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Abstract 

As a non-invasive neuromodulation technique, transcranial magnetic 

stimulation (TMS) has already exhibited a great impact in clinical applications 

and scientific researches.  For finding new clinical applications of TMS, the 

current study focused on a deep learning-based prediction model as an 

alterative of time-consuming electromagnetic (EM) simulation software. 

However, the main bottleneck of the existing prediction models is to consider 

fewer input parameters such as single coil type and coil position for predicting 

electric field value. To address these limitations, this research develops an 

improved approach based on a deep neural network (DNN) to predict electric 

field by considering several input parameters such as coil turns of single wing, 

coil thickness, coil diameter, distance between two wings, distance between 

head and coil position, and angle between two wings of coil. In addition, 

considering the fact of focality and depth tradeoff, the assembly coil is 

designed. The performance of the model is evaluated based on four verification 

statistic metrics including coefficient of determination (R2), mean squared error 

(MSE), mean absolute error (MAE), and root mean squared error (RMSE) 

between the simulated and predicted values.  Compared to current state-of-the-

art methods, the proposed DNN model outperformed with the value of 

R2=0.9992, MSE=0.0005, MAE=0.0188, and RMSE=0.0228 in the testing stage. 

Therefore, the proposed DNN model can accurately predict electric field from 

assembly coil in a lower period of time without using traditional simulation 

software. 

 

  



 

vii

বিমূর্ত 

একটি অ-আক্রভণাত্মক ননউরযারভাডুরর঱ন ককৌ঱র ন঴঳ারফ, ট্রান্সক্রাননযার 

ভযাগরনটিক নিভুরর঱ন (টিএভএ঳) ইনিভরধযই নিননকার ফযফ঴ায এফং বফজ্ঞাননক 

গরফলণায একটি দুদদান্ত প্রবাফ প্রদ঱ দন করযরে। টিএভএ঳ এয নিুন নিননকার ফযফ঴ায 

঳ন্ধারনয জনয, ফিদভান গরফলণা ঳ভয ঳ার঩ক্ষ ইররররাভযাগরনটিক (ইএভ) ন঳ভুরর঱ন 

঳ফ্টওযযারযয নফকল্প ন঴঳ারফ একটি নড঩ রানন দং-নবনিক বনফলযদ্বাণী ভরডররয উ঩য দৃটি 

ননফদ্ধ করয। িরফ, নফদযভান বনফলযদ্বাণী ভরডররয প্রধান ঳ভ঳যা ঴র বফদুযনিক কক্ষরেয 

ভান ঩ূফ দাবা঳ কযায জনয ইন঩ুি ঩যাযানভিায কমভন একক করযর িাই঩ এফং করযররয 

অফস্থান নফরফচনা কযা। এই ঳ীভাফদ্ধিাগুনররক কভাকারফরা কযায জনয, এই গরফলণাটি 

একটি নড঩ ননউযার কনিওযাকদ (নডএনএন) এয উ঩য নবনি করয একটি উন্নি ঩দ্ধনিয 

নফকা঱ করয মারি একানধক ইন঩ুি ঩যাযানভিায কমভন একক করযর ফা াঁক, করযররয 

঩ুরুত্ব, করযররয ফযা঳, ভাথা কথরক দুটি করযররয ভরধয দযূত্ব, এফং করযররয অফস্থান, 

এফং করযর দুটি ভরধয ককাণ নফরফচনা করয বফদুযনিক কক্ষরেয ঩ূফ দাবা঳ করয। উ঩যন্তু, 

কপাকানরটি এফং গবীযিায বায঳াভয নফলযটি নফরফচনা করয, অযার঳ম্বনর করযর 

নডজাইন কযা ঴রযরে। ভরডরটিয কাম দকানযিা ভূরযাযন কযা ঴য চাযটি মাচাইকযণ 

঩নয঳ংখ্যান কভটট্ররেয উ঩য নবনি করয মায ভরধয যরযরে ননণ দরযয ঳঴গ (আয2), গ঵ 

ফগ দ ত্রুটি (এভএ঳ই), গ঵ ঩যভ ত্রুটি (এভএই), এফং ন঳ভুরররিড এফং ঩ূফ দাবান঳ি 

ভানগুনরয ভরধয রুি গ঵ ককাযায ত্রুটি (আযএভএ঳ই)। ফিদভান অিযাধুননক ঩দ্ধনিয 

িুরনায, প্রস্তানফি নডএনএন ভরডরটি ঩যীক্ষায ঩ম দারয আয2=০.৯৯৯২, 

এভএ঳ই=০.০০০৫, এভএই=০.০১৮৮, এফং আযএভএ঳ই=০.০২২৮ ভারনয ঳ারথ 

উন্নযন করযরে। অিএফ, প্রস্তানফি নডএনএন ভরডরটি প্রথাগি ন঳ভুরর঱ন ঳ফ্টওযযায 

ফযফ঴ায না করয কভ ঳ভরযয ভরধয অযার঳ম্বনর করযর কথরক বফদুযনিক কক্ষরেয 

঳টিকবারফ ঩ূফ দাবা঳ নদরি ঩ারয। 
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Chapter 1: INTRODUCTION 

This chapter outlines the background (section 1.1) of the research and its problem 

statement (section 1.2). Next, section 1.3 describes the purpose of this research. Finally, 

section 1.4 includes an outline of the remaining chapters of the Thesis. 

 

1.1 RESEARCH BACKGROUND 

Transcranial magnetic stimulation (TMS) has shown an effective therapeutic 

outcome for some neural disorders such as major depressive disorder, traumatic 

brain injury, parkinson's disease, post-traumatic stress disorder, etc. [1-4]. The 

TMS technique requires a magnetic coil normally placed on the subject’s head 

that is fed with a high-valued short-duration current pulse [5]. The electric 

current conveyed in the coil produces a magnetic field that results in an induced 

electric field inside the brain tissues [6]. Then a localized axial depolarization is 

formed by the induced electrical field in the underlying cortical tissue which has 

a therapeutic effectiveness of neural disorders [7]. To ensure a greater therapeutic 

effect, the induced electric field should have to be strong enough so that it can 

depolarize the target neurons that are responsible for the neural disorders [8, 9]. 

Moreover, some other factors including focality (area of stimulation) and depth 

(distance from vertex) of the induced electric field are associated with the 

effectiveness of TMS treatment. The commercially available single coils named as 

Fig.-eight, halo, circular, double cone, H, etc. are suffering from the trade-off 

between stimulation focality and depth. For instance, the Fig.-eight coil aims to 

generate a concentrated electric field within a smaller region rather than 

stimulating the deeper brain structure. Alternatively, the H-coil increases the 

stimulation depth by maintaining a moderate focality. The Halo coil also 

stimulates the deep brain structure but it degrades the focality. Thus, in the 
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recent research the development of an assembly coil (combination of single coils) 

is emphasized to maintain a trade-off between stimulation depth and focality 

[10]. 

