  𝜌(2) = 𝜀
1

2
𝑆𝐺𝛷2 and yields 

−𝑁𝑟2𝛺1
𝜕Φ(3)

𝜕𝑋
+ 𝑆𝐺Φ(1)

𝜕Φ(1)

𝜕𝑋
− 3𝑁𝑟2𝛺3{Φ

(1)}
2 𝜕Φ(1)

𝜕𝑋
− 2𝑁𝑟2𝛺2

𝜕

𝜕𝑋
[Φ(1)Φ(2)]

+
𝜕𝑁+𝑖

(3)

𝜕𝑋
−
𝜕𝑁−𝑖

(3)

𝜕𝑋
= 0.                                                                                (2.83) 

Mmultiplying Eq. (2.74) by  
1

𝑉𝑝
2 and adding  with Eq. (2.83), one can obtained as 

2

𝑉𝑝
3

𝜕Φ(1)

𝜕𝑇
+ [

15

2𝑉𝑝
6 − 3𝑁𝑟2𝛺3] {Φ

(1)}
2 𝜕Φ(1)

𝜕𝑋
+ [

3

𝑉𝑝4
− 2𝑁𝑟2𝛺2]

𝜕

𝜕𝑋
[Φ(1)Φ(2)] 

+𝑆𝐺Φ(1)
𝜕Φ(1)

𝜕𝑋
−
𝜕𝑁−𝑖

(3)

𝜕𝑋
+ (

1

𝑉𝑝2
− 𝑁𝑟2𝛺1)

𝜕Φ(3)

𝜕𝑋
+
𝜇+𝑖

𝑉𝑝
3

𝜕2Φ(1)

𝜕𝑋2
= 0,           (2.84) 

Now, multiplying Eq. (2.75) by 
1

(𝑉𝑝
2−𝛿𝑒𝑖)

 and then subtracting Eq. (2.84) from it, 

one obtained as follows: 

𝜕Φ(1)

𝜕𝑇
+ 𝑆𝐷Φ(1)

𝜕Φ(1)

𝜕𝑋
+ 𝐵′{Φ(1)}

2 𝜕Φ(1)

𝜕𝑋
= 𝐶′

𝜕2Φ(1)

𝜕𝑋2
,                   (2.85) 

where 𝐷 = [(𝑉𝑝
2 − 𝛿𝑒𝑖) 2 {

(𝑉𝑝
2−𝛿𝑒𝑖)

𝑉𝑝
+
𝑁𝑟1𝑉𝑝

3𝑀±

(𝑉𝑝
2−𝛿𝑒𝑖)

}⁄ ] (
𝜕𝐶𝑓

𝜕𝑞
)
𝑞=𝑞𝑐

,                               (2.86) 

Equation (2.85) is the mmB-type equation because the additional nonlinear term 

is occurred with the mBE. One can easily convert mmB-type equation not only 

to mB-type equation but also to Burger equation. It is noted that Eq. (2.85) may 

be supported the IASWs around CVs but also at CVs, which is analyzed later by 

deriving the analytical solution of it. 

2.5.1    Solution of mixed modified Burgers type equation 

To determine the stationary shock wave solution of Eq. (2.85), one can convert 

Eq. (2.85) by considering Φ(1) = Φ−
𝑆𝐷

2𝐵
, one can obtain 

𝜕Φ

𝜕𝑇
− (

𝑆𝐷

2√𝐵′
)
2 𝜕Φ

𝜕𝑋
+ 𝐵′{Φ}2

𝜕Φ

𝜕𝑋
= 𝐶′

𝜕2Φ

𝜕𝑋2
,                               (2.87) 
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Again assume that Φ = 𝑓(𝜉) with 𝜉 = 𝑋 − 𝑉𝑟𝑇 (𝑉𝑟 is the speed of the reference 

frame) with 𝑓 → 0, 𝑓′ → 0, 𝑓″ → 0 as 𝜉 → ±∞ then Eq. (2.87) convert to the 

following form: 

−𝑉𝑟
𝑑𝑓

𝜕𝜉
− (

𝑆𝐷

2√𝐵′
)
2 𝑑𝑓

𝜕𝜉
+ 𝐵′𝑓2

𝑑𝑓

𝜕𝜉
= 𝐶′

𝑑2𝑓

𝑑𝜉2
 

or, −𝑉𝑟𝑓 − (
𝑆𝐷

2√𝐵′
)
2

𝑓 +
𝐵′

3
𝑓3 = 𝐶′

𝑑𝑓

𝑑𝜉
 

or,
3𝐶′

𝐵′

𝑑𝑓

𝑓 {𝑓2 −
3

𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
)}
= 𝑑𝜉 

or,
𝐶′

2 (𝑉𝑟 +
𝑆2𝐷2

4𝐵′
)
[

2𝑓

𝑓2 −
3

𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
)
−
2

𝑓
] 𝑑𝑓 = 𝑑𝜉 

or, 𝑙𝑛 [𝑓2 −
3

𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
)] − 𝑙𝑛 𝑓2 =

2(𝑉𝑟 +
𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉 

or, 𝑓2 −
3

𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
) = 𝑓2 𝑒𝑥𝑝 [

2 (𝑉𝑟 +
𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉] 

or, 𝑓2 −
3

𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
) = 𝑓2 𝑒𝑥𝑝 [

2 (𝑉𝑟 +
𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉] 

or, 𝑓2 (𝑒𝑥𝑝 [
−2(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉] − 1) =

3

𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
) 𝑒𝑥𝑝 [

−2(𝑉𝑟 +
𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉] 

or, 𝑓2 = −
3

𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
)

𝑒𝑥𝑝 [
−(𝑉𝑟+

𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉]

𝑒𝑥𝑝 [
(𝑉𝑟+

𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉] − 𝑒𝑥𝑝 [

−(𝑉𝑟+
𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉]
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or, 𝑓2 =
3

2𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
)

(

  
 
1 −

𝑒𝑥𝑝 [
(𝑉𝑟+

𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉] + 𝑒𝑥𝑝 [

−(𝑉𝑟+
𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉]

𝑒𝑥𝑝 [
(𝑉𝑟+

𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉] − 𝑒𝑥𝑝 [

−(𝑉𝑟+
𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉]
)

  
 

 

∴ 𝑓 = √
3

2𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
) {1 − 𝑡𝑎𝑛 ℎ

(𝑉𝑟 +
𝑆2𝐷2

4𝐵′
)

𝐶′
𝜉}.               (2.88) 

The stationary shock wave solution of mmB-type equation defined as 

Φ(1) = √Φ𝑚𝐴 {1 − 𝑡𝑎𝑛 ℎ (
𝜉

𝛷𝑚𝑊
)} −

𝑆𝐷

2𝐵′
,                           (2.89) 

where 

Φ𝑚𝐴 =
3

2𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
)                                                                           (2.90) 

and 

Φ𝑚𝑊 = (
𝐶

𝑉𝑟
+
𝑆2𝐷2

4𝐵′
),                                                                          (2.91) 

where, Φ𝑚𝐴 and Φ𝑚𝑊 are the amplitude and width  of IASWs at the critical 

values, respectively. 

2.6    Results and discussions 

To investigate the influences of 𝑁𝑟1 (density ratio of NIs to PIs), 𝑁𝑟2 (density 

ratio of electrons to PIs), 𝜇+𝑖 (viscosity coefficient of PIs), 𝜇−𝑖 (viscosity 

coefficient of NIs), 𝛼 (population of nonthermal electrons), and 𝑞 (strength of 

non-extensive electrons) on the basic features of shock wave phenomena, an 

unmagnetized collosionless three-component plasma having positive as well as 

negative ions and (𝛼, 𝑞)-distributed electrons is considered. The Burgers 

equation with the exact solution as mentioned in Equation (2.39) is obtained to 

reveal such physical phenomena. In the presented analysis, the physical 
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parameters are taken as 𝑀± = 3.75, 𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.2, 0 < 𝑁𝑟1 < 1,               

0 < 𝑁𝑟2 < 1, 𝜇+𝑖 = 0.1~0.5  and 𝜇−𝑖 = 0.001~0.4 based on the work [43, 77] and 

−1 < 𝑞 < 1 (for superthermality), 𝑞 > 1 (subthermality), 𝑞 = 1 (isothermality), 

and 0 < 𝛼 < 1 based on the work [92]. 

2.6.1    Existence of critical values of strength of nonextensivity 

One can determine the critical values (CVs) by setting 𝐵 = 0. But, it is very 

difficult to formulate the mathematical expression for CV. Figure 2.1 shows the 

variation of 𝐵 with regard to 𝑞 and 𝛼 by considering the other parameters 

constant. It is obviously found from Figure 2.1 that the CVs occur for the 

isothermal and subthermal electrons. For instance, the CV 𝑞𝑐 for 𝑞 is 

determined as 𝑞𝑐 = 3.098638852 by considering 𝛼 = 0, 𝑀± = 3.75,               

𝑇−𝑖 = 0.05𝑒𝑉, 𝑇𝑒 = 0.19𝑒𝑉, 𝑁𝑟1 = 0.5 and 𝑁𝑟2 = 0.01.  

2.6.2   Effects of the plasma parameters on phase velocity 

Figure 2.2(a) shows the variation of phase velocity with regards to 𝑁𝑟2 and 𝛼. It 

is observed from Figure 2.2(a) that the linear phase velocity (𝑉𝑝) loses energy 

with increases the density ratio of electrons to positive ions. Whereas, 𝑉𝑝 loses 

energy with increasing 𝑞 for the case of subthermality. Moreover, 𝑉𝑝 loses more 

energy with increases the population of nonthermal nonextensive electrons. 

Therefore when driving force increases then linear phase velocity increases and 

when restoring force increases then linear phase velocity decreases. Furtermore, 

Figure 2.2(b) demonstrate the variation of phase velocity for different values of 

𝑁𝑟1 and 𝑞. It is observed from Figure 2.2(b) that the linear phase velocity (𝑉𝑝) 

gains energy with increases the density ratio of negative to positive ions. 

Whereas, 𝑉𝑝 gains energy with increasing 𝑞 for the case of superthermality. 

Moreover, 𝑉𝑝 gains more energy with increases the population of nonthermal 

nonextensive electrons. 
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2.6.3    Effects of the plasma parameters on SWEs  

Effects of the plasma parameter on SWEs described by Burgers equation,      

mB-, and mmB-type equation are discussed in this section. Effects of different 

plasma parameter described by Burgers equation (2.36) demonstrate in     

Figure 2.3 to Figure 2.7. Again, effects of the plasma parameter on SWEs 

described by mB-type equation (2.77) are displayed in Figure 2.8 to Figure 2.10. 

Furthermore, effects of plasma parameter on SWEs described by mmB-type 

equation (2.89) are shown in Figure 2.11 and Figure 2.12. 

Variation of SWEs due to the changes of time: Figure 2.3 demonstrates the IA 

SWEs for different values of time 𝑇 by choosing the other parameters constant. 

It is found that the amplitude and thickness of IASWs remains unchanged, but 

the position of shock wave changes with increases in time, as it is expected.  

Effects of 𝝁+𝒊 and 𝝁−𝒊 on SWEs: Figure 2.4(a) and 2.4(b) demonstrates the 

influence of 𝜇+𝑖 and 𝜇−𝑖 on the nonlinear IA shock wave excitations by choosing 

the other parameters constant, respectively. It is evidently revelled from these 

figures that both 𝜇+𝑖 and 𝜇−𝑖 play a vital role by generating electrostatic shock 

waves in the negative ions plasmas. Because, the amplitude and width of shock 

wave increases with increases in 𝜇+𝑖 and 𝜇−𝑖. Figure 2.4 shows that the 

amplitude and width of shock wave increase with increases in 𝜇+𝑖and 𝜇−𝑖. If we 

ignore both of 𝜇+𝑖 and 𝜇−𝑖, the system does not saturated, and as a result, the 

amplitude does not become sufficiently large. It is provided that 𝜇+𝑖 and 𝜇−𝑖 is 

only responsible for forming the shock wave excitations in the considered 

plasmas 

Role of nonextensivity of ion on the SWEs: Figure 2.5(a) and 2.5(b) exhibits the 

influence of 𝑞 on the nonlinear IASWEs by choosing other parameters constant 

with 𝑇 = 5. It is clearly shown form these figures that the amplitude and 

thickness of SWEs decrease with increasing in 𝑞. Figures 2.4 are also obviously 

provided that the compressive and rarefactive electrostatic of SWEs are 
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supported in the considered plasmas for the isothermal and superthermal 

energetic electrons only. From the above observations, it can be predicted that 

shock wave potential gains much more energies with the presence of 

superthermal rather than isothermal and subthermal electrons.     

Role of nonthermality of ion on the SWEs:  Figure 2.6 shows the influence of 𝛼 

on the nonlinear IA SWEs by choosing other parameters constant with time  

𝑇 = 5. It is clearly shown form Figure 2.6 that the amplitude and width of SWEs 

decrease with increasing in 𝛼. It is also found that SWEs losses energies with 

the increase of nonthermal population of electrons. From the physical point of 

view, one can minimize the energies of SWEs by increasing nonthermal 

populations of electrons in such environments. 

Effects of 𝑵𝒓𝟏 and 𝑵𝒓𝟐 of the SWEs: Figure 2.7(a) and 2.7(b) displays the 

influence of 𝑁𝑟1 and 𝑁𝑟2 on the nonlinear electrostatic IA shock wave profile by 

assuming other parameters are constant. It is found from Figure 2.7 that both 

density ratios remarkably play distinct roles in the formation of SWEs in the 

considered plasmas. This is because the monotonically shock wave also 

occurred, in which the amplitude and width of shocks slightly decreases 

monotonically with increases in 𝑁𝑟2. However, the amplitude and thickness of 

shocks increases with increases in 𝑁𝑟1. From the physical point of view, the IA 

shock wave phenomena gains energies very slowly with the increase of PIs 

density. This actually happens because the driving force increases with the 

increase of PIs density. On the other hand, the restoring force provided by the 

pressure of electrons are only increased with the increase of isothermal 

electrons density. As a results, the electrostatic SWEs gains much more energies 

with the increase of isothermal electrons density.  
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Figure 2.1: Variation of 𝐵 with regard to 𝑞 and 𝛼. The other parameters are considered 

as 𝑀± = 3.75, 𝑇−𝑖 = 0.05𝑒𝑉, 𝑇𝑒 = 0.2𝑒𝑉 , 𝑁𝑟1 = 0.5 and 𝑁𝑟2 = 0.01. 
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Figure 2.2: Variation of 𝑉𝑝 with regards to (a) 𝑁𝑟2 for different values of 𝑁𝑟1 (𝑀± = 3.75, 

𝛼 = 0.35, 𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.2 and 𝑞 = 1.6), and (b) 𝛼 for different values of 𝑞 (𝑀± =

3.75, 𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.2, 𝑁𝑟1 = 0.5 and 𝑁𝑟2 = 0.1), respectively. 

