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Abstract

Financial fraud is a growing problem that poses a significant threat to the banking industry,
the government sector, and the public. In response, financial institutions must continuously
improve their fraud detection systems. While preventive and security measures are put in
place to mitigate financial fraud, criminals persistently adjust and develop new methods to
circumvent fraud prevention systems. This dynamic adaptation poses challenges for quanti-
tative techniques and predictive models. To address the challenge of unbalanced financial
datasets, this study aims to develop rules to detect fraud transactions and improve accuracy
using Anomaly Reduction Boundary Based Oversampling (ARBBO) method. The perfor-
mance of the proposed model is evaluated using various metrics such as accuracy, precision,
recall, f1-score, confusion matrix, and ROC values. The proposed model is compared to
several existing machine learning models such as Random Forest (RF), Decision Tree (DT),
Multi-Layer Perceptron (MLP), K-Nearest Neighbor (KNN), Naive Bayes (NB), and Logistic
Regression (LR) using one benchmark dataset. The experimental results demonstrate that the
classifiers performed better with the resampled data, and the suggested Rule-Based model
with ARBBO in financial fraud detection outperformed then other algorithms by achieving
an accuracy and precision of 0.998 and 0.998, respectively.
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Chapter 1

Introduction

1.1 Background

Financial fraud remains a significant concern within the business community. Despite
technological advancements, there is a noticeable increase in fraud cases [1]. Over the past
decade, the surge in e-commerce has led to a substantial uptick in the utilization of credit
cards. This heightened reliance on credit cards has, in turn, resulted in a consistent rise in
fraudulent transactions [2], posing a significant challenge to the financial industry. According
to a recent report, the financial impact of credit card fraud reached 27.85 billion dollars in
2018, marking a 16.2% increase from the 23.97 billion dollars lost in 2017. Projections
suggest that this figure could escalate to 35 billion dollars by 2023 [3]. Figure 1.1 describes
the amount of credit card fraud from 2013 to 2027. The implementation of effective fraud
monitoring and prevention measures stands as a viable solution to mitigate these losses. As
e-commerce has flourished in recent decades, more people have adopted online transactions,
contributing to the prevalence of card payments. Unfortunately, this increased reliance on
card payments has created favorable conditions for the rise in fraudulent activities. Fraud, as
defined by the Oxford Dictionary [4], involves wrongful or criminal deception resulting in
financial or personal gain. Fraud detection involves identifying unusual cardholder behaviors
compared to their previous card usage profiles.

Alerts are triggered when target transactions show a probability exceeding the fraud
classification threshold based on these differences. Fraudulent transactions typically occur
through unauthorized access to card information, such as credit card numbers [5], email
addresses, phone numbers [6], and more, leading to monetary theft. According to the Federal
Trade Commission [7], credit card fraud cases numbered 459,297, with identity theft cases
increasing by 44.6% from 271,927 in 2019 to 393,207 in 2020. Figure 1.2 funds lost as a
result of contact fraud and data breaches in the business sector in 2018. It is evident that the
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Fig. 1.1 Card Fraud in worldwide from 2013 to 2027.

Fig. 1.2 Money lost due to fraud by method of contact.

majority of credit card fraud and identity theft were conducted over the phone or via websites
(Figure 1.2). Therefore, the work of this dissertation is strongly motivated by the growing
necessity to discover an appropriate solution that removes these cybercrimes. Identity theft
crimes represent a different kind of threat. Credit card fraud was the most frequent identity
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theft, according to a 2018 research that was updated in 2020 [7] and made public by the Shift
Credit Card Processing website. According to Figure 1.3, it was responsible for 29% of all
identity theft reports in 2018. Additionally, as shown in Figures 1.4, the study disclosed the
identity theft fraud reports in the US in 2018. The number of credit card fraud incidents has
risen in the past year and is expected to rise. Because the stolen money has the potential to
severely harm these financial systems and stifle company operations, it has an impact on both
consumers and enterprises. Unauthorized financial transactions might even push businesses
into bankruptcy and make it impossible for them to get regular payments.