1.2 PROBLEM STATEMENT 

The TMS induced electric field intensity is highly sensitive to numerous factors 

such as subject head anatomy, coil positioning, coil configuration, etc. An 

iterative computer simulation is required to determine the desired electric field 

intensity inside the brain tissues. However, the problem associated with the 

electric field enumeration is the computational time that is generally high for 

the commercial electromagnetic (EM) simulation software such as SimNIBS, 

Sim4Life, and COMSOL Multiphysics [11, 12]. Moreover, the computational 

time is related to the development of a human head model and the 

determination of the electric field with the aid of a volume conductor model [13, 

14]. The important bottleneck is that it takes few hours to half a day to design a 

TMS coil on a human head model as well as to compute the electric field.  

1.3 AIMS AND OBJECTIVES 

 To design an optimum coil for providing an effective treatment of the 

neurological disorder patients by assuring a tradeoff between depth and 

focality in the induced electric field.  

 To develop a database considering several coil designing parameters 

such as coil turns of single wing, coil thickness, coil diameter, distance 

between two wings, distance between head and coil position, and angle 

between two wings of coil. 

 To apply the deep learning algorithms for optimum electric field 

prediction in assembly transcranial magnetic stimulation coil by 

analyzing different coil parameters. 



 

15

 To investigate the computational cost of estimating electric field for 

different coils. 

1.4 THESIS CONTRIBUTIONS 

 An assembly coil named HVA as a neurostimulating coil is designed that 

can limit the induced field within a lesser region of the scalp as well as 

the cortical region to enhance the stimulation focality.  

 A DNN approach as a nonlinear regression model is proposed to predict 

the induced electric field value from assembly TMS coil under high-

valued and low-frequency current pulse conditions. 

 An improved DNN model based on attention assisted hybrid CNN and 

BiLSTM is developed for further improving the prediction of induced 

electric feld in HVA TMS coil. 

1.5 THESIS OUTLINE 

Chapter 2 reviews background literature relating to TMS therapeutic 

techniques and and limitation of conventional TMS simulation through the 

electro-magnetic software. 

Chapter 3 describes the development of new assembly coil and analysing 

its effectiveness over single and assembly coil as well.  

Chapter 4 represents how to develop a simple deep learning (DL) model 

and the way of generating dataset for training the model to enumerate TMS 

induced electric field.  

Chapter 5 provides the explanation of improved DL model for superior 

result of predicting electric field and performance evaluation over existing 

state-of-the-art methods.  

Chapter 6 represents the summary of overall research, limilations as well 

as future directions. 
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Chapter 2: LITERATURE REVIEW 

This chapter begins with reviews literature related to deep learning model based 

TMS electric field prediction followed by common limitations existing on the state-of-

the-art models. In addition,  highlights the implications from the literature and develops 

the conceptual framework for the study.  

 

The application of the deep learning (DL) approach could effectively resolve the 

computational cost issue [15].  Generally, the DL approach uses a layered 

structure of algorithm called artificial neural network (ANN) to solve several 

problems such as classification [16-19], regression [20-22], clustering [23, 24], and 

prediction [25-27]. Another advanced technique over shallow ANN called deep 

neural network (DNN) can develop a complex non-linear relationship with 

higher generalization capability by employing multiple hidden layers between 

the input and output [28] to compute optimum induced electric field. Recently, 

very few researches have been reported to compute induced electric field of TMS 

coil in head model through DNN model. For example, Yokota et al. [11] 

proposed a DNN model to estimate the electric field of TMS coil in head MR 

images at different coil positions. They created datasets with the help of SimNIBS 

and FreeSurfer segmentation softwares to train and test the U-Net DNN model. 

The FreeSurfer software converted the MR image into a 3D head model and the 

SimNIBS software calculated the electric fields by the finite element method at 

varying positions of the Fig.-eight coil. Thereafter, the DNN model was trained 

with created datasets for mapping the electric field to the MR images.  

In another work, Afuwape et al. [12] utilized a deep learning method to predict 

electric field into T1-weighted MR images with varying coil configuration. The 
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3D head model was generated from the MR image and the finite element 

analysis was performed in Sim4Life software for sixteen different coil 

configurations. Then the deep convolutional neural network was trained using 

the generated dataset to predict the electric field of TMS coils in 3D head model. 

Both of the models could estimate the electric field accurately within a short 

time.  However, the segmentation process (3D head model generation) is time-

consuming as well as complicated due to the generation of both brain and skull 

parts. It is also quite challenging to develop an accurate head structure from 

low contrast MR images. Besides segmentation time, both models take a longer 

training time to process the data with the deep network architecture. Moreover, 

the estimation of the electric field is done based on the single coil and single 

design parameter of coil positioning.  Since, the induced electric field value is 

dependent on different coil designing parameters such as the coil turns, coil 

thickness, coil angle, coil diameter, etc. [29], the optimum field calculation based 

on these parameters is essential for a safe and effective TMS treatment. 

Moreover, the advantages associated with the tradeoff between focality and 

depth of induced electric field cannot be achieved by the single stimulation coil 

but can be achieved by assembly coil. Thus the electric field for assembly coils 

will be predicted considering several coil designing parameters. 

In terms of computational time, all existing DL-based models have the 

capability of computing electric fields in a lower period of time. However, the 

data creation processes from the segmentation software presented in [11, 12] are 

quite challenging because it requires high contrast T1-weighted MRI brain 

image. It is also difficult to produce an actual human head model from low-

contrast MRI images. Moreover, the time requirement for the segmentation 

process is also a problem. Another delimitation of these models is that the 

electric field estimation accuracy depends on the quality of the MRI scans that 

result in performance deterioration if the picture quality deteriorates [30]. The 

utilization of a deep network for both encoding and decoding of data can 
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increase time during training. Furthermore, the use of a single coil parameter 

such as coil position as the input parameter cannot aid a value to effectively 

determine the induced electric field. 

Table 2.1 Summary different study of deep learning model for electrical field 

prediction of TMS coil. 

 

Reference [11] [12] 

Prediction model U-Net CNN 

Data type Image Image 

Total dataset 261,072 800 

Coil type single single 

Coil parameter coil position - 

Performance evaluation 

matrix 

Correlation coefficient, 

CC=0.93 

Peak signal to noise ratio, 

PSNR=29dB 

Mean absolute error, 

MAE=6 

Mean relative absolute 

variation, 

RMAD=6% 

R2 = 0.92 

MAPE = 6.2% 

Limitations  Estimation of DNN 

model depend upon 

the MRI image quality. 

 Consider only one coil 

parameter such as coil 

position. 

 Consider no coil 

parameter. 

 Estimation of DNN 

model depend upon 

the MRI image quality. 

 

 

Table 2.1 summarizes the study which are based on electric field prediction of 

TMS coil using deep learning model. Both of the models could estimate the 

electric field accurately within a short time.  However, the segmentation process 

(3D head model generation) is time-consuming as well as complicated due to 

the generation of both brain and skull parts. It is also quite challenging to 

develop an accurate head structure from low contrast MR images. Besides 

segmentation time, both models take a longer training time to process the data 

with the deep network architecture. Moreover, the estimation of the electric 

field is done based on the single coil and single design parameter of coil 

positioning.  Since, the induced electric field value is dependent on different coil 
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designing parameters such as the coil turns, coil thickness, coil angle, coil 

diameter, etc. [29], the optimum field calculation based on these parameters is 

essential for a safe and effective TMS treatment. Moreover, the advantages 

associated with the tradeoff between focality and depth of induced electric field 

cannot be achieved by the single stimulation coil but can be achieved by 

assembly coil.   