 

(a) 

 

(b) 
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Figure 2.3: Electrostatic shock wave profile due to the variation of 𝑇 with 𝜇+𝑖 = 0.3  and 

𝜇−𝑖 = 0.01. The other parameters are chosen as 𝛼 = 0.35, 𝑞 = 1.6,  𝑀± = 3.75,              

𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.2, 𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.1 and 𝑉𝑟 = 0.03. 
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Figure 2.4: Electrostatic shock wave profile due to (a) the variation of  𝜇+𝑖 with        

𝜇−𝑖 = 0.01, and (b) the variation of 𝜇−𝑖 with 𝜇+𝑖 = 0.1, respectively. The other 

parameters are chosen as 𝛼 = 0.35,  𝑞 = 1.6, 𝑀± = 3.75, 𝑇−𝑖 = 0.05,                                                           

𝑇𝑒 = 0.2, 𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.1, 𝑇 = 5, and 𝑉𝑟 = 0.03. 

(b) 

 

(a) 
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Figure 2.5: Electrostatic shock wave profile by choosing (a) 𝛼 = 0, 𝑀± = 3.75, 𝑇−𝑖0.02, 

𝑇𝑒 = 0.4, 𝑁𝑟1 = 0.1, 𝑁𝑟2 = 0.02, 𝑇 = 5, 𝜇+𝑖 = 0.25, 𝜇−𝑖 = 0.4, 𝑉𝑟 = 0.03 and 𝑞 = 5.5,      

and (b) 𝛼 = 0, 𝑀± = 3.75, 𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.2, 𝑁𝑟1 = 0.1, 𝑁𝑟2 = 0.9,                                

𝑇 = 5, 𝜇+𝑖 = 0.35, 𝜇−𝑖 = 0.05, 𝑉𝑟 = 0.03.  

(a) 

 

(b) 
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Figure 2.6: Effect of 𝛼 on the electrostatic shock wave profile by choosing 𝑀± = 3.75, 

𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.2, 𝑁𝑟1 = 0.1, 𝑁𝑟2 = 0.5, 𝜇+𝑖 = 0.35, 𝜇−𝑖 = 0.05,                                    

𝑉𝑟 = 0.03 and 𝑞 = 1 with time 𝑇 = 5. 
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Figure 2.7: Electrostatic shock wave profile (a) due to the variations of 𝑁𝑟1 with     

𝑁𝑟2 = 0.5, and (b) due to the variations of 𝑁𝑟2  with 𝑁𝑟1 = 0.5 .The other         

parameters are chosen as 𝛼 = 0, 𝑀± = 3.75, 𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.2,                                  

𝜇+𝑖 = 0.5, 𝜇−𝑖 = 0.01,  𝑉𝑟 = 0.1 and 𝑞 = 1. 

(a) 

 

(b) 
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Figure 2.8(a) and 2.8(b) display the effect of 𝜇+𝑖 and 𝜇−𝑖 on the electrostatic 

IASWs around 𝑞𝑐. It is observed that 𝜇+𝑖 and 𝜇−𝑖 strongly plays an important 

role to the formation of monotonically shock waves around 𝑞𝑐. In addition, the 

width of shocks are remarkably increased and slightly increased with the 

increases of 𝜇+𝑖 and 𝜇−𝑖, respectively. It is noted that the effect of the kinematic 

viscosity coefficient of NIs and PIs on shock wave excitation can be determined 

on the basis of collective friction between the layers of the plasma concentration 

system. In fact, viscosity is the force of collective friction between layers of fluid 

in the aforementioned plasmas. With the decrease of 𝜇+𝑖 and 𝜇−𝑖, the collective 

friction force is decreased. As a result, the thickness of shocks is decreased. 

Figure 2.9 obviously shows that the amplitude and thickness of IASWs are 

significantly increased with the increase of 𝑉𝑟. Finally, the variation of 

normalized electric field (𝐸 = −𝑔𝑟𝑎𝑑Φ) around 𝑞𝑐 for different values of 𝜇+𝑖 

and 𝜇−𝑖  is presented in Figure 2.10. It is observed that the normalized electric 

field becomes hump-shaped with the increase of 𝜇+𝑖 and 𝜇−𝑖. Consequently, the 

electric field is propagating narrowly with the increase of 𝜇+𝑖, but smoothly 

with the increase of 𝜇−𝑖. 
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Figure 2.8: Electrostatic mB shocks around the critical value 𝑞𝑐 = 3.098638852 that is 

𝑞 = 3.5 > 𝑞𝑐 (a) 𝜇+𝑖 with 𝜇−𝑖 = 0.01, and (b) 𝜇−𝑖 with 𝜇+𝑖 = 0.5, respectively with 𝛼 = 0, 

 𝑀± = 3.75, 𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.19, 𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.01 and 𝑉𝑟 = 0.01. 

(a) 

 

(b) 

 



 

54 
 

 

 

 

 

 

Figure 2.9: Effect of the reference speed 𝑉𝑟 electrostatic mB shocks around the critical 

value 𝑞𝑐 = 3.098638852 that is 𝑞 = 3.5 > 𝑞𝑐 with 𝛼 = 0, 𝑀± = 3.75, 𝑇−𝑖 = 0.05,                   

𝑇𝑒 = 0.19, 𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.01, 𝜇−𝑖 = 0.01 and 𝜇+𝑖 = 0.3. 
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Figure 2.10: Variation of the normalized electric field around the critical value          

𝑞𝑐 = 3.098638852 that is 𝑞 = 3.5 > 𝑞𝑐, for different values of  (a) 𝜇+𝑖, and                     

(b) 𝜇−𝑖 with the same typical values of Figure 2.4. 

(a) 

 

(b) 
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Figure 2.11(a) and 2.11(b) demonstrates the shape of electrostatic ion acoustic 

mmB shocks for 𝑞 = 6 < 𝑞𝑐 = 6.176859718 and 𝑞 = 6.5 > 𝑞𝑐 = 6.176859718 

with 𝑀± = 3.75, 𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.1, 𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.1, 𝑉𝑟 = 0.1, 𝜇+𝑖 = 0.5 and 

𝜇−𝑖 = 0.001. Whereas Figure 2.12(a) and 2.12(b) display the effect of 𝜇+𝑖 and 𝜇−𝑖 

on the electrostatic IASWs at the neighbouring of 𝑞𝑐, that is at 𝑞 = 6.5. It is 

found that the solution of the shocks are only generated for the viscosity 

coefficient of NIs in which both amplitude and width are increased with the 

increase of the kinematic viscosity coefficient of NIs at the neighbouring CVs. 

However, the amplitude and width of IASWs are decreased with the increase of 

the kinematic viscosity coefficient of PIs at the neighbouring CVs. It might be 

predicted from this work that one can study the real features of shock wave 

excitations around CVs by formulating the solution of Eqs. (2.77) and (2.89) of 

mB-type and mmB equations, respectively. Based on the consideration of the 

typical values of the parameters, it may be concluded that the obtained results 

are very useful to understand the features of broadband shock noise in the      

D- and F-regions of the Earth’s ionosphere. 
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Figure 2.11: Electrostatic mmB shock profile (a) 𝑞 = 6 < 𝑞𝑐 = 6.176859718, and          

(b) 𝑞 = 6.5 > 𝑞𝑐 = 6.176859718, with 𝛼 = 0, 𝑀± = 3.75, 𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.1,            

𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.1, 𝑇 = 5, 𝜇+𝑖 = 0.5, 𝜇−𝑖 = 0.01, 𝑉𝑟 = 0.1 and 𝑞 = 6. 

(a) 

 

(b) 
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Figure 2.12: Variation of the normalized electric field around the critical value 𝑞𝑐 =

6.176859718 that is 𝑞 = 6.5 > 𝑞𝑐, for different values of (a) 𝜇+𝑖 with 𝜇−𝑖 = 0.01           

and  (b) 𝜇−𝑖 with 𝜇+𝑖 = 0.5, respectively with 𝛼 = 0.5, 𝑀± = 3.75,                                         

𝑇−𝑖 = 0.05, 𝑇𝑒 = 0.19, 𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.01 and 𝑉𝑟 = 0.01. 

(b) 

 

(a) 
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2.7    Concluding remarks 

A plasma system consisting of positive as well as negative ions and electrons is 

considered to study the nature of SWEs with the influences of plasma 

parameters, where electrons are assumed to follow not only iosthermality but 

also superthermality, subthermality and nonthermality with the presence of 

nonextensitity. The (𝛼, 𝑞)-velocity distribution function is considered because it 

is very effective in all cases of thermality conditions. By employing the          

well-established reductive perturbation approach, the useful NLEEs, Burgers, 

mB and mmB equations are obtained which divulges the shocks in such 

plasmas. The solutions of these equations are determined by direct integration. 

In addition, the correct stationary shock wave solutions of mB and mmB 

equations are determined for the first time. It is found that the steepness and 

amplitude of shocks are sensitively increased (decreased) with the increase of 

𝜇+𝑖(𝑁𝑟2), but very slightly increased with the increase of 𝜇−𝑖. In addition, both 

compressive and rarefactive shocks exist described by Burgers equation with 

the influences of parameters. On the other hand, the mB equation reveals the 

shocks only around the critical values, whereas the mmB equation reveals the 

shocks not only around the critical values but also at the critical values in the 

plasmas. The effect of 𝜇+𝑖, 𝜇−𝑖 and 𝑉𝑟 on the electrostatic mB and mmB shocks 

around and at the neighbouring of CVs are discussed. It is found that the      

mB-type equation is supporting monotonic shocks around CVs in which the 

amplitude is unchanged but the thickness is increased with the increase of 𝜇+𝑖 

and 𝜇−𝑖. Subsequently, the monotonically hump-shaped electric field is 

propagating narrowly and smoothly with the increase of 𝜇+𝑖 and 𝜇−𝑖, 

respectively, due to the correct solution of the mB-type equation. However, the 

mmB-type equation supports monotonic shocks around CVs with the influence 

of 𝜇−𝑖 only, in which both the amplitudes and the thickness are increased with 

the increase of 𝜇−𝑖 but decreased with the increase of 𝜇+𝑖. It may be concluded 
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that the results presented in this work are used not only to understand the 

broadband shocks noise in the D- and F-regions of the Earth’s ionosphere 

around the critical values, but also in laboratory experiments. 



Chapter 3 

Dust-ion-acoustic shock wave excitations in collisionless 

unmagnetized dusty plasma  

 

3.1 Introduction 

Most of the astrophysical and space plasma systems (ASPSs), e.g., Earth's 

ionosphere, planetary environments, interstellar media, protostellar disks, 

molecular clouds, asteroid regions, comet tails, nebulae, and so on [3-6], justify 

the existence of dust particles. As a result, one may not only study the ion-, 

electron-, and positron-acoustic wave phenomena but also the dust-ion acoustic 

(DIA) or DA wave phenomena with the existence of various charged particles 

in ASPSs. In addition, the development of dusty plasmas (DPs) is still mostly 

focused on the analysis of the propagation of DIA waves [6, 93, 97-99].The 

existence of low-frequency DIA waves was first proposed theoretically by 

Shukla and  Silin in 1992 [6]. Shukla and Silin [6] have developed an important 

conclusion in his fundamental research that perhaps the inclusion of dense, 

enormous, and immovable charged dust species in electron-ion plasmas, which 

extensively affects the dynamics of the waves. Furthermore, Mamun et al. 

investigate the formation of low-frequency DIA waves, which take place over a 

duration of time that is also considerably smaller than the period of dusty 

plasma [100]. However, Shukla and Mamun [2] have reported that the influence 

of dust grains, which are considered to be immobile, impacts equilibrium 

quasineutrality. Further, researchers in plasma physics [37, 48, 101-105] 

concentrated attention on the study of acoustic waves in dusty multi-ion 

plasmas. Positive ions (PIs) and negative ions (NIs) are examples of multi-ions, 

and their presence has recently been well-confirmed by ASPSs [2, 48, 103, 104] 

and plasma laboratories [10, 105].For instance, in many plasma environments, 
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such as the Earth's ionosphere and cometary comae, plasma is produced by the 

mixing of PIs and NIs in addition to electrons [106]. The sources for the 

successful generation of PI and NI plasmas are neutral beam sources [67], 

plasma processing reactors [107], and experiments in laboratories [69]. 

Additionally, it was shown that negatively charged ions performed better in 

plasma etching than positively charged ions. As a result, negative ion plasmas 

have become more and more significant in the field of plasma physics.  

      Moreover, the distribution of the velocity of associated plasma components 

affects the basic features of the plasma system. It is essential to describe the 

motion of lighter-charged particles. The Maxwellian velocity distribution 

(MVD) is the most familiar in a collisionless plasma. However, the VD of 

plasma particles in the laboratory and ASPs differs from the MVD. The particles 

follow either noxextensive [15, 84, 88], and kappa [108] or non-thermal [16, 44] 

distributions that deviate from MVD. Consequently, the interaction among the 

charged particles is mainly short-range based on simple statistical mechanics. 

But numerous plasma particles especially interaction nature via long ranges, 

i.e., long-range Coulomb interactions, where the extensible attribute is usually 

destroyed. To overcome such dynamic challenges, one can consider (𝛼, 𝑞)-VD 

[14], which is applicable not only cases of superthermality, subthermality, and 

isothermality, but also for the case of nonthermality, depending on the 

appropriate values of index 𝛼 and 𝑞. For instance, one would be considered     

𝑞-nonextensive VD by setting 𝛼 → 0 proposed by Tsallis [15] for analysing the 

circumstances where the MVD is unsuitable. A real-world example of the 

existence of the aforementioned complex plasma system is the ring of Saturn 

[4]. Because the fairly accurate number densities 𝑁𝐽0(𝐽 = 𝑖 for ions, 𝐽 = 𝑒 for 

electrons, and 𝐽 = 𝑑 for dust, etc.) and temperature 𝑇 exist in the Saturn ring, 

that is 𝑁𝑖0~10
1𝑐𝑚−3, 𝑁𝑑0~10

−7 − 10−8𝑐𝑚−3 and 𝑇~105 − 106𝐾 for 𝐸-ring, 

𝑁𝑖0~10
1 − 102𝑐𝑚−3, 𝑁𝑑0 < 30 𝑐𝑚−3 and 𝑇~105 − 106𝐾 for 𝐹-ring and   
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𝑁𝑖0~0.1 − 10
2𝑐𝑚−3, 𝑁𝑑0~1 𝑐𝑚

−3 and 𝑇~2 × 104 for the Spokes [3]. The plasmas 

associated with the non-Maxwellian distributions have also recently attracted 

much attention due to their wide relevance to ASPSs such as quark-gluon [109] 

and hadronic matter plasmas [14], dark matter halos [110], Earth's bow shock 

[111], the magnetospheres of Jupiter and Saturn [112], etc. 

      Due to the existence of dust and multi-ions in ASPSs, some theoretical and 

experimental research [62, 67, 100, 113-118] has focused on the DIA waves in a 

multi-species collisionless plasma composed of electrons, PIs, and NIs with dust 

grains. Yasmin et al. [62] have analyzed the impact of nonextensive electrons on 

DIA shock waves (DIASWs) by taking into account a nonextensive plasma 

made of ions, nonextensive electrons, and stationary dust (negatively charged). 