Fig. 1.3 Reports on identity theft fraud.

Credit card fraud can be categorized into two main types: application fraud [8] and
behavior fraud [9]. Application fraud involves deceptive credit card applications, where
a fraudster initiates a new credit card process using false identity details, and the issuer
unwittingly accepts the request. On the other hand, behavior fraud occurs after a credit card
has been legitimately issued and refers to transactions involving fraudulent behavior. The
detection of credit card fraud poses a significant challenge for both credit card users and
financial organizations. The ability to identify even a small number of fraudulent transactions
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Fig. 1.4 Instances of identity theft in the United States.

is crucial, as it can safeguard substantial amounts of money. Consequently, credit card
fraud has emerged as a significant concern for researchers seeking effective solutions in
fraud detection and prevention. Credit card fraud (CCF) constitutes a form of identity theft
where an unauthorized individual, distinct from the card owner, engages in illicit transactions
using stolen credit card or account information. Fraud may occur when a credit card is lost,
stolen, or counterfeited. Additionally, the prevalence of card-not-present fraud, involving the
unauthorized use of credit card numbers in online transactions, has grown due to the surge
in online shopping. The expansion of e-banking and various online payment platforms has
led to a notable increase in fraud, including Credit Card Fraud (CCF), resulting in annual
losses amounting to billions of dollars. In the current era of digital payments, detecting CCF
has become a paramount objective. For business owners, the shift toward a cashless culture
is undeniable. Traditional payment methods are becoming obsolete, hindering business
expansion. Customers increasingly prioritize debit and credit card payments, emphasizing
the need for businesses to adapt their systems to accommodate diverse payment methods. It
is anticipated that this trend will intensify in the coming years [10].

Consequently, it is imperative for financial institutions to prioritize the implementation of
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an automated fraud detection system. In supervised Credit Card Fraud (CCF) detection, the
objective is to develop a machine learning (ML) model using available transactional credit
card payment data. This model is designed to effectively differentiate between fraudulent
and nonfraudulent transactions, enabling the system to make informed decisions about the
legitimacy of incoming transactions. To counteract card fraud, significant resources and
funding have been dedicated to developing a robust fraud-detection system aimed at prevent-
ing financial losses. Various machine learning algorithms have been employed to analyze
extensive data, encompassing classical methods such as logistic regression [11], support
vector machine [12], decision trees [13], hidden Markov models [14], and state-of-the-art
techniques like gradient boosting tree [15] and deep learning [16]. Notably, gradient boosting
tree and deep learning, specifically CatBoost and Deep Neural Network (DNN), stand out
as highly promising solutions, known for their exceptional performance in fraud detection.
CatBoost, with its ability to incorporate user transaction history, is particularly advantageous,
making it the preferred choice for handling both new users and those with a transaction
history simultaneously processing transactions, CatBoost excels in leveraging historical cus-
tomer data, whereas DNN is utilized for identifying fraud in transactions involving unknown
users. Addressing challenges related to data categorization, the support vector machine
(SVM) stands out as a supervised machine learning (ML) technique widely utilized in diverse
domains, including image recognition [17], credit rating [18], and public safety [19].

SVM is adept at handling both linear and nonlinear binary classification problems, de-
termining a hyperplane that effectively separates input data into the support vector, offering
superiority over other classifiers. While neural networks were initially employed for identify-
ing credit card theft [18], deep learning (DL), a subset of ML, has taken center stage with a
focus on DL approaches. In recent years, deep learning methods have garnered significant
attention, showcasing promising outcomes across applications like computer vision, natural
language processing, and voice. However, the application of deep neural networks in Credit
Card Fraud (CCF) identification has been relatively understudied [17]. Notably, it employs
various deep learning algorithms for CCF detection. In the contemporary landscape, a
majority of transactions occur online, involving credit cards and various payment systems,
providing convenience for both companies and consumers. Amidst this digital transaction
environment, banks play a crucial role in ensuring the legality and non-fraudulent nature of
all transactions. Detecting fraud proves to be a challenging task, given the persistent efforts
of fraudsters to make illegitimate transactions appear genuine [20].