 

Thereby, in this work a simple DNN approach is proposed for the prediction of 

electric field induced by TMS assembly coil, which directly regresses electric 

field from six different coil designing parameters. This is a numerical data-

driven method for predicting electric fields where the mapping of coil modeling 

parameters to the electric fields is achieved using a training dataset consisting 

of pairs of design parameters and the relative electric fields. The mapping is 

characterized by the model that consist of three non-linear hidden layers 

between the input and output layers. For the regression task, the model is 

trained with 100 data samples of six coil design parameters and electric field 

pairs. After training the deep neural network, the electric field induced by the 

transcranial magnetic stimulation coil is predicted directly from any TMS coil 

design parameter. 
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Chapter 3: DEVELOPMENT OF SPHERICAL 

HEAD MODEL AND ASSEMBLY 

COIL 

This chapter introduces design process of a five-shell human head model followed 

by a geometrical structure of assembly coil named HVA as a neuro-stimulating coil. In 

addition, the distributions of induced magnetic and electric fields in the five-shell 

spherical-shaped head model are comprehensively analyzed based on the FEM. 

Moreover, depending on the simulation results, an evaluation of the proposed assembly 

coil is performed. 

3.1 MATERIALS AND METHODS 

3.1.1 FIVE SHELL HEAD MODEL 

In this simulation, a spherical five layers model is employed to represent the 

human head [31]. Fig. 3.1 shows the cross-section of the modeled human head 

that comprised of five different anatomical layers including the scalp, skull, 

cerebrospinal fluid, gray matter, and white matter respectively. All layers are 

indicated in the inset of the three-dimensional head model of the cartesian 

coordinates system. The outer and inner diameters of scalp structure are 170 

mm and 160 mm respectively, while the most inner tissue i.e., white matter 

region is modeled with the diameter of 134 mm. The thickness of four 

anatomical layers of scalp, skull, cerebrospinal fluid, and gray matter are 10mm, 

14mm, 6mm, and 6mm respectively [31]. The inner portion of the gray matter is 

considered as the white matter. The working frequency of the stimulation 

current is generally between 2500 to 5000 Hz but the common value of 2500 Hz 

is adopted in this paper [32].  The electromagnetic properties of the different 
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tissues of the head model at an operating frequency of 2500 Hz are presented in 

Table 3.1.   

 

 

Fig. 3.1. The cross-sectional view of five layers spherical human head model. 
 

Table 3.1 Electromagnetic properties of the five different anatomical 

layers at an operating frequency of 2500Hz [32]. 

Tissue Name 
Electrical Conductivity 

(S/m) 

Relative 

Permittivity 

Relative 

Permeability 

Scalp 0.0002 1140 0.99 

Skull 0.0203 1440 1.00 

Cerebrospinal Fluid 2 109 0.99 

Gray Matter 0.104 78100 0.99 

White Matter 0.0645 34300 0.99 

 

3.1.2 COIL GEOMETRY AND EXCITATION 

Fig. 3.2 shows the geometrical structure of the three coils named V, Halo, and 

HVA respectively. The V coil has the same dimension as the conventional fo8 coil 

with inner and outer diameters of 55mm and 95 mm respectively as shown in 

Fig. 3.2(a). The designed V coil consists of nine turns. The two wings of the V coil 

are separated by an angle of 450 which is located 5 mm above the mid-scalp of the 

head. The current pulse in two wings of the coil is set to flow in opposite 

directions.  On the other hand, Fig. 3.2(b) presents the halo coil with a dimension 

of 175mm and 195mm for inner and outer diameter respectively. The halo coil is 

positioned 90 mm below the mid-scalp of the head. The direction of current 

flowing in the halo coil is similar to the one wings of the V coil and opposite to 

the other wing. The HVA coil configuration as shown in Fig. 3.2(c), consists of 
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two coils: a halo coil and a V coil. These two coils have a different number of 

turns: 9 for both wings of the V coil and 5 for the halo coil which makes a total of 

23 turns. The one part of the HVA coil i.e., V coil is placed at a distance of 5 mm 

from the mid-scalp of the head model. The position of the V coil is set at this 

position to reduce unwanted tissue damage. Similarly, the other part i.e., the halo 

coil is placed at 90mm from the mid-scalp of the head model. The design 

parameters of the three coils are summarized in Table 3.2. Each of the coils is 

modeled by considering the torus shape of copper material with an electrical 

conductivity of 5.8 × 107 S/m. Also, the coils are fed with a current pulse of 

amplitude 5000 A and a frequency of 2500 Hz [32].   

Table 3.2 Design parameters of three coils 

Coil name Inner diameter 

   (mm) 

Outer diameter 

    (mm) 

Total 

coil turns 

Angle between 

two wings 

 (degree) 

V 55 95 18     

Halo 175 195 5 - 

HVA V=55 

Halo=175 

V=95 

Halo=195 

23     

 

 
(a)                         (b) 
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(c) 

Fig. 3.2. Geometrical structure of coils. (a) V coil (b) Halo coil, and (c) HVA coil. The 

red arrow line indicates the clockwise current direction and the yellow arrow line 

indicates the anti-clockwise current direction. 

3.1.3 GOVERNING EQUATION AND MESHING 

The generation of fields by feeding a high amplitude current pulse to the coil 

follows Maxwell’s fourth law of ampere’s circuit law. Where the distribution of 

the charge carrier in the closed-loop coil generates a magnetic field that is in a 

direction perpendicular to the coil surface, as a result, the changing magnetic 

field induces an electric field in the conductive head tissue medium. The 

differential form of the following equations 1 to 4 is used to represent these 

scenarios, where   and    represent the current density vector and the externally 

generated current density respectively. The magnetic field vector and potential 

are indicated by H and A, whereas B is the magnetic intensity vector. Moreover, 

the induced electric field intensity and displacement vector are denoted as E 

and D respectively.   

                                                                                                                  

(1)                                                       

                                                                                                                               

(2) 

                                                                                                                                      

(3) 

                                                                                                                                       

(4) 

Based on the above equations the coils are simulated in COMSOL Multiphysics 

5.0a software for frequency domain analysis of the electromagnetic field. The 

magnetic and electric field (mef) interface from AC/DC module of the COMSOL 

software is used for simulation. In the simulation, the total model domain 

including head and coil geometries are divided into several sub-domains for 

solving the governing equations [33]. Since the dimension of the coil is small as 
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compared to the head model, the mesh elements for the coil geometries are set 

to denser than the head tissue medium to compute the actual changes of the 

electric field in the conductive head tissue medium. Therefore, the fine 

tetrahedral meshing elements are considered with sizes ranging from 8 mm to 

100 mm that ensure an effective numerical accuracy in a low computational 

time. Moreover, the maximum element growth rate and curvature factor are set 

at the value of 5 and 0.9 respectively. The complete mesh consist of domain, 

boundary, and edge element with numbers 139062, 40104, and 9232 

respectively.  