The arbitrary amplitude of DIASWs in such plasma with PIs and NIs has been 

explored by Mamun et al. [100]. Ema et al. [118] have reported the propagation 

of DIASWs in a nonextensive complex plasma having nonextensive electrons, 

Maxwellian light ions (MLIs) having positive charges, heavy NIs and stationary 

dust (SD) having negative charges. They have reported the features of nonlinear 

propagation of DIASWs by deriving Burger's equation (BE) and a higher-order 

BE, that is, Gardner's equation (GE). However, the impact of -VD electrons on 

dusty multi-ion plasma has not been considered in any previously proposed 

theoretical research, to the best of our knowledge. Thus, in order to study the 

amplitude of DIASWs by deriving various higher-order BEs along with their 

solutions in a complex plasma, the plasma species have been considered as VD 

electrons, inertial heavy NIs, positively charged MLIs, and negatively charged 

SD. The effects of plasma parameters on the nonlinear propagation of DIASWs 

are also investigated with physical interpretations. 

3.2 Theoretical model with plasma assumptions 

Let us consider a collisionless four-component unmagnetized dusty plasma 

system, which is a mixture of the (𝛼, 𝑞)-distributed electrons, inertial HIs 
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(negatively charged), MLIs (positively charged), and SD known as immobile 

dust (negatively charged). As a result, the equilibrium charge neutrality 

condition is obtained as 𝑁𝑖0 − 𝑍ℎ𝑖𝑁ℎ𝑖0 −𝑁𝑒0 − 𝑍𝑑𝑁𝑑0 = 0, where 𝑁𝑠0 is the 

number of unperturbed densities of the species𝑠 (𝑠 = 𝑖,ℎ𝑖,𝑒, d for positive MLIs, 

negative HIs, electrons, and immobile dust, respectively),  𝑍ℎ𝑖 is the number of 

electrons of HIs and 𝑍𝑑 is the number of electrons residing on the dust grain 

surface. The energies of the electrons may be thermal or nonthermal and if the 

electron energy have a smaller (subthermal) or equal (isothermal) or superior 

(superthermal) amount of neutral energy. As a result, the (𝛼, 𝑞)-velocity 

distribution ofelectrons is assumed. Therefore, the (𝛼, 𝑞)-VD function is defined 

by the composition of Tsallis and Cairns VD functions as [92]    

𝑦(𝑣𝑥) = 𝑘 (1 + 𝛼
𝑣𝑥
4

𝑣𝑡
4) × {1 − (𝑞 − 1)

𝑣𝑥
2

2𝑣𝑡
2},                             (3.1) 

where 𝑣𝑡 = (𝑘𝐵𝑇𝑒/𝑚𝑒)
1/2 is the electron thermal velocity, 𝑣𝑥 = (2𝑒Φ/𝑚𝑒)

1/2 is 

the velocity vector, 𝑞 is the nonextensivity strength, 𝛼 represents the population 

of faster electrons, 𝑘𝐵 is defined as the Boltzmann constant, and 𝑘 is the 

normalized constant [14]. Hence, the electron density (𝑁𝑒) function can be 

written by integrating (which includes an additional potential term of 

interacting electrons) the above equation over velocity space [92] as 

𝑁𝑒 = 𝑁𝑒0 [1 + (𝑞 − 1) (
𝑒Φ

𝑘𝐵𝑇𝑒
)]

(𝑞+1)

2(𝑞−1)

× 

[1 −
16𝑞𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
(
𝑒Φ

𝑘𝐵𝑇𝑒
) +

16𝑞(2𝑞 − 1)𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
(
𝑒Φ

𝑘𝐵𝑇𝑒
)
2

] , (3.2) 

where Φ, 𝑇𝑒, and 𝑒 are the electrostatic wave potential, electron temperature, 

and magnitude of the electron charge, respectively. One can determine the 

nonextensive [15] and Cairns [16] distributed electron density functions from 

Eq. (3.2) as  

𝑁𝑒 = 𝑁𝑒0 [1 + (𝑞 − 1) (
𝑒Φ

𝑘𝐵𝑇𝑒
)]

(𝑞+1)

2(𝑞−1)

,                                              (3.3) 
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and         𝑁𝑒 = 𝑁𝑒0 [1 − (
4𝛼

1+3𝛼
) (

𝑒Φ

𝑘𝐵𝑇𝑒
) + (

4𝛼

1+3𝛼
) (

𝑒Φ

𝑘𝐵𝑇𝑒
)
2

] exp (
𝑒Φ

𝑘𝐵𝑇𝑒
),          (3.4) 

for the case of 𝛼 = 0 and 𝑞 = 1, respectively. The proper ranges of 𝛼 and 𝑞 are 

obtained based on the physical cut-off obligatory by 𝑞 ≥ 5/7, and              

𝛼𝑀𝑎𝑥 = (2𝑞 − 1)/4 as (i) 𝑞 = 1, 0 < 𝛼 < 0.35 (nonthermality case), (ii) 𝑞 = 1,  

𝛼 = 0 (isothermality case), (iii) 0.33 < 𝑞 < 1, 𝛼 = 0 (superthermality case), and 

(iv) 𝑞 > 1, 𝛼 = 0 (subthermality case), respectively. It is provided that the  

(𝛼, 𝑞)-VD functions are very useful to describe the energy of electrons in all 

cases of thermality. However, the MLIs density (𝑁𝑖) function can be written as 

𝑁𝑖 = 𝑁𝑖0𝑒
(−

𝑒Φ

𝑘𝐵𝑇𝑖
)
.                                                             (3.5) 

To study the basic features of nonlinear DIASWs(where the mass of the 

negatively charged HIs provides inertia while the thermal pressure of the 

electrons acts as the restoring energy), the dimensionless continuity and 

momentum equations are obtained by implementing the mass and momentum 

conservation laws, respectively, in the following forms [118]: 

𝜕𝑁ℎ𝑖
𝜕𝑡

+
𝜕(𝑁ℎ𝑖𝑈ℎ𝑖)

𝜕𝑥
= 0,                                                                            (3.6) 

𝜕𝑈ℎ𝑖
𝜕𝑡

+ 𝑈ℎ𝑖
𝜕𝑈ℎ𝑖
𝜕𝑥

=
𝜕Φ

𝜕𝑥
+ 𝜇ℎ𝑖

𝜕2𝑈ℎ𝑖
𝜕𝑥2

,                                                    (3.7) 

Since the plasma particles are interconnected to the electric field (𝐸 = −∇Φ), 

Eqs. (3.6) and (3.7) are supplemented with the Maxwell’s equation,                    

∇ ∙ 𝐸 = −4𝜋𝜌,  where 𝜌 = (𝑁𝑖0 − 𝑁𝑒0 − 𝑍ℎ𝑖𝑁ℎ𝑖0 − 𝑍𝑑𝑁𝑑0) is the overall charge 

density on the surface [118]. Here, 𝑁ℎ𝑖0 is the unperturbed HIs density, 𝑁𝑑0 is 

the unperturbed SDs density, 𝑍ℎ𝑖 is the number of electrons of His and 𝑍𝑑 is the 

number of electrons residing onto the dust grain surface. Based on the charge 

neutrality condition, the following dimensionless equation is obtained as 

𝜕2Φ

𝜕𝑥2
= 𝑁𝑟2 {[1 + (𝑞 − 1)Φ]

𝑞+1

2(𝑞−1) × [1 + 𝐵1Φ+ 𝐵2Φ
2]} + 𝑁𝑟1𝑁ℎ𝑖 − 𝑒

−𝛿𝑒𝑖Φ + 𝑁𝑟3, 

(3.8) 
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where 

𝐵1 = −
16𝑞𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
 and 𝐵2 =

16𝑞(2𝑞 − 1)𝛼

3 − 14𝑞 + 15𝑞2 + 12𝛼
.           (3.9) 

It is noted that Eq. (3.8) is obtained in the similar form of the Ref. [123] with the 

presence of nonextensivity, i.e., 𝛼 = 0. Eqs. (3.6)-(3.8) are normalized by 

introducing 𝑁ℎ𝑖 → 𝑁ℎ𝑖/𝑁ℎ𝑖0, 𝑈ℎ𝑖 → 𝑈ℎ𝑖/𝐶ℎ𝑖 (𝐶ℎ𝑖 = (𝑘𝐵𝑇𝑒 𝑚ℎ𝑖⁄ )1 2⁄ ),                     

Φ → Φ/(𝑘𝐵𝑇𝑒 𝑒⁄ ), 𝑥 → 𝑥/𝜆𝐷ℎ𝑖 (𝜆𝐷ℎ𝑖 = (𝑘𝐵𝑇𝑒 4𝜋𝑒2𝑛ℎ𝑖0⁄ )1 2⁄ ), 𝑡 → 𝑡/𝜔𝑝ℎ𝑖
−1          

(𝜔𝑝ℎ𝑖
−1 = (𝑚ℎ𝑖 4𝜋𝑒

2𝑁ℎ𝑖0⁄ )1 2⁄ ) and 𝜇ℎ𝑖 → 𝜇ℎ𝑖/𝑚ℎ𝑖𝑁ℎ𝑖0𝜔𝑝ℎ𝑖𝜆𝐷ℎ𝑖
2 , where  𝑈ℎ𝑖 is the 

HIs fluid speed, 𝐶ℎ𝑖 is the HIs acoustic speed, Φ is the electrostatic wave 

potential, 𝜇ℎ𝑖 is the kinematic viscosity coefficient, 𝑘𝐵 is the Boltzmann constant, 

𝑇𝑒 is the electron temperature, 𝑒 is the magnitude of the electron charge,  𝑡(𝑥) is 

the time (space) variable, and 𝑞(𝛼) is the strength of nonextensivity which 

measure the population of nonthermal electrons, respectively. Due to the 

normalization of the above equation, 𝑁𝑟1 = 𝑍ℎ𝑖𝑁ℎ𝑖0 𝑁𝑖0⁄  (heavy-to-light ion 

number density ratio), 𝑁𝑟2 = 𝑁𝑒0 𝑁𝑖0⁄  (electron-to-light ion number density 

ratio), 𝑁𝑟3 = 𝑁𝑑 𝑁𝑖0⁄  (dust- to-light ion temperature ratio) and 𝛿𝑒𝑖 = 𝑇𝑒 𝑇𝑖⁄  

(electron-to-light ion temperature ratio) are obtained. In order to avoid any 

encumbering effect, the phase speed of HIs is considered much smaller (larger) 

than the electrons (MLIs) thermal speed. It is noted that the plasma system is in 

good agreement that proposed in Ref. 118 for the case of 𝛼 = 0. 

3.3 Formation of Burgers equation  

To investigate the nonlinear wave propagation of DIASWs, one can derive the 

evolution equations from Eqs. (3.6)-(3.8) by using the appropriate stretching 

coordinates and the expansion of only perturb quantities but not any expansion 

of arbitrary quantities. To do it, one is allowed to consider the new coordinates 

instead of the scaling of variables as  

 𝑋 = 𝜀(𝑧 − 𝑉𝑝𝑡), 𝑇 = 𝜀
2𝑡,                                               (3.10)  
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where, 𝑉𝑝 is linear phase speed and 𝜀 is a small quantity which measure the 

weakness of dissipation [93, 119]. 

From Eq. (3.10), the operator are defined as 

𝜕

𝜕𝑡
= 𝜀2

𝜕

𝜕𝑇
− 𝜀𝑉𝑝

𝜕

𝜕𝑋
 ,     

𝜕

𝜕𝑧
= 𝜀

𝜕

𝜕𝑋
,                                       (3.11) 

Eqs. (3.6)-(3.8) are converted with the aid of Eq. (3.11) to the following:  

𝜀2
𝜕𝑁ℎ𝑖
𝜕𝑇

− 𝜀𝑉𝑝
𝜕𝑁ℎ𝑖
𝜕𝑋

+ 𝜀
𝜕

𝜕𝑋
(𝑁ℎ𝑖𝑈ℎ𝑖) = 0,                                                          (3.12) 

𝜀2
𝜕𝑈ℎ𝑖
𝜕𝑇

− 𝜀𝑉𝑝
𝜕𝑈ℎ𝑖
𝜕𝑋

+ 𝜀𝑈ℎ𝑖 (
𝜕𝑈ℎ𝑖
𝜕𝑋

) − 𝜀
𝜕Φ

𝜕𝑋
− 𝜀2𝜇ℎ𝑖

𝜕2𝑈ℎ𝑖
𝜕𝑋2

= 0,                    (3.13) 

and 

𝜀4
𝜕2Φ

𝜕𝑋2
= 𝑁𝑟2 {[1 + (𝑞 − 1)Φ]

𝑞+1

2(𝑞−1) × [1 + 𝐵1Φ+ 𝐵2Φ2]} + 𝑁𝑟1𝑁ℎ𝑖 − 𝑒
−𝛿𝑒𝑖Φ + 𝑁𝑟3. 

(3.14) 

 By inserting the following expanded perturb quantities 

[
𝑁ℎ𝑖
𝑈ℎ𝑖
Φ
] = [

1
0
0
] +∑𝜀𝑖

∞

𝑖

[

𝑁ℎ𝑖
(𝑖)

𝑈ℎ𝑖
(𝑖)

Φ
(𝑖)

],                                           (3.15) 

into Eqs. (3.12)-(3.14). As a result, one coverts Eqs. (3.12)-(3.14) by including the 

different orders of 𝜀, that is 𝛰(𝜀𝑟), 𝑟 = 2,3,4,5,⋯⋯.  

For  𝛰(𝜀2): 

 −𝑉𝑝
𝜕𝑁ℎ𝑖

(1)

𝜕𝑋
+
𝜕𝑈ℎ𝑖

(1)

𝜕𝑋
= 0,                                                               (3.16) 

−𝑉𝑝
𝜕𝑈ℎ𝑖

(1)

𝜕𝑋
−
𝜕Φ

(1)

𝜕𝑋
= 0,                                                              (3.17) 

and                       𝑁𝑟2𝛺1Φ(1) + 𝛿𝑒𝑖Φ
(1) + 𝑁𝑟1𝑁ℎ𝑖

(1)
= 0,                                       (3.18) 
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Now, the solutions of Eqs. (3.16) and (3.17) yields [118] 

𝑁ℎ𝑖
(1)
= −

1

𝑉𝑝2
Φ
(1)

𝑈ℎ𝑖
(1) = −

1

𝑉𝑝
Φ
(1)

}
 
 

 
 

.                                              (3.19) 

Inserting the values from Eq. (3.19) in Eq. (3.18), one can obtained 𝑉𝑝 as 

𝑉𝑝 = ±√
𝑁𝑟1

𝑁𝑟2𝛺1 + 𝛿𝑒𝑖
 ,                                                  (3.20) 

where 

𝛺1 =
𝑞 + 1

2
+ 𝐵1. 