To address this challenge, banks find themselves compelled to recruit skilled software en-
gineers and fraud detection experts, in addition to investing in specialized software, resulting
in significant financial expenditures. Traditional approaches to fraud detection have relied on
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expert systems [21], which are techniques designed to solve problems and provide answers
within specific contexts. However, a drawback of expert systems lies in their increasing main-
tenance costs as they become more specialized [21]. The advent of artificial intelligence (AI)
holds the potential to revolutionize the financial services industry. Within the realm of AI,
machine learning (ML) encompasses models for prediction and pattern recognition, requiring
minimal human intervention. In the financial services sector, the application of ML methods
holds the promise of enhancing outcomes for both businesses and consumers, serving as a
potent tool in the fight against credit fraud. Currently, extensive efforts [20][22][23][24] are
underway to develop machine learning (ML) models for combating credit fraud. Employing
ML for predictive modeling holds the potential to enhance efficiency, reduce costs, improve
quality, and elevate customer satisfaction [25]. However, a significant challenge and potential
obstacle in these models lies in their lack of transparency in decision-making processes.

These models often function as black boxes, revealing only their inputs and outputs,
making it challenging to comprehend their internal workings. Consequently, understanding
their properties becomes intricate, and certain risks may go undetected. This complexity
poses a substantial barrier to the integration of ML in existing credit fraud detection (CFD)
systems [26][27]. The opacity of these black-box models carries implications for financial
regulators, who must consider the opportunities for improved compliance and safety facili-
tated by ML. Simultaneously, they need to be mindful of the potential ways in which ML
could be employed to subvert the objectives of existing regulations. For instance, the United
States prohibits discrimination based on various categories, such as race, sex, and marital
status. Furthermore, a lending algorithm could be deemed in violation of this prohibition
even if it doesn’t explicitly use any of the prohibited categories but relies on data highly
correlated with these protected categories. The lack of transparency could present an even
more challenging issue in the European Union, where the General Data Protection Regulation
adopted in 2016, set to take effect in 2018, grants citizens the right to receive explanations
for decisions solely based on automated processing [28]. Despite its limitations, machine
learning (ML) holds potential applications in various areas within financial services. The
inherent opacity of ML systems, however, imposes significant constraints on their use in
crafting regulations [28].

For instance, the U.S. prohibits discrimination based on categories such as race, sex, and
marital status [23], posing challenges in leveraging ML for regulatory purposes. The conse-
quences of employing black-box models include potential biases in results and the inherent
difficulty in understanding the rationale followed by algorithms to reach specific conclusions
[24][29]. There’s a risk that the data used to train ML models may not be representative in
fraud operations [28], leading to the potential endorsement of erroneous decisions. Some
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organizations advocate for additional guidance on interpreting existing regulations, empha-
sizing the need to break down barriers through enhancing the interpretability of these models.
Since regulatory authorities are composed of humans, explanations must be comprehensible
to humans. Similarly, decision models should be easily understandable, allowing scrutiny
of the attributes essential for generating intelligible explanations [30]. Machine learning
is primarily utilized in fraud detection to enhance organizations and financial institutions’
capabilities in identifying fraudulent transactions. However, fraud detection can present
challenges for machine learning due to various reasons. Such as:

• The data exhibits significant imbalance, with a very small number of fraudulent
transactions.

• The data undergoes continuous evolution over time.

• Privacy concerns limit the availability of real-world datasets.