3.2 RESULTS AND ANALYSIS 

The designed coils are simulated with COMSOL Multiphysics 5.0a software.  In 

the xy plane, the surface distributions of H-field for V, halo, and HVA coils at 

the head tissue medium are presented in Fig. 3.3. From Fig. 3.3(a) it is shown 

that the magnetic field intensity of the V coil is greater at the center of the mid-

scalp region because the two coil wings meet at that region. On the contrary, the 

mid-scalp region is free from the magnetic field induced by the halo coil as 

presented in Fig. 3.3(b). It produces the H-field at the temporal region of the 

head model. The magnetic field of the HVA coil as shown in Fig. 3.3(c) is 

concentrated at the lesser region of the mid-scalp as compared to the V coil. 

Moreover, it has a reduced H-field at the temporal region as compared to the 

halo coil. Therefore, the concentrated H-field with lesser area results in 

reducing the area of induced electric field which is responsible for the activation 

of unwanted head tissues. 
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(a)                         (b) 

 

 

 

 

 

 

 

 

(c) 

Fig. 3.3. Magnetic field distribution of coils. (a) V coil, (b) Halo coil, and (c) HVA coil.  

The slice views of electric field distribution for V, halo, and HVA coils in the zx 

plane are presented in Fig. 3.4. From Fig. 3.4(a) it is observed that the total 

maximum electric field value of the V coil is 312 V/m with a lower depth of 

stimulation in the mid-scalp region. On the other hand, the halo coil induces a 

total maximum electric field of 550 V/m with a greater field penetration depth 

at the inner region of the white matter on both left and right temporal (see Fig. 

3.4(b)). This electric field is also spread over a wide region. The total maximum 

electric field value of the HVA coil as shown in Fig. 3.4(c) is found to be 482 

V/m. It shows the similar field penetration depth of the halo coil but reducing 

the area of stimulation at the scalp on the temporal. Moreover, the electric field 

value is under the threshold in the cortex region on the mid-scalp of the head. 

Therefore, compared with the V coil it has greater field penetration depth and 

has a lower area of stimulation as compared to the halo coil. 
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(a)                               (b) 

 
(c) 

Fig. 3.4 Electric field distribution of coils. (a) V coil, (b) Halo coil, and (c) HVA coil.  

 

The line graphs of the electric field by V, halo, and HVA coils along the test 

line-1 (see in Fig. 3.1) are shown in Fig. 3.5. The test line-1 is considered parallel 

to the x-axis with endpoints of (0, −80, 80) and (80, −80, 80) mm where the 

temporal region of the head model is located. The electric field induced by the V 

coil reaches the threshold value (>100 V/m) [23] at both endpoints of (> 70mm 

and < -70mm) of the test line that representing lesser field penetration depth. 

On the contrary, the threshold electric field intensity produced by the halo coil 

can stimulate the deeper region of (>25mm and <-25mm) along the test line. But 

the electric field curve is linearly decreased from both endpoints towards the 

center of the spherical head model indicating lower focality. In the case of HVA 

coil, the threshold electric field intensity is found at depth (>30mm and <-

30mm). Thus, compared to V and halo coil, the HVA coil improves the 

penetration depth as well as focality within the range of -90mm to -30mm and 

30 mm to 90mm respectively. 



 

28

 

Fig. 3.5 Electric field distribution along test line 1. (green dotted line indicates the 

neuron stimulation threshold). 

 

Fig. 3.6 Electric field distribution along test line 2 (green dotted line indicates the 

neuron stimulation threshold). 

 

Moreover, Fig. 3.6 presents the line graph of the induced electric field for V, 

halo, and HVA coils along test line-2 (see Fig. 3.1). Where the test line 2 is 

considered along the z-axis with endpoints of (0, 0, 0) and (0, 0, 170), where the 

mid-scalp of the head model is located. The induced electric intensity of the V 

coil is higher than the threshold only at the skull surface from 155mm to 170 

mm on the mid-scalp of the head and produces an under threshold electric field 
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intensity at the inner region of the skull below 155 mm. On the contrary, an 

electric field over threshold is induced by the halo coil at the region below 

150mm. Hence, the skull surface of the mid-scalp is free from stimulation.  For 

the HVA coil, the over threshold electric field intensity is induced at the skull 

surface from 155mm to 170 mm as well as at the deeper region below the 

120mm from the top of the head. Therefore, the inner region of the white matter 

is stimulated by an HVA coil with a threshold electric field that indicates a 

suitable deeper penetration.  

3.3 PERFORMANCE EVALUATION 

To evaluate the performance of the designed HVA coil, its induced electric field 

predicted in spherical model is compared with the existing single and assembly 

coils in terms of the area of stimulation. The distribution of induced electric 

field on the surface of the scalp for four different coils i.e., V, Halo, HFA, and 

HVA are shown in Fig. 3.7. From the results of electric field distribution, it is 

clear that the stimulation area of the HVA coil is lower than the other single and 

assembly coil reported here. Hence HVA coil can reduce the undesired tissue 

excitation in the scalp region than the V, Halo, and HFA coils. Moreover, the 

bar plot of the maximum electric field induced by four different coils on the 

white matter, gray matter, and scalp region of the head model is shown in Fig. 

3.8. Results show that the HVA coil stimulates the white matter region with 

weaker intensities than the HFA coil. However, the comparable ratios of the 

induced electric field in the scalp and the white matter region for both HVA and 

HFA coils are found as 4.99 and 2.99 respectively. In case of scalp to gray matter 

intensity ratio, the values are found as 4.83 and 2.54 for HVA and HFA 

respectively. These indicate that the HVA coil can reduce the over-stimulation 

of neurons near the stimulation site.  
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(a)  V coil         (b) Halo coil 

 
(c)  HFA coil                            (d) HVA coil 

Fig. 3.7 Comparison of the surface electric field distribution of different coils.  

 

Fig. 3.8 Comparison of the maximum induced electric field on the scalp, gray matter, 

and white matter of head model for the V, Halo, HFA, and HVA coils.  
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Furthermore, the performance of the HVA coil in terms of focality is also 

evaluated to ensure the probability of stimulating the targeted neurons. The 

focality,       calculation is performed by using the following equations [34]: 

                                                                      
    

    
                                                       

(5)              

where       (V-half) represents the volume within which the electric field is 

greater than half of E-Max, and      is the distance from the mid-scalp to the 

white matter. For both single and assembly coils, the values of V-half and E-

Max are presented as bar plot in Fig. 3.9. From the values of the V-half, it can be 

shown that the HVA coil has a lower volume of stimulation over three coils. 

Therefore, the reduced volume of stimulation reduces the value of      which 

results in an increase focusing performance of the HVA coil.  