The positive value of phase velocity indicates fast mode, and the negative value 

of phase velocity indicates slow mode. But in this work, we consider it fast 

mode. Eq. (3.20) indicated that 𝑉𝑝 is strongly dependent on 𝑁𝑟1, 𝛿𝑒𝑖, 𝑁𝑟2, 𝛼 and 𝑞 

but not on 𝜇ℎ𝑖 and validated only if  𝑁𝑟1 (𝑁𝑟2𝛺1 + 𝛿𝑒𝑖⁄ ) ≥ 0.  Eq. (3.20) is also in 

good agreement with the investigation in Ref. 118 for 𝛼 = 0. 

For  𝛰(𝜀3): 

𝜕𝑁ℎ𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁ℎ𝑖
(2)

𝜕𝑋
+
𝜕𝑈ℎ𝑖

(2)

𝜕𝑋
+
𝜕

𝜕𝑋
(𝑁ℎ𝑖

(1)𝑈ℎ𝑖
(1)) = 0,                                     (3.21) 

𝜕𝑈ℎ𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈ℎ𝑖
(2)

𝜕𝑋
+ 𝑈ℎ𝑖

(1) 𝜕𝑈ℎ𝑖
(1)

𝜕𝑋
−
𝜕Φ

(2)

𝜕𝑋
− 𝜇ℎ𝑖

𝜕2𝑈ℎ𝑖
(1)

𝜕𝑋2
= 0,                    (3.22) 

and      

𝑁𝑟2𝛺1Φ(2) + 𝑁𝑟2𝛺2[Φ
(1)]

2
+ 𝛿𝑒𝑖Φ

(2) − 𝛿𝑒𝑖
2 [Φ

(1)]
2
+ 𝑁𝑟1𝑁ℎ𝑖

(2) = 0,    (3.23) 

where 

𝛺2 =
𝑞 + 1

2
𝐵1 +

(𝑞 + 1)(3 − 𝑞)

8
+ 𝐵2. 
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Now, one can easily derive the following equations from Eqs. (3.21)-(3.23) by 

using the values from Eq. (3.19): 

−
1

𝑉𝑝2
𝜕Φ

(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁ℎ𝑖
(2)

𝜕𝑋
+
𝜕𝑈ℎ𝑖

(2)

𝜕𝑋
+
2

𝑉𝑝
3 Φ

(1) 𝜕Φ
(1)

𝜕𝑋
= 0,                                       (3.24) 

−
1

𝑉𝑝

𝜕Φ
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈ℎ𝑖
(2)

𝜕𝑋
+
1

𝑉𝑝2
Φ
(1) 𝜕Φ

(1)

𝜕𝑋
−
𝜕Φ

(2)

𝜕𝑋
+
𝜇ℎ𝑖
𝑉𝑝

𝜕2Φ
(1)

𝜕𝑋2
= 0,               (3.25) 

and 

𝑁𝑟2𝛺1
𝜕Φ(2)

𝜕𝑋
+ 2𝑁𝑟2𝛺2Φ(1) 𝜕Φ(1)

𝜕𝑋
+ 𝛿𝑒𝑖

𝜕Φ(2)

𝜕𝑋
− 2𝛿𝑒𝑖

2 Φ
(1) 𝜕Φ

(1)

𝜕𝑋
+ 𝑁𝑟1

𝜕𝑁ℎ𝑖
(2)

𝜕𝑋
= 0. 

(3.26) 

Multiplying Eq. (3.24) by 𝑉𝑝 and then adding with Eq. (3.25), one can obtained 

as 

−
2

𝑉𝑝

𝜕Φ
(1)

𝜕𝑇
− 𝑉𝑝

2
𝜕𝑁ℎ𝑖

(2)

𝜕𝑋
+
3

𝑉𝑝2
Φ
(1) 𝜕Φ

(1)

𝜕𝑋
−
𝜕Φ

(2)

𝜕𝑋
+
𝜇ℎ𝑖
𝑉𝑝

𝜕2Φ
(1)

𝜕𝑋2
= 0.            (3.27) 

Multiplying Eq. (3.26) by 𝑉𝑝
2 and Eq. (3.27) by 𝑁𝑟1, then adding, the Burgers 

Equation is obtained as 

𝜕Φ(1)

𝜕𝑇
+ 𝐵Φ(1) 𝜕Φ(1)

𝜕𝑋
= 𝐶

𝜕2Φ(1)

𝜕𝑋2
 ,                                                      (3.28) 

where 

 

𝐵 = [
𝑉𝑝
3𝛿𝑒𝑖

2

2𝑁𝑟1
−
𝑉𝑝
3𝑁𝑟2𝛺2

𝑁𝑟1
−

3

2𝑉𝑝
] , 𝐶 =

𝜇ℎ𝑖
2
 .                                           (3.29) 

It is to be noted that Eq. (3.28) divulges only the shock wave structures in 

plasmas. It noted that the nonlinear coefficient 𝐵 is in good agreement with the 

Ref. [118] for the presence of nonextensivity only, that is 𝛼 = 0. 

3.3.1 Exact solution of Burgers equation  

The solution of Eq. (3.28) is obtained as 

Φ(1) = Φ𝐴 [1 − 𝑡𝑎𝑛 ℎ (
𝜉

Φ𝑊
)],                                                   (3.30) 
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where 𝜉 = 𝑋 − 𝑉𝑟𝑇, 𝑉𝑟 is the speed of the frame of reference, Φ𝐴 = (𝑉𝑟 𝐵⁄ ) is the 

amplitude and Φ𝑊 = (2𝐶 𝑉𝑟)⁄  is width of shocks. The details calculation of 

finding Eq. (3.30) demonstrate in section 2.3.1. Based on the above solution,    

Eq. (3.30) is only applicable to study SWEs in the considered plasmas for 𝐵 > 0 

or 𝐵 < 0. But its failed to address the SWEs when 𝐵 → 0, which provides one 

needs to derive another nonlinear evolution equations by taking more higher 

order correction into account.    

3.4 Formation of modified Burgers equation  

In order to study electrostatic DIASWs at the critical values (CVs), the 

stretching coordinates are considered as  

𝑋 = 𝜀2(𝑧 − 𝑉𝑝𝑡),         𝑇 = 𝜀4𝑡,                                                 (3.31) 

From Eq. (3.31), the operators are defined as 

𝜕

𝜕𝑡
= 𝜀4

𝜕

𝜕𝑇
− 𝜀2𝑉𝑝

𝜕

𝜕𝑋
 ,     

𝜕

𝜕𝑧
= 𝜀2

𝜕

𝜕𝑋
 .                                          (3.32) 

Eqs. (3.6)-(3.8) are then converted with the aid of Eq. (3.32) to the following: 

𝜀4
𝜕𝑁ℎ𝑖

𝜕𝑇
− 𝜀2𝑉𝑝

𝜕𝑁ℎ𝑖

𝜕𝑋
+ 𝜀2

𝜕

𝜕𝑋
(𝑁ℎ𝑖𝑈ℎ𝑖) = 0,                                                        (3.33) 

𝜀4
𝜕𝑈ℎ𝑖

𝜕𝑇
− 𝜀2𝑉𝑝

𝜕𝑈ℎ𝑖

𝜕𝑋
+ 𝜀2𝑈ℎ𝑖 (

𝜕𝑈ℎ𝑖

𝜕𝑋
) − 𝜀2

𝜕𝛷

𝜕𝑋
− 𝜀4𝜇ℎ𝑖

𝜕2𝑈ℎ𝑖

𝜕𝑋2
= 0,               (3.34) 

and    

 𝜀4
𝜕2Φ

𝜕𝑋2
= 𝑁𝑟2 {[1 + (𝑞 − 1)Φ]

𝑞+1

2(𝑞−1) × [1 + 𝐵1Φ+ 𝐵2Φ
2]} + 𝑁𝑟1𝑁ℎ𝑖 − 𝑒

−𝛿𝑒𝑖Φ +

𝑁𝑟3.   (3.35)      

By applying the values from Eq. (3.15) into Eqs. (3.6)-(3.8) in a systematic way, 

one can coverts Eqs. (3.6)-(3.8) by including the different orders of 𝜀, that is 

𝛰(𝜀𝑟), 𝑟 = 3,4,5,⋯⋯. For 𝛰(𝜀3), one obtains the similar equations as in Eqs. 

(3.16)-(3.18) and their solutions are given in Eq. (3.19). The linear phase velocity 

is obtained in the same form as in Eq. (3.20).  
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For  𝛰(𝜀4): 

−𝑉𝑝
𝜕𝑁ℎ𝑖

(2)

𝜕𝑋
+
𝜕𝑈ℎ𝑖

(2)

𝜕𝑋
+
𝜕

𝜕𝑋
(𝑁ℎ𝑖

(1)𝑈ℎ𝑖
(1)) = 0,                                      (3.36) 

−𝑉𝑝
𝜕𝑈ℎ𝑖

(2)

𝜕𝑋
+ 𝑈ℎ𝑖

(1) 𝜕𝑈ℎ𝑖
(1)

𝜕𝑋
−
𝜕Φ

(2)

𝜕𝑋
= 0,                                             (3.37) 

and       

𝑁𝑟2𝛺1Φ(2) + 𝑁𝑟2𝛺2[Φ
(1)]

2
+ 𝛿𝑒𝑖Φ

(2) − 𝛿𝑒𝑖
2 [Φ

(1)]
2
+ 𝑁𝑟1𝑁ℎ𝑖

(2) = 0.       (3.38) 

Again, Eqs. (3.36)-(3.38) provides the following equations by inserting the value 

from Eqs. (3.19): 

−𝑉𝑝
𝜕𝑁ℎ𝑖

(2)

𝜕𝑋
+
𝜕𝑈ℎ𝑖

(2)

𝜕𝑋
+
2

𝑉𝑝
3 Φ

(1) 𝜕Φ
(1)

𝜕𝑋
= 0                                            (3.39) 

−𝑉𝑝
𝜕𝑈ℎ𝑖

(2)

𝜕𝑋
+
1

𝑉𝑝2
Φ
(1) 𝜕Φ

(1)

𝜕𝑋
−
𝜕Φ

(2)

𝜕𝑋
= 0,                                         (3.40) 

and 

     𝑁𝑟2𝛺1Φ(2) +𝑁𝑟2𝛺2[Φ
(1)]

2
+ 𝛿𝑒𝑖Φ

(2) − 𝛿𝑒𝑖
2 [Φ

(1)]
2
+ 𝑁𝑟1𝑁ℎ𝑖

(2)
= 0.           (3.41)  

Now, the solutions of Eqs. (3.39) and (3.40) are derived as follows: 

𝑁ℎ𝑖
(2) =

1

𝑉𝑝2
[
3

2𝑉𝑝2
{Φ

(1)}2 −Φ
(2)],                                                     (3.42) 

𝑈ℎ𝑖
(2) =

1

𝑉𝑝
[
1

2𝑉𝑝2
{Φ

(1)}2 −Φ
(2)],                                                     (3.43) 

and inserting the values from Eqs. (3.42) and (3.43) in Eq. (3.41), one can 

obtained as 

[𝑁𝑟2𝛺2 −
1

2
𝛿𝑒𝑖
2 +

3𝑁𝑟1
2𝑉𝑝4

] {Φ(1)}
2
+ [𝑁𝑟2𝛺1 + 𝛿𝑒𝑖 −

𝑁𝑟1
𝑉𝑝2
]Φ(2) = 0 

yields 

−𝐶′𝑓{Φ
(1)}

2
= 0,                                                       (3.44) 

where  

𝐶′𝑓 = 𝑁𝑟2𝛺2 −
1

2
𝛿𝑒𝑖
2 +

3𝑁𝑟1
2𝑉𝑝4

. 
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For  𝛰(𝜀5): 

𝜕𝑁ℎ𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁ℎ𝑖
(3)

𝜕𝑋
+
𝜕𝑈ℎ𝑖

(3)

𝜕𝑋
+
𝜕

𝜕𝑋
(𝑁ℎ𝑖

(1)𝑈ℎ𝑖
(2)) +

𝜕

𝜕𝑋
(𝑁ℎ𝑖

(2)𝑈ℎ𝑖
(1)) = 0, (3.45) 

𝜕𝑈ℎ𝑖
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈ℎ𝑖
(3)

𝜕𝑋
+ 𝑈ℎ𝑖

(1) 𝜕𝑈ℎ𝑖
(2)

𝜕𝑋
+ 𝑈ℎ𝑖

(2) 𝜕𝑈ℎ𝑖
(1)

𝜕𝑋
−
𝜕Φ

(3)

𝜕𝑋
− 𝜇ℎ𝑖

𝜕2𝑈ℎ𝑖
(1)

𝜕𝑋2
= 0, (3.46) 

and 

𝑁𝑟2𝛺1Φ(3) + 2𝑁𝑟2𝛺2Φ(1)Φ(2) + 𝑁𝑟2𝛺3[Φ
(1)]

3
+ 𝛿𝑒𝑖

3 [Φ(1)]
3
+ 𝛿𝑒𝑖Φ

(3) − 2𝛿𝑒𝑖
2 Φ

(1)Φ
(2)

+ 𝑁𝑟1𝑁ℎ𝑖
(3) = 0,                                                                                            (3.47) 

where 

𝛺3 =
𝑞 + 1

2
𝐵2 +

(𝑞 + 1)(3 − 𝑞)(5 − 3𝑞)

48
+
(𝑞 + 1)(3 − 𝑞)

8
𝐵1. 