 

Fig. 3.9 Focality measurement of single and assembly coils in terms of V-Half and 

maximum electric field.  
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Chapter 4: DNN-BASED ELECTRIC FIELD 

PREDICTION MODEL 

This chapter introduces the electric field prediction model approach with the aid of 

DNN. Moreover, the process of data generation, preprocessing followed by final electric 

field prediction from HVA TMS coil using DNN model is described comprehensively. 

The system architecture of the proposed DNN based prediction model is shown 

in Fig. 4.1. The input and output of the proposed DNN model are the coil 

design parameters and the induced electric field respectively. The inner 

configuration of the DNN model with three non-linear hidden layers build a 

complex relationship between input parameters and output electric field. The 

details of the electric field prediction steps are described in the subsections 

below.  

 

 

Fig. 4.1 System architecture of proposed DNN based model for electric field 

prediction.  
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4.1 DATASET CREATION 

Fig. 4.2 illustrates the cross-section of the two-shell human head model with a 

halo-V assembly (HVA) coil configuration. The head model is comprised of two 

different anatomical layers including the skull and tissue fluid. Both layers are 

indicated in the inset of the three-dimensional head model in the Cartesian 

coordinates system. The outer and inner radius of the skull structure are 85 mm 

and 80 mm respectively, while the inner part of the skull i.e., the fluid tissue 

region is modeled with a radius of 80 mm. The HVA stimulation coil consists of 

two coils including halo coil and V coil. These two coils have a different number 

of turns such as: 9 for both wings of the V coil and 5 for the halo coil which 

makes a total of 23 turns. The V coil part of the HVA coil is placed at a distance 

of 5 mm from the vertex of the head model. Similarly, the halo coil part is 

placed at 90mm from the vertex of the head model. The design parameters of 

the HVA coil are summarized in Table 4.1. Each of the coils is modeled by 

considering the torus shape of copper material with an electrical conductivity of 

5.8 × 107 S/m. The electromagnetic properties of materials implicated in this 

model are listed in Table 4.2 [35, 36]. For coil excitation, a current pulse with the 

high amplitude of 5000A and low-frequency of 2500 Hz are applied in the coil 

domain. 

 

Z 

X 

Y 

𝜃 

Tissue fluid 

Skull 

𝒓𝒊𝒏 

V coil 

𝒓𝒐𝒖𝒕 

Halo coil 80 mm 

85 mm 
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Fig. 4.2 Configuration of HVA coil. The red and green arrow lines indicate the 

clockwise and anti-clockwise current direction respectively.  

 

 

 

Table 4.1 Geometrical parameters of the HVA coil. 

Coil name Inner radius 

    (mm) 

Outer radius 

     (mm) 

Total 

coil turns 

Angle between two wings 

  (degree) 

HVA 
V 27.5 47.5 18     

Halo 87.5 97.5 5 - 

 

Table 4.2.  Electromagnetic properties of coil material and anatomical layers at an 

operating frequency of 2500Hz. 

Material 
Conductivity 

[S/m] 

Relative 

permittivity 

Relative 

permeability 

Skull 0.02 30380 1 

Tissue fluid 4 80 0.99 

Copper 5.8      1 0.99 

 

Table 4.3 Interpretation of input and output features. 

Inputs and outputs Features to form model (unit) Range 

 Coil turns of single wing 1-15 

 Coil thickness (mm) 0.1-0.9 

 Coil diameter (mm) 60-110 

Input Distance between two wings (mm) 0.5-10 

 Distance between head and coil position 

(mm) 

1-15 

 Angle between two wings (      ) 5-90 

Output Electric field (v/m) 130-300 

 

For two shell head model (h), the electric fields,    are computed for six 

different parameters of HVA coil including coil turns of single wing (  ), coil 

thickness (  ), coil diameter (  ), distance between two wings (  ), distance 

between head and coil position (  ), and angle between two wings (  ). The 

variation of the values of each input parameter are summarized in Table 4.3. 

The dataset is obtained by setting D: = {                   }   
  with a total of 

N=100 samples. Here, {  }   
  is found from {                }   

  under the 
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low frequency of 2500Hz and high amplitude of 5000A current pulse 

conditions. All the data samples are collected from COMSOL Multiphysics 

software in .csv format for the processing with the proposed DNN model. 

4.2 DATA PRE-PROCESSING 

Data preprocessing is an important part to increase the model prediction 

accuracy. This section gives a technical specification of the data preprocessing 

steps for our proposed prediction model. Moreover, the statistical analysis is 

conducted for a better understanding of the dataset, cleaning unwanted data, 

normalizing the features, and spliting the dataset. The histogram plots of 

features are shown in Fig. 4.3 to understand the distribution of each attribute 

independently. Among all input features, the coil thickness and coil diameter 

are negatively skewed and they have a great impact on the prediction model. 

The correlation between two quantitative attributes is visualized based on the 

correlation matrix heatmap as shown in Fig. 4.4. Analysis of correlation matrix 

provides six important unique input features such as coil turns of single wing, 

coil thickness, coil diameter, distance between two wings, distance between 

head and coil position, and angle between two wings of coil that are more 

correlated with the outputs feature of electric field. Fig. 4.5 indicates that the 

strong relationship between the attributes gives a high correlation value 

whereas hardly related attributes provide low correlation value. Moreover, the 

scatterplot matrix shown in Fig. 4.6 provides information about the structured 

relationship between the attributes. From the first row of the scatter plot matrix, 

it is obvious that the scatter plot of the output electric field is the function of all 

input features. Similarly, each input feature is the function of the output electric 

field as presented in other rows. The join distributions of three input features 

(i.e., coil turns of the single wing, coil thickness, coil diameter) and output 

feature (i.e., electric field) are shown diagonally in the scatterplot matrix. The 

statistical analyzes based on mean, standard deviation, minimum, and 
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maximum values are conducted to examine the feature-wise values that are 

summarized in Table 4. From this table, it is seen that the range of each feature 

is different from others. The minimum and maximum ranges of all features are 

set to a considerable value to remove bad working points. All the input and 

output features in the dataset are in numeric forms as continuous measurement 

data. Consequently, the normalization technique is applied for numeric features 

prior to training the proposed DNN model. The normalization technique 

coerces the values of all features into a distribution centered around 0 with a 

standard deviation of 1 by precomputing the mean and variance of the features 

as shown in Table 4.4. The numeric original feature and the corresponding 

normalized features are depicted in Fig. 4.7. 
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Fig. 4.3 Histogram for original feature visualization. 

 

Fig. 4.4 Correlation matrix heatmap of attributes. 

 

Table 4.4 statistical values of input and output features 

Features Mean 
Standard 

Deviation 
Min Max 

Coil turns of single wing 9.02 2.16 1.00 15.00 

Coil thickness 0.93 0.19 0.20 1.00 

Coil diameter 94.18 5.93 60.00 110.00 

Distance between two wings 4.99 1.32 0.50 9.50 

Distance between head and coil 

position 
5.81 2.32 2.00 15.00 

Angle between two wings 45.94 11.08 5.00 90.00 

Electric field 229.87 31.26 138.00 329.00 
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Fig. 4.5 Scatterplot matrix of features. 

 

 

Fig. 4.6 Numeric input feature and its normalization. 

   (a) Original input features with numeric value.                   (b) Input features after normalization. 
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4.3  DNN PREDICTION MODEL 

In a DNN model, the number of nodes in hidden input and output layers are 

identical to the numbers of input and output features [37]. However, the number 

of nodes and hidden layers can be varied depending on the complexity of the 

problem and the data set. The proposed DNN model architecture as shown in 

Fig. 4.8 comprises of an input layer with six nodes, three fully connected (dense) 

hidden layers with 512-512-64 nodes for the first, second, and third layers 

respectively, and an output dense layer with one node for the prediction of 

electric field,      . The electric field value can be calculated by using equation (5) 

as:  

      = Linear [           ([

  

  

 
  

]      
   

   
   

)]   (5) 

where     
   

 is the weight connecting to the ith unit in kth hidden layer and jth 

unit of previous layer, and    
   

 is the bias connecting the ith unit in the kth 

hidden layer. A non-linear transfer function called rectified linear unit (ReLU) is 

selected for the hidden layers that provides a non-linearity to the DNN 

regression model. ReLU is defined as: 

ReLU (  ) = max (0,   )                            (6) 

Where,                             = [

  

  

 
  

]      
   

   
   

                 (7) 

A linear transfer function is also assigned for the output layer to predict the 

single electric field value. The mean absolute error loss function is chosen for 

the model to determine the optimum values of trainable parameters such as 

weight,     
   

 and bias,   
   

. Then, the Adam optimizer is selected with a default 

learning rate of 0.001 to minimize the loss function [38]. The optimizer 

minimizes the loss function by updating the trainable parameters with its 
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gradients that are found by the backpropagation method. The entire dataset 

used for the model is divided into two sets with an amount of 80% for the 

training, and the residual 20% for testing. 

4.4 RESULTS 

 

In this work, the 6-512-512-64-1 DNN model with 299,150 trainable parameters 

achieve the best performance for the purpose of electric field prediction. Table 

4.5 summarizes the results of four verification matrices such as coefficient of 

determination (R2), mean squared error (MSE), mean absolute error (MAE), and 

root mean squared error (RMSE), which are commonly used to analyze the 

model prediction. Equations (8) to (12) are employed to define the four above-

mentioned metrics. Here,        indicates the true output,       indicates the 

predicted output, and the mean of the ground truth output is represented as 

     . The total number of data is denoted as n.  

      
 

 
∑      

 
                       (8) 

     
∑                

   

∑                
   

            (9) 

MSE = 
∑                

   

 
      (10) 

MAE = 
∑ |           | 

   

 
             (11) 

RMSE = √
∑                

   

 
           (12) 

 

Fig. 4.8 Proposed DNN model architecture. 
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The    metric represents the quality of the proposed DNN regression model. It 

determines how well the model predicts the electric field value. To perfectly fit 

the data of the regression prediction model, the value of    is considered to be 

equal to 1. However, the regression loss function, MSE is calculated by 

summing the squared of distances between the true value and predicted value. 

The value of MSE=0 is preferable.  Another loss function called MAE is 

measured by averaging all absolute errors. RMSE is also calculated by the 

square root of the sum of square deviation of true and predicted values over the 

total number of data n. For perfectly fitting the predicted values to the true 

values, the RMSE=0 is desirable.  

 

Fig. 4.9 Loss versus epoch plot for the DNN model. 

 

Fig. 4.10 The predicted electric field values versus simulated data on test set. 
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The training process of the proposed DNN model against 100 iterations 

(epochs) is shown in Fig. 4.9, in which the training and validation loss are found 

equal at 20 epochs. After 20 epochs, both errors are started to decrease at an 

optimum level and the finest result is achieved within the epochs of 90 to 100. 

 

Table 4.5  Results of four verification matrices 

R2 MSE MAE RMSE 

0.766 0.184 0.262 0.429 

 

The predicted electric field values are plotted against true electric field values 

(simulated values) for the proposed model which is shown in Fig. 4.10. The 

graph indicates that the prediction accuracy of the proposed DNN model is 

good enough as the predicted electric field values are quite similar to the 

simulated electric field values. Therefore, the proposed model has the capability 

to predict the electric field values ranging from 130 V/m to 300 V/m in an 

accurate manner. Moreover, the prediction accuracy of the model as a function 

of single input feature (i.e., coil turns of single wing) is shown in Fig. 4.11. For a 

range of values of input feature, there is a considerable number of accurate 

predictions of the electric field values of the HVA TMS coil under high 

amplitude and low-frequency current conditions.  
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Fig. 4.11 The predicted electric field values as a function of the single input 

feature of coil turns of single wing.  

 

4.5 DISCUSSION 

 

The main advantage of the proposed DNN model is that it can estimate the 

induced electric field in a head model much faster way than the electric field 

determination process by an EM software. The electric field computational time 

for the proposed DNN model and simulation software are determined. Table 

4.6 represents the computation time to estimate the induced electric field in a 

head model from a HVA TMS coil.  The expected values of computation time 

using GPU and CPU for the proposed DNN model are found 0.04 s and 1.98 s 

respectively. On the other hand, the required computation time for COMSOL 

Multiphysics software is found 6 min 15 s even though this estimated time 

exclude the construction time of anatomical head and coil model. If the 

construction time of anatomical head and coil model is considered then it will 

be few hours.  

Table 4.6  Computation time to estimate electric field for HVA TMS coil. 

Model Computation time 

DNN (GPU) 0.04 s 

DNN (CPU) 1.98 s 

Simulation software 

(Excluding coil and anatomical head modeling) 

 

6 min 15 s 
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Chapter 5: ATTENTION-ASSISTED IMPROVED 

ELECTRIC FIELD PREDICTION 

MODEL 

 This chapter describes an improved DNN approach to concern about improving 

electric field prediction accuracy. A comprehensive description of each individual 

network with a final attention component is presented. Moreover, the performance of 

the improved DNN model is compared with the existing prediction model for finding 

the model's effectiveness in HVA TMS coil-induced electric field prediction. 

5.1 ATTENTION-ASSISTED DNN MODEL 

The architecture of the proposed attention-based hybrid 1D CNN-BiLSTM for 

electric field prediction is shown in Fig. 5.1. The process of prediction is started 

by generating a dataset with the composition of input and target features. 

Where the input features are the composition of six coil design parameters of 

the HVA coil and the target feature is the induced electric field. After that, the 

raw dataset is fed into 1D CNN network for feature extraction by applying 

three consecutive  1D Conv layers with a kernel size of 2   1. Subsequently, a 

fully connected layer with 16 nodes is used for the vectorial representation of 

the features. Then, the sequential model called Bi-LSTM is utilized to learn the 

valid information from the feature maps by using forward and backward 

hidden states. Later on, an attention layer is performed that merged important 

features and chooses the critical features by redistributing the weights. Finally, 

a fully connected layer is used for electric field prediction.  
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Fig. 5.1 Overview of the proposed electric field prediction network architecture 

comprising attention mechanism in the hybrid 1D CNN-BiLSTM model.  