Now, inserting the values from Eqs. (3.19), (3.42) and (3.43) in Eqs. (3.45)-(3.47), 

the following equations derived: 

−
1

𝑉𝑝2
𝜕Φ

(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁ℎ𝑖
(3)

𝜕𝑋
+
𝜕𝑈ℎ𝑖

(3)

𝜕𝑋
−
6

𝑉𝑝
5 {Φ

(1)}
2 𝜕Φ

(1)

𝜕𝑋
+
2

𝑉𝑝
3

𝜕

𝜕𝑋
[Φ

(1)Φ
(2)] = 0,     (3.48) 

−
1

𝑉𝑝

𝜕Φ
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈ℎ𝑖
(3)

𝜕𝑋
−
𝜕Φ

(3)

𝜕𝑋
−

3

2𝑉𝑝
4
{Φ

(1)}
2 𝜕Φ

(1)

𝜕𝑋
+
1

𝑉𝑝
2

𝜕

𝜕𝑋
[Φ

(1)Φ
(2)] +

𝜇ℎ𝑖
𝑉𝑝

𝜕2Φ
(1)

𝜕𝑋2

= 0,                                                                                                                 (3.49) 

and 

𝑁𝑟2𝛺1
𝜕Φ(3)

𝜕𝑋
+ 2𝑁𝑟2𝛺2

𝜕

𝜕𝑋
[Φ(1)Φ(2)] + 3𝑁𝑟2𝛺3[Φ

(1)]
2 𝜕Φ(1)

𝜕𝑋
+ 𝛿𝑒𝑖

𝜕Φ(3)

𝜕𝑋

+ 3𝛿𝑒𝑖
3 [Φ(1)]

2 𝜕Φ(1)

𝜕𝑋
+ 2𝛿𝑒𝑖

2
𝜕

𝜕𝑋
[Φ(1)Φ(2)] + 𝑁𝑟1

𝜕𝑁ℎ𝑖
(3)

𝜕𝑋
= 0.           (3.50) 

Multiplying Eq. (3.48) by 𝑉𝑝 and then adding with Eq. (3.49), one can obtained 

as 

−
2

𝑉𝑝

𝜕Φ
(1)

𝜕𝑇
− 𝑉𝑝

2
𝜕𝑁ℎ𝑖

(3)

𝜕𝑋
−
15

2𝑉𝑝4
{Φ

(1)}
2 𝜕Φ

(1)

𝜕𝑋
+
3

𝑉𝑝2
𝜕

𝜕𝑋
[Φ

(1)Φ
(2)] −

𝜕Φ
(3)

𝜕𝑋
+
𝜇ℎ𝑖
𝑉𝑝

𝜕2Φ
(1)

𝜕𝑋2

= 0,                                                                                                                 (3.51) 

Finally, multiplying Eq. (3.50) by 𝑉𝑝
2 and Eq. (3.51) by 𝑁𝑟1, then adding, the 

following modified BE is find as:  

𝜕Φ
(1)

𝜕𝑇
+ 𝐵′{Φ

(1)}
2 𝜕Φ

(1)

𝜕𝑋
= 𝐶

𝜕2Φ
(1)

𝜕𝑋2
.                               (3.52) 
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The nonlinear coefficient of Eq. (3.52) is determined as 

𝐵′ =
𝑉𝑝
3

2𝑁𝑟1
(
15𝑁𝑟1

2𝑉𝑝
6 −

1

2
𝛿𝑒𝑖
3 − 3𝛺3𝑁𝑟2) , 𝐶 =

𝜇ℎ𝑖
2
.                           (3.53) 

 

3.4.1 Solution of modified Burgers equation 

The useful stationary shock wave solution of Eq. (3.52) is obtained as 

Φ(1) = √Φ𝐴
′ {1 − 𝑡𝑎𝑛 ℎ (

𝜉

Φ𝑊
′ )} ,                                    (3.54) 

where Φ𝐴
′ = (3𝑉𝑟 2𝐵⁄ ) and Φ𝑊

′ = (𝐶 𝑉𝑟⁄ ) are the amplitude and width of 

DIASWs approximately around CVs. But its failed to address the DIASWs 

when 𝐵′ → 0, which provides one needs to derive another nonlinear evolution 

equation by taking more higher order correction into account. Or, one can 

overcome such difficulty by the composition of Burgers and modified Burgers 

equations.  The details calculation of finding Eq. (3.54) are shown in           

section 2.4.1. 

3.5 Formation of mixed modified Burgers equation 

When the amplitude Φ𝐴
′  is approaching to infinity at CVs, then Eq. (3.54) is not 

valuable to report the propagation of DIASWs at the critical composition CVs. 

To prevail over such obscurity, one can take 𝐶′𝑓
0 for 𝑞 (say) around its 𝑞𝑐 as 

𝐶′𝑓
0 = (

𝜕𝐶′𝑓

𝜕𝑞
)
𝑞=𝑞𝑐

|𝑞 − 𝑞𝑐| = 𝑆𝐺𝜀 ,                                            (3.55) 

where |𝑞 − 𝑞𝑐| ≡ 𝜀 (because |𝑞 − 𝑞𝑐| is small quantity). 𝑆 = 1(−1) for               

𝑞 > 𝑞𝑐(𝑞 < 𝑞𝑐) and 𝐺 = (
𝜕𝐶𝑓

′

𝜕𝑞
)
𝑞=𝑞𝑐

. As a result, one can re-evaluate                   

Eqs. (3.45)-(3.47) by adding ρ(2) = ε3
1

2
SGΦ2 and yields 

−
1

𝑉𝑝2
𝜕Φ

(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑁ℎ𝑖
(3)

𝜕𝑋
+
𝜕𝑈ℎ𝑖

(3)

𝜕𝑋
−
6

𝑉𝑝
5 {Φ

(1)}
2 𝜕Φ

(1)

𝜕𝑋
+
2

𝑉𝑝
3

𝜕

𝜕𝑋
[Φ

(1)Φ
(2)] = 0,      (3.56) 
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−
1

𝑉𝑝

𝜕Φ
(1)

𝜕𝑇
− 𝑉𝑝

𝜕𝑈ℎ𝑖
(3)

𝜕𝑋
−
𝜕Φ

(3)

𝜕𝑋
−

3

2𝑉𝑝4
{Φ

(1)}
2 𝜕Φ

(1)

𝜕𝑋
+
1

𝑉𝑝2
𝜕

𝜕𝑋
[Φ

(1)Φ
(2)] +

𝜇ℎ𝑖
𝑉𝑝

𝜕2Φ
(1)

𝜕𝑋2

= 0,                                                                                                                 (3.57) 

and 

𝑁𝑟2𝛺1
𝜕Φ(3)

𝜕𝑋
+ 𝑆𝐺Φ(1) 𝜕Φ(1)

𝜕𝑋
+ 2𝑁𝑟2𝛺2

𝜕

𝜕𝑋
[Φ(1)Φ(2)] + 3𝑁𝑟2𝛺3[Φ

(1)]
2 𝜕Φ(1)

𝜕𝑋

+ 𝛿𝑒𝑖
𝜕Φ(3)

𝜕𝑋
− 2𝛿𝑒𝑖

2
𝜕

𝜕𝑋
[Φ

(1)Φ
(2)] + 𝑁𝑟1

𝜕𝑁ℎ𝑖
(3)

𝜕𝑋
= 0.                          (3.58) 

Finally, multiplying Eq. (3.58) by 𝑉𝑝
2 and Eq. (3.51) by 𝑁𝑟1, then adding, the 

following mixed modified BE is derived: 

𝜕Φ
(1)

𝜕𝑇
+ 𝑆𝐷Φ

(1) 𝜕Φ
(1)

𝜕𝑋
+ 𝐵′{Φ

(1)}
2 𝜕Φ

(1)

𝜕𝑋
= 𝐶

𝜕2Φ
(1)

𝜕𝑋2
,                       (3.59) 

where 

𝐷 =
𝑉𝑝
3

2𝑁𝑟1
(
𝜕𝐶𝑓

𝜕𝑞
)
𝑞=𝑞𝑐

 ,                                                      (3.60) 

One can easily convert mixed modified BE not only to modified BE but also to 

Burgers equation.  Note that Eq. (3.59) is applicable to study DIASWs not only 

around CVs but also at CVs.  

3.5.1 Solution of mixed modified Burgers equation 

The solution of Eq. (3.59) is defined as  

Φ
(1) = √Φ𝑚𝐴 {1 − 𝑡𝑎𝑛 ℎ (

𝜉

Φ𝑚𝑊
)} −

𝑆𝐷

2𝐵
,                                (3.61) 

where 

Φ𝑚𝐴 =
3

2𝐵′
(𝑉𝑟 +

𝑆2𝐷2

4𝐵′
)            and          Φ𝑚𝑊 =

𝐶

𝑉𝑟 +
𝑆2𝐷2

4𝐵′

 .           (3.62) 



75 
 

where, Φ𝑚𝐴 and Φ𝑚𝑊 are the amplitude and width  of IASWs at the critical 

values, respectively. The details calculation of finding Eq. (3.61) are displayed in 

section 2.5.1. 

3.6 Results and discussions  

An unmagnetized dusty plasma system considered as composed of negatively 

charged stationary dust, (𝛼, 𝑞)-distributed electrons, positively charged 

Maxwellian light ions, and negatively charged inertial heavy ions. If 𝛼 = 0, then 

the considered plasma system becomes non-extensive dusty multi-ion plasma, 

which is in good agreement with the earlier investigation in Ref. 118. The 

nonlinear propagation of DIASWs phenomena in such plasmas has been 

investigated by changing the parametric values of the parameters. In addition, 

the article has mentioned the conditions under which DIASWs phenomena are 

supported. To do so, the reductive perturbation technique has been employed 

to formulate Burger equation, modified BE, and mixed modified BE. The 

outcomes for the nonlinear propagation of electrostatic DIASWs found in this 

work can be summarized below. 

     It is clearly observed that the critical values (CVs) can be easily evaluated by 

putting 𝐶𝑓 = 0. Figure 3.1 shows the variation of CVs for  𝑞 = 𝑞𝑐 with regard to 

𝑁𝑟1 and 𝛿 by considering the other parameters constant. For instance, 𝐶𝑓 with 

the parametric values 𝛼 = 0, 𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.05 and 𝛿 = 0.01 yields the CV 

for 𝑞 as  𝑞𝑐 = 5.066562171. Also, Figure 3.1 shows CVs with the variation of 𝛿 

and 𝑁𝑟1. This figure clearly indicates that CVs are only supported for the case of 

subthermality, which is in good agreement with the Ref. 118.  

     Figures 3.2 and 3.3 present the roles of nonthermality, isothermality, 

superthermality and subthermality by varying  𝛼 and 𝑞 on DIASWs described 

by Burgers equation (3.30). It is clearly observed that the considered plasmas 

are supported only by rarefactive DIASWs with the presence of nonthermal, 
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isothermal, and superthermal electrons, whereas both compressive and 

rarefactive DIASWs are supported by the presence of subthermal electrons. It is 

provided that BE is invalid to study the propagation of DIASWs when 𝐵 → 0 

only in the case of subthermality. As a result, it is only possible to investigate 

the fundamental characteristics (polarity, amplitude, width, etc.) of DIASWs by 

depending on the higher-order BEs and the strength of electron nonextensivity 

(𝑞 > 1). The influences of 𝛿 and 𝑁𝑟1 (𝑁𝑟2) with the presence of subthermality on 

the nonlinear propagation of DIASWs are displayed by the solution of Eq. (3.30) 

in Figures 3.4 and 3.5, respectively. These figures clearly show that the 

amplitude of electrostatic shock increases (decreases) with the increase in 

subthermal electron temperature and heavy ion number density (subthermal 

electron number density). Since the heavy ions contribute to producing the 

driving force in the plasma system, whereas the lighter species produce the 

restoring force through their pressure, with the increase of heavy ion number 

density, the contribution of driving force must be increase. Thus,   the driving 

force (restoring force) dominates rather than the restoring force (driving force) 

with the increase of heavy ion number density (with the increase of subthermal 

electron temperature but minimizing its density). Figure 3.6 shows the variation 

of the width of electrostatic shocks with regards to 𝜇 and 𝑉𝑟 by the solution of 

Eq. (3.30). It is observed from Figure 3.6 that the widths of shocks increase with 

the increase of the viscosity coefficient of heavy-ions, width of shock decreases 

with the increase of the reference speed, as expected.       
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Figure 3.1: Variation of 𝑞𝑐 with regard to 𝛿 and 𝑁𝑟1 by taking 𝐵 =  0 in Eq. (3.29). The 

other parameters are chosen  as  𝛼 =  0 and  𝑁𝑟2 = 0.05. 
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Figure 3.2: Effect of (a) population of nonthermal electrons (𝑞 = 1) and                          

(b) superthermal electrons (𝛼 = 0) on DIASW profiles.  The other                                

fixed parametric values are 𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.05, 𝜇 = 0.1,                                              

𝛿 = 0.1 and 𝑉𝑟 = 0.01.  
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Figure 3.3: Effect of subthermal electrons (𝛼 = 0) on (a) compressive DIASW and        

(b) rarefactive DIASW profiles.  The remaining parameters are selected as                   

𝛼 =  0, 𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.05, 𝜇 = 0.1, 𝛿 = 0.1 and 𝑉𝑟 = 0.01. 
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Figure 3.4: Variation of positive (negative) electrostatic shocks with regards to 𝜉 and 𝛿  

for (a) 𝑞 = 7, and (b) 𝑞 = 3.5.  The other parameters are chosen as 𝛼 =  0, 𝑁𝑟1 = 0.5, 

𝑁𝑟2 = 0.05, 𝜇 = 0.1, and 𝑉𝑟 = 0.01. 

(a) 

(b) 
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Figure 3.5: Electrostatic DIA shocks for different values of (a)  𝑁𝑟1 with 𝛼 = 0, 𝛿 = 0.01, 

𝜇 = 0.1, 𝑞 = 6,  𝑁𝑟2 = 0.05 and 𝑉𝑟 = 0.01, and (b)  𝑁𝑟2 with 𝛼 = 0, 𝛿 = 0.01, 𝜇 = 0.1,     

𝑞 = 9,  𝑁𝑟1 = 0.6 and 𝑉𝑟 = 0.01. 
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Figure 3.6: Electrostatic DIA shocks width with regards to 𝑉𝑟 and the variation of 𝜇. 

The remaining   parameters are considered as 𝛼 = 0, 𝑁𝑟1 = 0.01,                                 

𝑁𝑟2 = 0.05 and 𝑞 = 7. 

 

Figures 3.7(a) and 3.7(b) (Figures 3.8(a) and 3.8(b)) show the electrostatic 

DIASWs with regards to 𝜉 and 𝑞, and 𝜉 and 𝛿 (𝜉 and 𝑁𝑟1, and 𝜉 and  𝑁𝑟2), 

respectively around the CVs. It is found from these Figures that the positive 

formation of DIASWs is developed in the considered plasmas for the cases of  

(i) 𝑞 less than from its CVs (𝑞𝑐), (ii) 𝛿 greater than from its CVs (𝛿𝑐), (iii) 𝑁𝑟1 less 

than from its CVs (𝑁𝑟1𝐶), and (iv) 𝑁𝑟2 greater than from its CVs (𝑁𝑟2𝐶). 