 

After creating the dataset, the preprocessing technique such as normalization is 

employed before feeding into the final prediction model. The normalization 

technique smooths the training time of the network by converting all the 

numerical values in the range of 0 and 1. Then, the normalized data are used for 

further processing through the proposed prediction model that follows the 

following sequential steps: 

1. 1D CNN Model 

The utilization of 1D CNN model on the normalized continuous numerical data 

can extract a representative and effective feature by performing a one-

dimensional convolution operation with multiple filters. To match the one-

dimensional characteristics of the continuous numerical data, the 1D 

convolutional filters and feature maps are employed for the CNN model. By 

applying more than one number of convolutional layers, the 1D CNN model 

deepens the feature extraction process. Thus a higher level of features after 

performing more than one convolutional operation makes the prediction task 

more robust and discriminative. Initially, the preprocessed normalized data with 

a shape of (6 × 1) is used as the input of the 1D CNN model. Then, the input data 

is passed through three consecutive 1D convolutional (Conv) layers to extract 
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deep features, where each of the Conv layers contains 64, 32, and 16 1D kernels 

respectively with a size of (2 × 1). After performing the Convolution operation, a 

rectified linear unit (ReLU) activation function is utilized which introduces non-

linearity in the model and reduces the overfitting problem as well. The operation 

of the 1D Conv layer followed by ReLU activation function is performed as 

follows: 

  
   

=             *∑       
      

   
(  

     
     

   
)    

   
+         (5) 

where, the     feature map in the         layer is represented as   
     

 and the 

    feature map in the     layer is represented by   
 . Moreover, the trainable 

convolutional kernel is denoted as     
   

and        denotes the total number of 

feature maps in the         layer. The 1D convolution operation without zero-

padding is performed on   
     

 and     
   

. Therefore, the dimension reduction of 

the feature maps is found at the         layer than the      layer. In addition, 

the bias of the     feature map in the     layer is represented as   
   

.  The 

operation of ReLU activation function is performed as follows: 

                                              ReLU (  ) = max (0,   )                                (6) 

where,                            = ∑       
      

   
(  

     
     

   
)    

   
                          (7) 

After passing through all the 1D convolutional layers, the obtained 16 feature 

maps with the size of (4 × 1) are fed into one dense layer with 16 nodes. Then, the 

output features are fed into the Bi-LSTM model for finding valid information 

from the feature maps.  

2 . Bi-directional LSTM Model 

As the dataset is composed of some sort of noisy numerical data, the prediction 

of the electric field from the noisy data is complex. For electric field estimating 

and eliminating the noise, the Bi-LSTM network is adopted to the 1D CNN 

model. The Bi-directional LSTM network is a two-way stacked LSTM network 

with forwarding and backward LSTM features. The previous values are learned 
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through the forward LSTM network in the forward direction, and similarly, the 

future values are learned in the reverse direction by applying a backward LSTM 

network. The utilization of hidden states in the latter layer help to learn both 

forward and backward information. The mathematical equation for performing 

this task through the Bi-LSTM unit is explained as follows: 

  
⃗⃗ ⃗⃗ =   (           

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)                   (8) 

  
⃖⃗ ⃗⃗⃗=   (           

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )         
          (9) 

  
   

=     
⃗⃗ ⃗⃗ +     

⃖⃗ ⃗⃗⃗       (10) 

where,    is the input at time t. W’s are the weights of gates of LSTM cells.   
⃗⃗ ⃗⃗  

and   
⃖⃗ ⃗⃗⃗are the forward and backward outputs, respectively. The generated Bi-

LSTM features from the     features in the     layer is denoted as   
   

 that keeps 

information in Bi-directional steps. In this paper, the generated feature vector of 

1D CNN and dense are fed to the Bi-LSTM model. An activation function of 

       is adopted to finish normalization and help to reduce the overfitting 

problem. 

3 . Attention Mechanism 

Generally, all the parameters in the input data do not contribute equally to 

deciding whether the parameter belongs to a particular prediction. Therefore, 

the utilization of the attention mechanism is performed to emphasize the most 

important parameters during prediction. In the attention mechanism, the 

weight,    for each individual Bi-LSTM feature,   
   

 is assigned with a focus on 

output labels. Mathematically, the followings are computed for the attention 

function: 

                    (  
   

)          (11) 

    
          

∑            
       (12) 

   =∑       
   

       (13) 

Here,   
   

 is the feature vector obtained in the BiLSTM layer, which is passed to 

a one-layer neural network (p=1) to get the    as a hidden representation of   
   

. 
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The    and b are weight matrix and bias vector respectively that are initialized 

during the neural network training. The influence of the important parameters 

can be measured by calculating the similarity between    and   . Where,    is 

randomly initialized feature vector. Afterward, a normalized weight,    is 

obtained by using the softmax function for each input feature. The attention 

weights, ∑     should be equal to 1. The larger the weight of    the more 

significant the feature for prediction. Finally, the attentive feature     is fed to a 

dense layer consisting of one neuron. The predicted output,       can be 

represented as: 

              ∑           
           (14) 

where,     and    are represented as the weight matrix, and bias vector 

respectively. The activation function ‘linear’ is added to the proposed model for 

final electric field prediction. The entire network architecture’s properties with 

their specification and the number of required parameters are demonstrated in 

Table 5.1 In this work, the attention-based model with 6,641 trainable 

parameters acquires the best performance for the prediction of the induced 

electric field. 

4. Model validation 

To validate the proposed attention-based hybrid 1D CNN-BiLSTM model, the 

ten-fold cross-validation method is utilized that randomly divides the overall 

data into ten approximately equal sections. Then, each time one portion from 

the splitted sections is selected as the test set, and the rest of the portions are 

considered as the training set. At every iteration, the model is trained using 

data shuffling. Finally, the estimation of the model evaluation matrices is 

performed by taking an average of ten predicted results. The summary of the 

ten-fold cross-validation methods is depicted as follows:  

 Partitioning the raw dataset into ten parts containing an equal number of 

numerical values in each part. 

 One part is selected as the test set for each iteration, and the remaining 
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dataset is utilized as a training set to train the model. 

 After training, the results of ten iterations are averaged to obtain the final 

test results. 

 

 

 

Table 5.1.  Layer properties of proposed attention-based hybrid 1D CNN-BiLSTM 

model.  

Layer No. Layer Name Feature size Specification Parameter 

1 Input 6   1 - 0 

2 1D Convolutional 6   64 
Filter size: 2 1 

Filter number: 64 
192 

3 1D Convolutional 5     
Filter size: 2 1 

Filter number: 32 
4128 

4 1D Convolutional 4   16 
Filter size: 2 1 

Filter number: 16 
1040 

5 Dense 4   16 - 272 

6 Bi-LSTM 4   8 Hidden units: 4 672 

7 Attention 16 Units: 16 320 

8 Dense 1 - 17 

    Total=6,641 

 

Table 5.2. Hyper-parameters setting of the proposed model. 

Hyper-parameter Value 

Loss function Mean absolute error 

Initial learning rate  0.01 

Epochs 100 

Optimizer Adam 

 

The selection of optimum hyperparameter values is important to train the 

proposed prediction model for superior results. Table 5.2 represents the optimal 

values of the hyperparameters of the proposed attention-assisted hybrid 1D 

CNN-BiLSTM model. The model is compiled using an Adam optimizer with an 

initial learning rate of 0.01. Moreover, the model training is performed for 100 

epochs per fold. The mean absolute error is chosen as a loss function to 

compute model loss. For conducting training and testing of the proposed 
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model, the Google Colab platform is used with Python version 3.7.13. The 

Model is implemented using Keras = 2.8.0 and TensorFlow = 2.8.2 framework. 

The Pandas= 1.3.5 and Sklearn =1.0.2 packages have been used for data 

preparation and evaluation respectively. During the training, the model 

occupied 1.43 GB of RAM and 38.58 GB of disk space in the Colab environment. 

5.2 RESULTS AND PERFORMANCE EVALUATION 

All the values of the performance evaluation matrices are summarized in Table 

5.3. It is clear from Table 5.3 that the values are almost equal to their preferable 

values. According to the preferable values of all the performance matrices, it 

can be said that the proposed attention-assisted 1D CNN-Bi-LSTM model 

shows superior induced electric field prediction with a minor number of errors 

in the testing data. Moreover, Fig. 5.2 plots the proposed model training process 

in terms of MAE, MSE, and RMSE against 100 iterations (epochs), in which the 

finest result is achieved after 80 epochs for regression performance evaluation. 

 

Table 5.3.  Performance evaluation matrices for electric field prediction task. 

R2 MSE MAE RMSE 

0.9992 0.0005 0.0188 0.0228 
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Fig. 5.2 Performance evaluation on attention-assisted 1D CNN-BiLSTM model: 

MAE, MSE, and RMSE. 

 

Fig. 5.3 Scatter plot of predicted electric field values versus actual data on the 

test set. 

 

Fig. 6. KDE probability density curve of eletric field: actual vs. predicted. 

 

Fig. 5.3 represents the scatter plot of predicted electric field values against 

simulated (ground truth) electric field values for the proposed attention-based 

model. From this graph, it can be seen that all the predicted electric field values 

are almost similar to the simulated electric field values that ensure good 

accuracy between attention-based model prediction and simulated data 
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prediction. For this reason, the proposed model is capable of enumerating 

induced electric field values in a correct manner ranging from 130 V/m to 300 

V/m. Moreover, the Kernel Density Estimation (KDE) is illustrated in Fig. 5.4 to 

estimate and compare the predicted electric field values with the actual electric 

field values on the test set in a probability density distribution manner. 

According to the performance of the prediction model, the KDE probability 

density curve of predicted electric field values agrees well with the actual 

electric field values. It is recognized that the proposed prediction model attains 

a superior performance on the test set.  

5.3 DISCUSSION 

The prediction accuracy,     of different possible regression models such as 1D 

CNN, BiLSTM, 1D CNN-BiLSTM, 1D CNN with Attention, and BiLSTM with 

Attention on validation dataset is illustrated in Fig. 5.5. Among these DL 

models, the proposed model provides the highest electric field prediction 

accuracy of approximately 99.92%. In addition, the model performance is 

evaluated by comparing the proposed attention-based hybrid model with the 

state-of-the-art models as presented in Table 5.4. The works reported in [11, 12] 

used a single TMS coil type with a single coil parameter of coil position to 

enumerate the electric field. The main drawback of using a single TMS coil is a 

lack of tradeoff between focality and depth of stimulation [10].  For ensuring an 

efficient clinical treatment with minimum side effects, the presence of a tradeoff 

between focality and depth is needed. Therefore, in this study, the DNN based 

prediction of electric field from an assembly coil with different coil parameters 

is presented that meets the simulation tradeoff between depth and focality. 

However, the prediction model used in the work provides lower prediction 

accuracy in terms of R2 value which is approximately 0.766. Moreover, other 

evaluation matrices such as MSE, RMSE, and MAE that represent losses of the 

prediction model are quite larger. For this reason, the improved DNN model 
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such as attention-based hybrid deep CNN-BiLSTM model ensures optimum 

prediction accuracy of 0.9992 in terms of R2 value with the lowest computation 

time of 0.11 s. Thus, it can ensure optimum therapeutic efficacy such as effective 

and safe stimulation during treatment pertaining to several neurological 

disorders with optimum electric field prediction.  

 
Fig. 5.5 The prediction accuracy of different models on the validation dataset. 

 

Table 5.4.  Comparison table of the proposed model with the existing related 

works. 

Reference [11] [12] This work 

Prediction model U-Net CNN DNN 1D CNN-

BiLSTM with 

Attention 

Mechanism 

Data type Unstructured: 

Image 

Unstructured: 

Image 

Structured: 

Numerical 

value 

Structured:  

Numerical 

value 

Number of 

datasets 

261,072 800 100 100 

Coil type Single Single Assembly Assembly 

Coil parameter coil position - coil position 

coil turns 

coil thickness  

coil diameter 

coil angle 

coil wings 

distance 

coil position 

coil turns 

coil thickness  

coil diameter 

coil angle 

coil wings 

distance 

0.938 

0.7387 
0.7997 

0.9684 
0.8827 

0.9992 
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Prediction task Segmentation Regression Regression Regression 

Computational 

time 

0.541 s - 0.04 s 0.11 s 

Performance 

evaluation 

matrix 

CC=0.93  

PSNR=29dB 

MAE=6 

RMAD=6% 

R2 = 0.92 

MAPE = 6.2% 

R2 = 0.766 

MSE = 0.184 

MAE = 0.262  

RMSE = 0.429 

R2 = 0.9992 

MSE = 0.0005 

MAE = 0.0188  

RMSE = 0.0228 
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Chapter 6: CONCLUSION AND FUTURE WORK 

This chapter summarizes the contents discussed in the introduction, methodology, 

results, and discussion section without repetition. It contains general, key findings, 

conclusions, limitations, implication issues and future recommendations. 

This work presents a regression model based on an 1D DNN model for 

predicting electric fields induced by HVA TMS coil. Without compromising the 

computational cost of electric field enumeration, the model improves the 

prediction accuracy by employing attention layer in the DNN model. The 

attention mechanism helps the model to predict electric field values from 130 to 

300 V/m by impacting the most relevant parameters of the HVA coil. By feeding 

a lower-sized database of 100 samples, the model obtained reasonable 

prediction accuracy of R2 = 0.9992 that ensures the capability of the model to 

enumerate electric field from HVA coil with varied coil designing parameters. 

Without requiring any three-dimensional mathematical model of human head 

phantom and TMS coil, the proposed method efficiently estimated electric field 

from a new unknown dataset in a very short time of 0.11 s. Therefore, to meet 

the requirement of the neurological disorder patients, the proposed attention-

based model can aid the TMS manufacturer to design an optimum coil based on 

the predicted electric fields. In the future, a database with larger samples can be 

developed by considering several new assembly coils rather than single 

assembly coils to improve model generalization capability. Moreover, database 

can be developed based on the numeric data from the realistic anatomical head 

model to increase the practical feasibility of the work.  
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