Otherwise, it is not possible for predicting what happens with the electrostatic 

DIASWs in the considered plasma system because the amplitude of DIASWs 

around CVs becomes complex. That is why, the mixed modified BE is needed to 

overcome such complexity. It is also found from Figures 3.7 and 3.8 that the 

maximum amplitude of shocks are occurred very closed to the CVs.  
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Figure 3.7: Variation of mB shock profiles with regards to (a) 𝜉 and 𝑞 around CV 

(𝑞𝑐 =5.066562171), and (b) 𝜉 and 𝛿 around CV (𝛿𝑐). 
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Figure 3.8: Variation of mB shock profiles with regards to (a) 𝜉 and 𝑁𝑟1 around CV 

(𝑁𝑟1𝐶), and (b) 𝜉 and  𝑁𝑟2 around CV (𝑁𝑟2𝐶). 
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        Figure 3.9 displays the electrostatic shocks and double layer very close to 

the critical composition. It is found that the considered plasma system is 

supported electrostatic shocks very close to the critical composition and at the 

critical composition, but the double layer is only produced for the case of        

𝛿 = 0.195 > 𝛿𝑐.  It is also found that the electrostatic shocks and double layer 

described by the mixed modified BE are supported very close to the critical 

composition and at the critical composition by depending on all the related 

parameters, except the kinematic viscosity coefficient (𝜇) and reference speed 

(𝑉𝑟). Since  𝐶𝑓 = 𝑁𝑟2𝛺2 −
1

2
𝛿𝑒𝑖
2 +

3𝑁𝑟1

2𝑉𝑝
4  is independent of 𝜇 and 𝑉𝑟. However, both 

the amplitude and width  of IASWs described by the mixed modified Burgers 

equation are strongly dependent on 𝜇 and 𝑉𝑟. That is why the influence of 𝜇 and 

𝑉𝑟 on the electrostatic shocks and double layer is displayed in Figure 3.10. It is 

interesting to found that the thickness of monotonically shocks and double 

layer are increased, but the amplitude remains unchanged with the increase of 

𝜇. In addition, both of amplitude and thickness of monotonically shocks and 

double layer are remarkably effected by the variation of  𝑉𝑟. Because, both of 

amplitude and thickness of electrostatic shocks (double layer) are decreased 

(increased) with the increase of 𝑉𝑟 with the presence of subthermal electrons.  
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Figure 3.9: Electrostatic DIA shock profile with 𝑋 and 𝑇 for (a) 𝛿 = 0.009 < 𝛿𝑐 = 0.01 

(blue surface) and  𝛿 = 0.2 > 𝛿𝑐 = 0.01  with 𝛼 =  0, 𝑞 = 5.066562171, 𝑁𝑟1 = 0.5,    

𝑁𝑟2 = 0.05, 𝜇 = 0.1, and 𝑉𝑟 = 0.01 and (b) 𝑞 = 5 < 𝑞 = 5.066562171                          

(green surface) and  𝑞 = 5.5 > 𝑞 = 5.066562171  with 𝛼 =  0,                                         

𝛿 = 0.01, 𝑁𝑟1 = 0.5, 𝑁𝑟2 = 0.05, 𝜇 = 0.1, and 𝑉𝑟 = 0.01. 
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Figure 3.10: Effect of (a) viscosity coefficient (𝜇 = 0.1) and (b) reference speed ( 𝑉𝑟 =

0.01) on the electrostatic DIA shock profile by considering  𝛿 = 0.009 < 𝛿𝑐 = 0.01      

(blue surface) and double layer by considering 𝛿 = 0.2 > 𝛿𝑐 = 0.01. The           

remaining parametric values are 𝛼 =  0, 𝑞 = 5.066562171,                                          

𝑁𝑟1 = 0.5 and 𝑁𝑟2 = 0.05. 
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3.7 Concluding remarks  

It is concluded that the outcome of this study would be helpful for 

comprehending nonthermality and nonextensivity effects in laboratory plasmas 

as well as interstellar and space plasmas (particularly in protoneutron stars, 

dark-matter halos, stellar polytropes, hadronic matter, quark-gluon plasma, and 

other objects). It is remarkable to be noted that the reinvestigating outcomes 

with the presence of subthermal electrons are represented the actual scenarios 

of the dynamics of electrostatic shocks and double layers not only around the 

CVs but also at the critical compositions CVs. It is also provided in this article 

that the appropriate solutions of higher-order BEs are essential to be predicted 

not only the nature of electrostatic shocks and double layers but also the 

propagation of electrostatic shocks and double layers in further laboratory 

verification. Thus, it may be suggested to conduct a laboratory experiment that 

will be able to distinguish the unique new features of the DIASWs propagating 

in the dusty multi ion plasmas with the presence of all electrons energy cases. 

  

 

 

 

 

 

 

 

 



Chapter 4 

Dust‐ion‐acoustic shock wave excitations at super‐critical points 

with quartic nonlinearity  

 

4.1  Introduction 

The presence of dust particles along with other charged particles is well 

confirmed in the majority of astrophysical and space plasma systems (ASPSs), 

e.g. the Earth's ionosphere, planetary environments, interstellar media, 

protostellar disks, molecular clouds, asteroid areas, comet tails, and nebula     

[3-6]. So, it is possible to study the dust-ion acoustic (DIA) or DA wave features 

in ASPSs. Moreover, the basic features of arbitrary and small but finite 

amplitudes propagation of DIA waves are still mostly focused issues for better 

understanding the mechanism of dusty plasmas (DPs) [6, 62, 93, 97, 120]. 

Shukla and Silin [6] originally proposed a theoretical explanation for the 

presence of low-frequency DIA waves in ASPSs. In their foundational 

investigation, they have mentioned that probably the presence of dense, 

massive, and immobile charged dust particles in electron-ion plasmas has a 

substantial impact on the motion of the waves. It is mainly occurred during a 

period of time that is likewise significantly shorter than the dust plasma period 

by developing the low-frequency DIA waves [100]. But so far, according to the 

work of Shukla and Mamun [2], the stability of quasineutrality is impacted by 

the charged dust particles' effect, which is thought to be stationary. Also, a great 

deal of focus is still now to be paid for the investigation of acoustic waves in 

dusty multi-ion plasmas by astrophysics experts. Because both ASPSs [10, 101, 

102, 104, 106] and plasma laboratories [67, 69, 107] have now successfully 

verified the existence of multi-ions, specifically positive ions (PIs) and negative 

ions (NIs). In many plasma environments, such as the Earth's ionosphere and 
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cometary comae, the plasma is produced by a combination of PIs and NIs in 

response to electrons [106]. The resources for the establishment and 

implementation of PIs and NIs plasmas include neutral beam sources [67], 

plasma processing reactors [107], and laboratory studies [69] etc. Also, it was 

shown that negatively charged ions significantly improved in plasma etching 

than positively charged ions. As a result, the significance of negative ion 

plasmas improves to the field of plasma studies gradually. 

On the other hand, the fundamental characteristics of ASPSs are impacted 

by the related plasma species velocity distribution (VD). The most commonly 

associated distribution in collisionless plasma is the Maxwellian velocity 

distribution (MVD). The VD of plasma particles in lab settings and ASPSs, 

however, is different from the MVD. The origin of high energy charged 

particles generally exhibit nonextensive-, kappa-, or non-thermal distributions 

which depart from MVD [15, 121, 122]. In accordance with the concept of 

traditional statistical dynamics, the interplay between the charged particles is 

therefore primarily short-range. However, many plasma grains interact with 

one another in surroundings across extended distances, or through long-range 

Coulomb interactions, where the extensible property is typically lost. For 

instance, the ring of Saturn provides a physical representation for the presence 

of the previously discussed complex plasma system [4]. It is obviously found 

from such work that various types of number densities and temperature are 

existed in Saturn ring, that is, (i) the ion number densities are denoted as 𝜌𝑁𝑖0 

have the values for E ring, F ring and spokes are 101𝑐𝑚−3, 101 − 102𝑐𝑚−3,   

0.1 − 102𝑐𝑚−3 respectively, (ii) the dust number densities are denoted as 𝜌𝑁𝑑0 

have the value  for E ring, F ring and spokes are 10−7 − 10−8𝑐𝑚−3, < 30 𝑐𝑚−3 , 

1 𝑐𝑚−3  respectively and (iii) the temperature 𝑇 have the value  for E ring, F ring 

and spokes are 105 − 106𝐾 , 105 − 106𝐾 , 2 × 104 respectively [3]. Due to the 

above evidence, Ema et al. [118] proposed a very importance model by the 
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mixture of heavy NIs having influence of viscosity, stationary dusts ions (SDIs) 

as well as inertialess electrons and PIs, where the electrons and PIs are assumed 

to follow nonextensive VD and MVD.  They have studied the DIA shock wave 

excitations (SWEs) not only around critical but also at critical values by 

formulating the higher-order Burgers equations. But, they have overlooked 

what happens with the existence SWEs for the super-critical values (SCVs), 

which is also essential to require further laboratory studies.  To the best of 

author’s knowledge, no theoretical research work has also been up to that time 

made for describing the nature of SWEs with the existence of SCVs in any 

plasma environments.  

Thus, the goal of the presented work is to explore the extension of DIA 

SWEs for SCVs from the proposed model in Ref. 118 by deriving new evolution 

equation (i.e. modified Burgers-type equation having quartic nonlinearity). 

Exacting questions to be answered are, e.g., (i) how to determine whether or not 

SCVs of any specific parameters exist for the considered model, (ii) which 

evolution equation applicable to study SWEs at this situation, (iii) what 

happens with the nature of SWEs not only around SCVs but also at the SCVs, 

(iv) how the existence regions of the SWEs affect by the plasma parameters, and 

(v) whether the temperature and density ratio’s can modify the trajectories of 

SWEs. The results from this research are expected to contribute to the in-depth 

understanding of the nonlinear SWEs that may appear in the interplanetary as 

well as astrophysical plasmas in general and laboratory plasmas. 

4.2 Theoretical model equations with plasma assumptions 

To meet our objectives, the (1+1)-dimensional collisionless dusty multi-ion 

plasma system composing of heavy NIs having influence of viscosity, SDIs, 

Maxwellian PIs and nonextensive VD electrons is considered. In account of this, 

the equilibrium charge neutrality requirement is maintained by 
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𝜌𝑁𝑖0 − 𝑍ℎ𝑖𝜌𝑁ℎ𝑖0 − 𝜌𝑁𝑒0 − 𝑍𝑑𝜌𝑁𝑑0 = 0,                                  (4.1) 

where the species unperturbed number densities denote by 𝜌𝑁𝑙0,                       

𝑙 = 𝑖 (Maxwellian PIs), ℎ𝑖 (heavy NIs), 𝑒(nonextensive electrons) and 𝑍𝑑 signify 

how many electrons are available on the dusty particle surface. Based on the 

above consideration, the following dimensionless model equations [118] are 

considered to investigate whether or not DIA SWEs supports not only around 

SCVs but also at the SCVs: 

𝜕𝜌𝑁ℎ𝑖
𝜕𝑡

+
𝜕(𝜌𝑁ℎ𝑖𝑊ℎ𝑖)

𝜕𝑥
= 0,                                                                        (4.2) 

𝜕𝑊ℎ𝑖

𝜕𝑡
+𝑊ℎ𝑖

𝜕𝑊ℎ𝑖

𝜕𝑥
=
𝜕Ψ

𝜕𝑥
+ 𝜈ℎ𝑖

𝜕2𝑊ℎ𝑖

𝜕𝑥2
,                                                (4.3) 

𝜕2Ψ

𝜕𝑥2
= 𝜌𝑁𝑟2 {[1 + (𝑞 − 1)]

𝑞+1

2(𝑞−1)
Ψ
} + 𝜌𝑁𝑟1𝜌𝑁ℎ𝑖 − 𝑒

−𝜏𝑒𝑖Ψ + 𝜌𝑁𝑟3,   (4.4) 

Eqs. (4.2)-(4.4) are normalized by introducing 

𝜌𝑁ℎ𝑖
𝜌𝑁ℎ𝑖,0

→ 𝜌𝑁ℎ𝑖,
𝑊ℎ𝑖

𝐶ℎ𝑖
→ 𝑊ℎ𝑖,

Ψ

(𝑘𝐵𝑇𝑒 𝑒⁄ )
→ Ψ, 𝐶ℎ𝑖 = (

𝑘𝐵𝑇𝑒
𝑚ℎ𝑖

)
1 2⁄

,
𝑥

𝜆𝐷ℎ𝑖
→ 𝑥,

𝑡

𝜔𝑝ℎ𝑖
−1 → 𝑡

𝜈ℎ𝑖

𝑚ℎ𝑖𝜌𝑁ℎ𝑖,0𝜔𝑝ℎ𝑖𝜆𝐷ℎ𝑖
2 → 𝜈ℎ𝑖 , 𝜆𝑑ℎ𝑖 = (

𝑘𝐵𝑇𝑒
4𝜋𝑒2𝜌𝑁ℎ𝑖,0

)

1 2⁄

, 𝜔𝑝ℎ𝑖
−1 = (

𝑚ℎ𝑖

4𝜋𝑒2𝜌𝑁ℎ𝑖,0
)

1 2⁄

}
 
 

 
 

. (4.5) 

Due to the introducing of Eq. (4.5) in Eqs. (4.2)-(4.4), the density (temperature) 

ratio’s are to be formed as 𝜌𝑁𝑟1 = 𝜌𝑁𝑒0 𝜌𝑁𝑖0⁄  and 𝜌𝑁𝑟2 = 𝑍ℎ𝑖𝜌𝑁ℎ𝑖0 𝜌𝑁𝑖0⁄           

(𝜏𝑒𝑖 = 𝑇𝑒 𝑇𝑖⁄ ). Here, 𝜌𝑁ℎ𝑖 (𝑊ℎ𝑖, 𝐶ℎ𝑖, 𝜈ℎ𝑖), Ψ, 𝑇𝑒 (𝑇𝑖), 𝑘𝐵 (e) and  𝜆𝑑ℎ𝑖 (𝜔𝑝ℎ𝑖
−1 ) denotes 

the heavy NIs density (fluid velocity, acoustic speed, viscosity coefficient),  

electrostatic wave potential,  temperature of electrons (PIs), familiar Boltzmann 

constant (magnitude of the electron charge) and plasma Debye length 

(frequency). Additionally, the proper indexing values of 𝑞 is measured as         

(i) superthermality (-1< 𝑞 < 1), (ii) subthermal (𝑞 > 1) and (iii) isothermality     

(𝑞 = 1)  for electrons, respectively.  
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4.3 Formation of modified Burgers-type equation having quartic 

nonlinearity 

To derive a new evolution equation, the space and time variables can be 

stretched as 

𝜁 = 𝜀3(𝑥 − 𝑉𝑝ℎ𝑡),   𝜂 = 𝜀
6𝑡, 0 < 𝜀 < 1,                                           (4.6) 

where 𝑉𝑝ℎ is the propagation speed to be evaluated later. The above expressions 

yield   

𝜕

𝜕𝑡
= 𝜀6

𝜕

𝜕𝜂
− 𝜀3𝑉𝑝ℎ

𝜕

𝜕𝜁
  ,      

𝜕

𝜕𝑥
= 𝜀3

𝜕

𝜕𝜂
 .                                 (4.7) 

For a small deviation from equilibrium state, one yields 𝜌𝑁ℎ𝑖
(0) = 1 and        

𝑊ℎ𝑖
(0) = Ψ

(0) = 0. As a result, the growth of the perturbed quantities are 

considered [118] as 

[

𝜌𝑁ℎ𝑖
𝑊ℎ𝑖

Ψ
] = [

1
0
0
] +∑𝜀𝑖

∞

𝑖

[

𝜌𝑁ℎ𝑖
(𝑖)

𝑊ℎ𝑖
(𝑖)

Ψ
(𝑖)

].                                           (4.8) 

Apply Eq. (4.7) and Taylor series expansion as in Eq. (4.8) into Eqs. (4.2)-(4.4), 

one can be converted Eqs. (4.2)-(4.4) by various orders of 𝜀, namely 𝛰(𝜀𝑟),       

𝑟 = 4,5,6, . . . . . . . .... . The lowest order equations, that is, for 𝛰(𝜀4) equations 

yields [118] as follows 

𝜌𝑁ℎ𝑖
(1)
= −

1

𝑉𝑝ℎ
2 Ψ

(1),𝑊ℎ𝑖
(1) = −

1

𝑉𝑝ℎ
Ψ
(1), 𝑉𝑝ℎ = √

𝜌𝑁𝑟1
𝜌𝑁𝑟2Λ1 + 𝜏𝑒𝑖

,         (4.9) 

where 𝑉𝑝ℎ is the linear phase velocity and Λ1 = (𝑞 + 1)/2. Again, the 

simplification of 𝛰(𝜀5) equations (ignored for simplicity) provides 

𝜌𝑁ℎ𝑖
(2) =

1

𝑉𝑝ℎ
2 [

3

2𝑉𝑝ℎ
2 {Ψ

(1)}2 −Ψ
(2)] ,𝑊ℎ𝑖

(2) =
1

𝑉𝑝ℎ
[
1

2𝑉𝑝ℎ
2 {Ψ

(1)}2 −Ψ
(2)],    (4.10) 

and 

− [
𝜌𝑁𝑟2(𝑞 + 1)(3 − 𝑞)

8
−
1

2
𝜏𝑒𝑖
2 +

3𝜌𝑁𝑟1
2𝑉𝑝ℎ

4 ] {Ψ
(1)}

2
= 0.                                    (4.11) 
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Eq. (4.11) yields 

𝑃𝑓 = 𝜌𝑁𝑟2Λ2 −
1

2
𝜏𝑒𝑖
2 +

3𝜌𝑁𝑟1
2𝑉𝑝ℎ

4 = 0,Λ2 =
𝜌𝑁𝑟2(𝑞 + 1)(3 − 𝑞)

8
.        (4.12) 

It should be noted that Eq. (4.12) lists the critical values (CVs) of any plasma 

parameter which indicates the Burgers equation that formulated in Ref. 118 fails 

to adequately characterize the fundamental property of SWEs in the context of 

plasmas. As a result, one needs to consider higher order of 𝜀 equations for 

overcome such difficulty.   

For  𝛰(𝜀6): 

−𝑉𝑝ℎ
𝜕𝜌𝑁ℎ𝑖

(3)

𝜕𝜁
+
𝜕𝑊ℎ𝑖

(3)

𝜕𝜁
+
𝜕

𝜕𝜁
(𝜌𝑁ℎ𝑖

(1)𝑊ℎ𝑖
(2)) +

𝜕

𝜕𝜁
(𝜌𝑁ℎ𝑖

(2)𝑊ℎ𝑖
(1)) = 0,              (4.13) 

−𝑉𝑝ℎ
𝜕𝑊ℎ𝑖

(3)

𝜕𝜁
+𝑊ℎ𝑖

(1) 𝜕𝑊ℎ𝑖
(2)

𝜕𝜁
+𝑊ℎ𝑖

(2) 𝜕𝑊ℎ𝑖
(1)

𝜕𝜁
−
𝜕Ψ

(3)

𝜕𝜁
= 0,                          (4.14) 

and 

𝜌𝑁𝑟2Λ1Ψ(3) + 2𝜌𝑁𝑟2Λ2Ψ(1)Ψ(2) + 𝜌𝑁𝑟2Λ3[Ψ
(1)]

3
+ 𝜏𝑒𝑖

3 [Ψ(1)]
3
+ 𝜏𝑒𝑖Ψ

(3)             

− 2𝜏𝑒𝑖
2 Ψ

(1)Ψ
(2) + 𝜌𝑁𝑟1𝜌𝑁ℎ𝑖

(3)
= 0,                                                          (4.15) 

where 

Λ3 =
(𝑞 + 1)(3 − 𝑞)(5 − 3𝑞)

48
. 

For  𝛰(𝜀7): 

   
𝜕𝜌𝑁ℎ𝑖

(1)

𝜕𝜂
− 𝑉𝑝ℎ

𝜕𝜌𝑁ℎ𝑖
(4)

𝜕𝜁
+
𝜕𝜌𝑁ℎ𝑖

(4)

𝜕𝜁
+
𝜕

𝜕𝜁
(𝜌𝑁ℎ𝑖

(2)𝑊ℎ𝑖
(2)) +

𝜕

𝜕𝜁
(𝜌𝑁ℎ𝑖

(1)𝑊ℎ𝑖
(3))

+
𝜕

𝜕𝜁
(𝜌𝑁ℎ𝑖

(3)𝑊ℎ𝑖
(1)) = 0,                                                                              (4.16) 

𝜕𝑊ℎ𝑖
(1)

𝜕𝜂
− 𝑉𝑝ℎ

𝜕𝑊ℎ𝑖
(4)

𝜕𝜁
+𝑊ℎ𝑖

(1) 𝜕𝑊ℎ𝑖
(3)

𝜕𝜁
+𝑊ℎ𝑖

(3) 𝜕𝑊ℎ𝑖
(1)

𝜕𝜁
+𝑊ℎ𝑖

(2) 𝜕𝑊ℎ𝑖
(2)

𝜕𝜁
−
𝜕Ψ

(4)

𝜕𝜁

− 𝜈ℎ𝑖
𝜕2𝑊ℎ𝑖

(1)

𝜕𝜁2
= 0,                                                                                       (4.17) 
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and 

(𝜌𝑁𝑟2Λ1 + 𝜏𝑒𝑖)Ψ
(4) + (𝜌𝑁𝑟2Λ2 − 𝜏𝑒𝑖

2 ){Ψ
(2)}2 + 2(𝜌𝑁𝑟2Λ2 − 𝜏𝑒𝑖

2 )Ψ
(1)Ψ

(3)

+ 3(𝜌𝑁𝑟2Λ3 + 𝜏𝑒𝑖
3 ){Ψ

(1)}2Ψ
(2) + (𝜏𝑒𝑖

4 + 𝜌𝑁𝑟2Λ4){Ψ
(1)}4 + 𝜌𝑁𝑟1𝜌𝑁ℎ𝑖

(4)

= 0,                                                                                                                 (4.18) 

where 

Λ4 =
(𝑞 + 1)(3 − 𝑞)(5 − 3𝑞)(7 − 5𝑞)

384
. 

Now, it is formulated the following solutions along with a remarkable equation 

from the 𝛰(𝜀6)-order equations: 

𝜌𝑁ℎ𝑖
(3) =

1

𝑉𝑝ℎ
2 [

3

𝑉𝑝ℎ
2 {Ψ

(1)Ψ
(2)} −

5

2𝑉𝑝ℎ
4 {Ψ

(1)}3 −Ψ
(3)],                           (4.19) 

𝑊ℎ𝑖
(3)
=

1

𝑉𝑝ℎ
[
1

𝑉𝑝ℎ
2 {Ψ

(1)Ψ
(2)} −

1

2𝑉𝑝ℎ
4 {Ψ

(1)}3 −Ψ
(3)],                           (4.20) 

and            

−𝑃𝑓Ψ(3) + 2𝑃𝑓{Ψ
(1)Ψ(2)} + [𝜌𝑁𝑟2Λ3 +

1

6
𝜏𝑒𝑖
3 −

5𝜌𝑁𝑟1
2𝑉𝑝ℎ

6 ] {Ψ(1)}
3
= 0.       (4.21) 

Eq. (4.21) yields  

−𝑄𝑓{Ψ
(1)}

3
= 0.                                                         (4.22) 

It is clearly found from Eq. (4.22) that 

𝑄𝑓 = 𝜌𝑁𝑟2Λ3 +
1

6
𝜏𝑒𝑖
3 −

5𝜌𝑁𝑟1
2𝑉𝑝ℎ

6 = 0.                                       (4.23) 

It's noteworthy to note that the 𝛰(𝜀6)-order equations is solvable only if 𝑄𝑓 = 0 

and CVs are supported by setting 𝑃𝑓 = 0. As a result, one can be evaluated the 

super critical values (SCVs) for any given parameter by setting 𝑄𝑓 = 0.  

Finally, substituting Eqs. (4.9), (4.10), (4.19), and (4.20) into the 𝛰(𝜀7)-order 

equations yields 

−
1

𝑉𝑝ℎ
2

𝜕Ψ
(1)

𝜕𝜂
− 𝑉𝑝ℎ

𝜕𝜌𝑁ℎ𝑖
(4)

𝜕𝜁
+
𝜕𝑊ℎ𝑖

(4)

𝜕𝜁
+

1

𝑉𝑝ℎ
3

𝜕

𝜕𝜁
{Ψ

(2)}
2
−

6

𝑉𝑝ℎ
5

𝜕

𝜕𝜁
[{Ψ

(1)}
2
Ψ
(2)]

+
15

4𝑉𝑝ℎ
7

𝜕

𝜕𝜁
{Ψ

(1)}
4
+

2

𝑉𝑝ℎ
3

𝜕

𝜕𝜁
[Ψ

(1)Ψ
(3)] = 0,                                     (4.24) 
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−
1

𝑉𝑝ℎ

𝜕Ψ
(1)

𝜕𝜂
− 𝑉𝑝ℎ

𝜕𝑊ℎ𝑖
(4)

𝜕𝜁
−
𝜕Ψ

(4)

𝜕𝜁
+

1

2𝑉𝑝ℎ
2

𝜕

𝜕𝜁
{Ψ

(2)}
2
−

3

2𝑉𝑝ℎ
4

𝜕

𝜕𝜁
[{Ψ

(1)}
2
Ψ
(2)]

+
1

𝑉𝑝ℎ
2

𝜕

𝜕𝜁
[Ψ

(1)Ψ
(3)] +

5

8𝑉𝑝ℎ
6

𝜕

𝜕𝜁
{Ψ

(1)}
4
+
𝜈ℎ𝑖
𝑉𝑝ℎ

𝜕2Ψ
(1)

𝜕𝜁2
= 0,            (4.25) 

and 

(𝜌𝑁𝑟2Λ1 + 𝜏𝑒𝑖)
𝜕Ψ

(4)

𝜕𝜁
+ (𝜌𝑁𝑟2Λ2 − 𝜏𝑒𝑖

2 )
𝜕

𝜕𝜁
{Ψ

(2)}
2
+ 2(𝜌𝑁𝑟2Λ2 − 𝜏𝑒𝑖

2 )
𝜕

𝜕𝜁
[Ψ

(1)Ψ
(3)]

+ 3(𝜌𝑁𝑟2Λ3 + 𝜏𝑒𝑖
3 )

𝜕

𝜕𝜁
[{Ψ

(1)}2Ψ
(2)] + (𝜏𝑒𝑖

4 + 𝜌𝑁𝑟2Λ4)
𝜕

𝜕𝜁
[{Ψ

(1)}4]

+ 𝜌𝑁𝑟1
𝜕𝜌𝑁ℎ𝑖

(4)

𝜕𝜁
= 0.                                                                                     (4.26) 

By eliminating the fourth order quantities with the help of Eqs.(4.12) and (4.23), 

one arises with 

𝜕Ψ
(1)

𝜕𝜂
+ 𝐺{Ψ

(1)}
3 𝜕Ψ

(1)

𝜕𝜁
= 𝐻

𝜕2Ψ
(1)

𝜕𝜁2
,                                      (4.27) 

The coefficients of Eq. (4.27) that are nonlinear and dissipative are obtained as 

𝐺 =
𝑉𝑝ℎ
3

2𝜌𝑁𝑟1
(
1

6
𝜏𝑒𝑖
4 − 4𝜌𝑁𝑟2Λ4 −

35𝜌𝑁𝑟1
2𝑉𝑝ℎ

8 ) ,𝐻 =
𝜈ℎ𝑖
2
.                          (4.28) 

Eq. (4.27) is so-called the modified Burgers-type equation having quartic 

nonlinearity.  It is remarkable to note that Eq. (4.27) is formulated for the first 

time. As a result, the useful solution of Eq. (4.27) must therefore be required in 

order to analyze the propagation of DIASWEs around the SCVs in the plasmas. 

The next section provides a detailed derivation of the solution to Eq. (4.27). 

4.4 Analytical solution of modified Burgers-type equation having quartic 

nonlinearity 

To determine the stationary shock wave solution of Eq. (4.27), one can be 

converted Eq. (4.27) by considering Ψ(1)(𝜁, 𝜂) = Ω(𝜒) with 𝜒 = 𝜁 − 𝑉𝑟ℎ𝜂 (𝑉𝑟ℎ is 

the constant speed of reference frame) with the boundary conditions Ω → 0, 

Ω′ → 0, Ω″ → 0, . . . . . .. as 𝜒 → ±∞ to the following form: 
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−𝑉𝑟ℎ
𝑑Ω

𝜕𝜒
+ 𝐺Ω3 𝑑Ω

𝜕𝜒
= 𝐻

𝑑2Ω

𝑑𝜒2
.                                               (4.29) 

Integrating Eq. (4.29) one times with regards to 𝜉, yields   

−𝑉𝑟ℎΩ+
1

4
𝐺Ω4 = 𝐻

𝑑Ω

𝑑𝜒
,                                                           (4.30) 

The integral form of Eq. (4.30) is obtained as  

𝐻

3𝑉𝑟ℎ
∫[

3Ω2

Ω3 −
4𝑉𝑟ℎ

𝐺

−
3

Ω
] 𝑑Ω = ∫𝑑𝜒,  

which gives  

Ω3 =
2𝑉𝑟ℎ
𝐺

[1 −
𝑒𝑥𝑝 (

3𝑉𝑟ℎ

2𝐻
𝜒) + 𝑒𝑥𝑝 (

−3𝑉𝑟ℎ

2𝐻
𝜒)

𝑒𝑥𝑝 (
3𝑉𝑟ℎ

2𝐻
𝜒) − 𝑒𝑥𝑝 (

−3𝑉𝑟ℎ

2𝐻
𝜒)
].  

Hence, the useful stationary shock wave solution of Eq. (4.27) is formulated as 

Ψ = [Ψ𝐴 {1 − 𝑡𝑎𝑛 ℎ (
𝜒

Ψ𝑊
)}]

1 3⁄

,                                     (4.31) 

where Ψ(1) ∼ Ψ, Ψ𝐴 = (2𝑉𝑟ℎ 𝐺⁄ ) and Ψ𝑊 = (2𝐻 3𝑉𝑟ℎ⁄ ) are the amplitude and 

thickness of DIA SWEs around SCVs. The details calculation to derive 

stationary shock wave solution of equation (4.27) are listed in appendix B. 

4.5 Results and discussions 

To examine the nature of electrostatic DIA SWEs by the consideration of SCVs, 

a nonlinear evolution equation as in Eq. (4.27) has been formulated form the 

considered plasma model. But, it is fascinating and essential to determine the 

exact shock wave solution for Eq. (4.27). By directly integrating, the exact 

solution of Eq. (4.27) has already been constructed as in Eq. (4.31). Based on the 

effective exact solution, the nonlinear propagation characteristics of DIA SWEs 

related to physical parameters including 𝜌𝑁𝑟1 (electrons to PIs density ratio), 

𝜌𝑁𝑟2 (heavy NIs to PIs density ratio), 𝜏𝑒𝑖 (electrons to PIs temperature ratio) and 
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𝜈ℎ𝑖 (viscosity coefficient of heavy NIs) is described in Figures below. In the 

presented discussion, the typical ranges of plasma parameters are considered 

based on the Ref. 118. It is considered just for the purpose of qualitative analysis 

of SWEs.   

Figures 4.1 show the variation of amplitude and thickness of DIA SWEs 

with regards to 𝑉𝑟ℎ and 𝜈ℎ𝑖 since not only CVs but also SCVs are independent of 

𝑉𝑟ℎ and 𝜈ℎ𝑖. It is found from Figures 4.1 that the amplitudes (thickness) of DIA 

SWEs are increased (decreased) with the increased of 𝑉𝑟ℎ, whereas only the 

thickness is increased but amplitude remained unchanged with the increase of 

𝜈ℎ𝑖, as it is expected.  The 3D shape of SWEs with the influence of 𝑉𝑟ℎ and 𝜈ℎ𝑖  is 

also displayed in Figure 4.2. It is found from Figure 4.2 that the monotonically 

shocks are supported around SCVs, as it expected because the viscosity 

coefficient is only response to the formation of shocks in such plasmas.  

Figures 4.3(a) and 4.3(b) demonstrate the electrostatic DIA SWEs with the 

variation of 𝜒 and 𝑞, and 𝜒 and 𝜏𝑒𝑖 around SCVs as well as at the SCVs, 

respectively. Whereas, Figures 4.4(a) and 4.4(b) demonstrate the electrostatic 

DIA SWEs with the variation of 𝜒 and 𝜌𝑁𝑟1, and 𝜒 and  𝜌𝑁𝑟2 around SCVs as 

well as at the SCVs, respectively. It is observed from Figures. 4.3 and 4.4 that 

the compressive electrostatic SWEs are only supported for the cases of (i) 𝜏𝑒𝑖 is 

less or equal its SCVs (𝜏𝑒𝑖𝐶), (ii) 𝑞 is greater or equal its SCVs (𝑞𝐶), (iii) 𝜌𝑁𝑟1 is 

greater or equal its SCVs (𝜌𝑁𝑟1𝐶) and (iv) 𝜌𝑁𝑟2 is less or equal its SCVs (𝜌𝑁𝑟2𝐶). 

Additionally, the electrostatic SWEs are increased (decreased) with the increase 

of 𝜏𝑒𝑖 and 𝜌𝑁𝑟2  (𝑞 and 𝜌𝑁𝑟1 ) from its SCVs. 

In the physical sense, the electrostatic potential fall transversely the double 

layer enhances, and then more plasma particles may accelerate in the 

considered plasmas with the increase of shock amplitudes. Such mechanism is 

actually made with the increase of subthermal electrons energy and heave NIs 
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density. This means that the restoring force plays vital role with the increase of 

temperature of electrons, whereas the driving leads to leading role with the 

increase of heave NIs density. From the above discussion, it can be concluded 

that the presented research work must be useful to cheek the laboratory 

experiments when the supercritical points of any parameters are suddenly 

appeared in the plasmas  
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Figure 4.1: The contour of the shock wave (a) amplitude and (b) thickness in the 

(𝜈ℎ𝑖, 𝑉𝑟ℎ) plane with 𝜌𝑁𝑟1 = 0.5, 𝜌𝑁𝑟2 = 0.05, 𝜏𝑒𝑖 = 0.1 and 𝑞 = 5. 
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Figure 4.2: The variation of shock profile with regards (a) 𝜒 and 𝑉𝑟ℎ (𝜈ℎ𝑖  = 0.1) and     

(b) 𝜒 and 𝜈ℎ𝑖 ( 𝑉𝑟ℎ  = 0.1) with 𝜌𝑁𝑟1 = 0.5, 𝜌𝑁𝑟2 = 0.05 and 𝑞 = 5. 
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Figure 4.3: The variation of shock profiles with regards to (a) 𝜒 and 𝜏𝑒𝑖 around and at 

SCV (𝜏𝑒𝑖𝐶) with 𝜌𝑁𝑟1 = 0.5, 𝜌𝑁𝑟2 = 0.05, 𝜈ℎ𝑖 = 0.1, 𝑉𝑟ℎ = 0.01 and 𝑞 = 3.26128286,      

and (b) 𝜒 and 𝑞 around and at SCV (𝑞𝑐 = 3.26128286)  with 𝜌𝑁𝑟1 = 0.5,                    

𝜌𝑁𝑟2 = 0.05, 𝜈ℎ𝑖 = 0.1, 𝑉𝑟ℎ = 0.01 and 𝜏𝑒𝑖 = 0.1. 

(a) 

(b) 
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Figure 4.4: The variation of shock profiles with regards to (a) 𝜒 and 𝜌𝑁𝑟1 around and at 

SCV (𝜌𝑁𝑟1𝐶) with 𝜏𝑒𝑖 = 0.1, 𝜌𝑁𝑟2 = 0.05, 𝜈ℎ𝑖 = 0.1, 𝑉𝑟ℎ = 0.01 and 𝑞 = 3.26128286,       

and (b) 𝜒 and 𝜌𝑁𝑟2 around and at SCV (𝜌𝑁𝑟2𝐶)  with 𝜌𝑁𝑟1 = 0.5, 𝑞 = 3.26128286,       

𝜈ℎ𝑖 = 0.1, 𝑉𝑟ℎ = 0.01 and 𝜏𝑒𝑖 = 0.1. 

(a) 

(b) 
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4.6 Concluding remarks 

An investigation of the nonlinear DIA shock waves not only around SCVs but 

also at the SCVs propagating in a collisionless complex multi-ions plasma with 

subthermal electrons has been presented. The compressive SWEs have only 

found around SCVs but also at the SCVs by formulating new evolution 

equation, so called the modified Burgers-type equation having quartic 

nonlinearity. It is noted that the new evolution equation is only applicable to 

study SWEs for the SCVs. By directly integrating, the exact solution of    

Burgers-type equation having quartic nonlinearity has been determined for the 

first time. The existence regions of SWEs based on the SCVs have also been 

provided. Thus, the theoretical investigation in this work would be provided a 

better understanding of SWEs in dusty multi-ions plasma with nonextensive 

electrons in further laboratory verification.        



 
 

Chapter 5 

Summary and future direction 

 

The critical findings that have been found from the previous chapters are 

summarized as below.  

Chapter 1 has been dedicated for introductory discussions including 

fundamental of plasmas, the existence of shock waves and how to derive 

nonlinear evolution equations (NLEEs) via the mathematical techniques.  

In Chapter 2, the nonlinear propagation of ion acoustic shock waves (IASWs) in 

an unmagnetized collisionless pair-ions plasma with (𝛼, 𝑞)-distributed electrons 

have been investigated. To do so, Burger equations having various kinds of 

nonlinearity have been derived by implementing the reductive perturbation 

technique. The appropriate solutions of Burger equations having various kinds 

of nonlinearity have been determined. The effects of parameters on the 

nonlinear electrostatic IASWs described by Burger equations have been 

reported. In addition, the electrostatic IASWs and normalized electric fields 

have been investigated around the critical values with the changes of viscosity 

coefficients of positive and negative ions. The outcomes obtained from this 

chapter might be very useful to understand the behavior of shocks and 

behavior of shocks around the critical values in the F- and D-regions of Earth’s 

ionosphere, and the later experimental verification in plasma laboratory.  

In Chapter 3, the nonlinear propagation of DIASWs in a collisionless four-

component unmagnetized dusty multi-ion plasma have investigated. To do so, 

several nonlinear evolution equations have formulated by implementing the 

reductive perturbation technique. This chapter has also been reinvestigated the 

electrostatic DIASWs in dusty multi-ion nonextensive plasma because of the 
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misleading information about nonlinear coefficients and analytical solutions of 

Burger equations involving higher-order nonlinearities in Ref. [118]. The effects 

of parameters on the DIASWs have been reported. It has been found that the 

rarefactive electrostatic shocks are only supported with the presence of 

superthermality, isothermality and nonthernality electrons, but both of 

compressive and rarefactive shocks are supported with the presence of 

subthermality electrons. It has also been investigated the nature of electrostatic 

shocks and double layer around the critical values and at the critical values of 

any specific plasma parameters. The outcomes from this work would be helpful 

for better understanding the dynamics of DIASWs in space environments and 

plasma laboratory.       

In chapter 4, progress in understanding the propagation of DIASWs for the 

super critical values of any specific parameter which accompany an 

unmagnetized collisionless four-component dusty multi-ion nonextensive 

plasma has been presented.  To accomplish this goal, the formation of modified 

Burgers-type equation having quartic nonlinearity via the reductive 

perturbation method and its analytical solution has been yielded for the first 

time. It is found that the compressive electrostatic shocks are supported not 

only around the super critical values but also at the super critical values of the 

specific parameters. The presented results would be applicable to comprehend 

wave propagation in interplanetary plasmas and laboratory plasmas. 

     It can be concluded that this thesis serves as an illustration for creating 

nonlinear shock wave structures with the variation of plasma parameters by 

deriving realistic NLEEs. Such NLEEs are obtained by stretching only the space 

and time variables and only the expansion of perturb quantities. But still there 

are so many possibilities to carry further investigation on nonlinear analysis of 

shock wave excitations by considering any other plasma circumstances or 

deriving any other NLEEs from the previously proposed models. In addition, 



107 
 

one can study the dynamical analysis of shock wave excitations for the super 

critical values of any specific parameter in the plasmas. Further, one may study 

the nonlinear shock wave phenomena by NLEEs involving spherical or 

cylindrical coordinates via the numerical techniques. These are also the 

problems of great importance in plasma physics for better understanding the 

characteristics of shock waves as observed in many astrophysical and space 

plasmas, but beyond the scope of this thesis. Finally, the structure and 

properties of parametric effects on the shock structures are still not clear and an 

extensive development in this direction can be achieved by undertaking a 

systematic study.  
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Appendices 

Appendix A: The verification of the solution of modified Burger equation 

(2.77) 

> 𝜉:= 𝑋 − 𝑉𝑟𝑇 

> Φ𝐴: = (3𝑉𝑟𝐴 2𝐵⁄ ) 

> Φ𝑊: = (𝐶 𝑉𝑟𝐵⁄ ) 

> Φ(1): = √Φ𝐴 {1 − 𝑡𝑎𝑛 ℎ (
𝜁

Φ𝑊
)} 

> 𝑑𝑖𝑓𝑓(Φ(1), 𝑇) 

> 𝑑𝑖𝑓𝑓(Φ(1), 𝑋) 

> 𝑑𝑖𝑓𝑓(Φ(1), 𝑋, 𝑋) 

> 𝐴 ∗ 𝑑𝑖𝑓𝑓(Φ(1), 𝑇) + 𝐵 ∗ (Φ(1))2 ∗ 𝑑𝑖𝑓𝑓(Φ(1), 𝑋) + 𝐶 ∗ 𝑑𝑖𝑓𝑓(Φ(1), 𝑋, 𝑋) 

> 0 

It is noted that the stationary solution 

> Φ(1) = √(
3𝑢0
2𝐵

)

{
 

 

1 − 𝑡𝑎𝑛 ℎ

(

 
𝜁 − 𝑢0𝜏

√
𝑐
𝑢0 )

 

}
 

 

 

provided in the previous literature in Refs. [101-103] does not satisfy the 

following modified Burgers equation:  

𝐴
𝜕Φ(1)

𝜕𝜏
+ 𝐵{Φ(1)}

2 𝜕Φ(1)

𝜕𝜁
= 𝐶

𝜕2𝑣(1)

𝜕𝜁2
 

which clearly indicates that the above solution of modified Burgers equation is 

not useful for later experimental verification.  
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Appendix B: The details calculation to derive stationary shock wave solution 

of equation (4.27) 

−𝑉𝑟ℎ
𝑑Ω

𝜕𝜒
+ 𝐺Ω3 𝑑Ω

𝜕𝜒
= 𝐻

𝑑2Ω

𝑑𝜒2
 

⇒ −𝑉𝑟ℎΩ+
1

4
𝐺Ω4 = 𝐻

𝑑Ω

𝑑𝜒
 

⇒
𝐻𝑑Ω

1
4𝐺Ω

4 − 𝑉𝑟ℎΩ
= 𝑑𝜒 

⇒
4𝐻

𝐺

𝑑Ω

Ω (Ω3 −
4𝑉𝑟ℎ
𝐺 )

= 𝑑𝜒 

⇒
𝐻

3𝑉𝑟ℎ
[

3Ω2

Ω3 −
4𝑉𝑟ℎ
𝐺

−
3

Ω
] 𝑑Ω = 𝑑𝜒 

⇒ 𝑙𝑛 (Ω3 −
4𝑉𝑟ℎ
𝐺
) − 𝑙𝑛Ω3 =

3𝑉𝑟ℎ
𝐻

𝜒 

⇒ Ω3 −
4𝑉𝑟ℎ
𝐺

= Ω3 𝑒𝑥𝑝 (
3𝑉𝑟ℎ
𝐻

𝜒) 

⇒ Ω3 [𝑒𝑥𝑝 (
−3𝑉𝑟ℎ
𝐶

𝜒) − 1] =
4𝑉𝑟ℎ
𝐺

𝑒𝑥𝑝 (
−3𝑉𝑟ℎ
𝐻

𝜒) 

⇒ Ω3 = −
4𝑉𝑟ℎ
𝐺

𝑒𝑥𝑝 (
−3𝑉𝑟ℎ
𝐻 𝜒)

1 − 𝑒𝑥𝑝 (
−3𝑉𝑟ℎ
𝐻 𝜒)

 

⇒ Ω3 = −
4𝑉𝑟ℎ
𝐺

𝑒𝑥𝑝 (
−3𝑉𝑟ℎ
2𝐻

𝜒)

𝑒𝑥𝑝 (
3𝑉𝑟ℎ
2𝐻 𝜒) − 𝑒𝑥𝑝 (

−3𝑉𝑟ℎ
2𝐻 𝜒)

 

⇒ Ω3 =
2𝑉𝑟
𝐺
[1 −

𝑒𝑥𝑝 (
3𝑉𝑟ℎ
2𝐻 𝜒) + 𝑒𝑥𝑝 (

−3𝑉𝑟ℎ
2𝐻 𝜒)

𝑒𝑥𝑝 (
3𝑉𝑟ℎ
2𝐻 𝜒) − 𝑒𝑥𝑝 (

−3𝑉𝑟ℎ
2𝐻 𝜒)

] 
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∴ Ω = [
2𝑉𝑟ℎ
𝐺

{1 − 𝑡𝑎𝑛 ℎ (
3𝑉𝑟ℎ
2𝐻

𝜒)}]
1 3⁄

 

the stationary shock wave solution of Eq. (4.27) is obtained as 

Ψ = [Ψ𝐴 {1 − 𝑡𝑎𝑛 ℎ (
𝜒

Ψ𝑊
)}]

1 3⁄

 

where, Ψ𝐴 = (2𝑉𝑟ℎ 𝐺⁄ ) and Ψ𝑊 = (2𝐻 3𝑉𝑟ℎ⁄ ) are the amplitude and thickness of 

DIA SWEs around SCVs. The above solution is determined for the first time.  
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