However, because of the class imbalance in the datasets, credit card fraud detection is still
difficult to learn [31]. Nonetheless, credit card fraud detection poses a learning challenge
primarily attributed to class imbalance within datasets [32]. While other issues contribute
to hindrances in credit card fraud detection, class imbalance stands out as the most crucial
challenge [33]. This imbalance is a prevalent concern in various real-world machine learning
(ML) applications, where datasets exhibit uneven class distributions, such as one class (the
majority) having significantly more samples than the other class (the minority). Credit card
transaction datasets commonly face imbalances, as legitimate transactions far outnumber
fraudulent ones [34]. Traditional ML algorithms generally perform optimally with balanced
data, and the skewed class distribution in credit card datasets can result in biased performance
toward the majority class. This bias occurs because these algorithms prioritize error rates
rather than considering class distribution [35].

Consequently, more misclassifications tend to happen for minority class examples com-
pared to majority class samples [36]. Typically, addressing the issue of unbalanced datasets
involves a two-fold approach, focusing on both data and algorithmic aspects, and sometimes
their combination [37]. On the data front, scholars commonly employ resampling techniques,
involving operations like copying, synthesizing, and deleting original samples to adjust
sample numbers and mitigate the impact of imbalanced datasets. Resampling techniques are
categorized into oversampling for minority class samples and undersampling for majority
class samples. In oversampling, the primary concept is to augment the number of minority
class samples for achieving class balance. Common methods involve replicating samples
and generating new samples. Random Oversampling (ROS) involves randomly replicating
original samples to expand the number of minority class samples, but it may introduce
noise samples, affecting dataset quality [38]. Generating new samples entails deriving them
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from one or more original samples, indirectly reflecting minority class features. The classic
oversampling method is the SMOTE algorithm [39], which selects the line connecting two
original samples to determine a point on the line as the new sample. However, SMOTE still
faces challenges, such as generating noise samples and susceptibility to the distribution of
original samples, potentially causing the new samples to deviate from the actual distribution.
Subsequent scholars have made improvements to SMOTE in terms of noise reduction and
generation algorithms, introducing methods like Borderline-SMOTE [40], Adasyn [41],
LR-SMOTE [42], and others.

Undersampling achieves class balance by reducing the number of majority class samples,
employing techniques such as undersampling based on clustering algorithms and Edited
Nearest Neighbor (ENN) [43]. In practice, most imbalanced datasets result from too few
samples in the minority class, making oversampling a focal point in this field [44].

1.2 Conventional machine learning models

In many scientific fields, machine learning is essential, and its applications are used on a
regular basis. Examples of its applications include spam email filtering, weather forecast-
ing, product recommendations, medical diagnosis, facial recognition, fraud detection, and
more. The study of learning, or the challenge of gaining information via experience, is
known as machine learning (ML). Usually, this process entails observing a phenomenon and
formulating a hypothesis about it in order to make predictions or, more generally, behave
logically. We can describe machine learning (ML) as the process of extracting information
from data because, for computers, data provides the experience or phenomenon to learn. Data
mining, pattern recognition, and statistics are all strongly related to machine learning [45].
Simultaneously, it becomes a branch of computer science that focuses specifically on the
algorithmic aspect of knowledge extraction. In conclusion, machine learning (ML) focuses
on developing algorithms that can recognize patterns in data without human intervention.
Several popular classification methods are described in this section, such as K-Nearest Neigh-
bor, Support Vector Machine, Random Forest, Naive Bayes, Multi Layer Perceptron, and
Logistic Rigression.

1.2.1 K-Nearest Neighbour

Instead of learning to generalize, an instance-based learning algorithm produces predictions
by comparing a new instance with the examples present in the training dataset. W. Daelemans
and associates [46]. As a result, instance-based algorithms spend more time in prediction
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and require less time for training. One of the instance-based or memory-based learning
algorithms is K-Nearest Neighbor (KNN) in Figure 1.5. Comparing the characteristics of
groups of instances is the core idea behind KNN. The instances that belong to the same class
label and have similar properties are neighbours. A new unclassified instance’s class label
can be found by locating its closest neighbors. The class label with the greatest occurrences
among those neighbors will be allocated to the new instance, where K is the number of
neighbors to take into account. The KNN algorithm is comprised of 4 stages:

1. Select a suitable value for the parameter K: Select a suitable K value: The KNN
model’s performance is significantly influenced by the value of K. A different K could lead
to a different label assignment because it suggests a different number of neighbors to take
into account. Finding the optimal K that neither overfits nor underfits the model is crucial.
Cross-validation using distinct K choices on the training set is one way to find a solution.
Next, for each K, calculate the folds’ average accuracy and F1-score. Finally, by contrasting
the outcomes of various K, we are able to determine the ideal K.

2. Compute the distances between the unclassified instance and the training in-
stances: Determine the distances between the training instances and the unclassified instance:
The primary KNN criterion is distance. There are three widely used techniques, such as:

• Euclidean Distance: The square root of the sum of the squared distances between two
data points is used by the L2 norm to calculate the distance using equation 1.1.

dEuclidean(a,b) =

√√√√ j

∑
i=1

(a j−b j)2 (1.1)

where b j stands for the jth property of the instances of a and b, and a = a j.

• Manhattan Distance: The distance is determined by adding together the absolute
differences in distance between two data points using equation 1.2.

dManhattan(a,b) =
j

∑
i=1
|a j−b j| (1.2)

where b j stands for the jth property of the instances of a and b, and a = a j.

• 1-Cosine Distance: It takes the cosine difference between two vectors, a and b, then
subtracts it from 1 using equation 1.3.

dist(a,b) = 1− cosθ (1.3)
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where the angle between two vectors is represented by θ .

• Hamming Distance: Unlike the previous two, it indicates whether two things belong
in the same category or not.

3. Identify the K nearest neighbors of the unclassified instance: Locate the unclassified
instance’s K closest neighbors: In step 1, an optimized K value is calculated. The technique
can then be used to anticipate unclassified instances by locating the K nearest neighbors after
the K and a distance option was selected in step 2.

4. Tally the count and assign values accordingly: Count and assign: K neighbors
of the unclassified instance are selected, as seen in Figure 3.1. Next, KNN counts how
many neighbors each class label has. In the event when K=3 and label B has the greatest
occurrences, the instance will be assigned to class B. Voting is another name for this.

KNN is an easy-to-implement, straightforward algorithm. When appropriate K and
distance algorithms are chosen, KNN can perform well; however, it can also perform poorly
if the dataset has a large number of outliers or noise. Furthermore, because KNN does not
have a process for learning the data distribution, Larose and Larose et al. [47] point out that
the prediction technique with KNN is computationally expensive.

Fig. 1.5 An example of categorizing a new instance to class A or B using KNN.

1.2.2 Support Vector Machine

Support Vector Machines (SVM) is another popular algorithm used by many researchers.
H.Zhang et al.[48] introduced that the objective of the SVM is distinctly classifing instances
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by calculating an n-dimensional hyperplane. The hyperplane separates the data points into
two groups, where each group belongs to one class label. Figure 1.6 shows an example
of using a two-dimensional hyperplane to separate data points. The left one represents the
learning process of an SVM model. It maximizes the distances between the hyperplane and
each side of data points. As R. Gandhi et al.[49] explained, to train an SVM model is to find
the optimal hyperplane which maximizes the margin between the data points and hyperplane.
The process of hyperplane optimisation follows the equation 1.4:

minwλ ||w||2 +
n

∑
i=1

c(x,y, f (x)) (1.4)

where w is a weighted vector and λ is an activation function. Equation 1.5 illustrates the two
scenarios of the hinge loss that SVM uses, which is represented by the value c(x,y, f (x)).
The cost is zero if the true value and the forecasted value match. If not, 1− y · f (x) will be
the outcome and the cost. By using gradient descent to update its weights, SVM seeks to
minimize loss with cost function 1.4 and loss 1.5.

c(x,y, f (x)) =

1− f (x) = f (z)2 if y≥ 1

0 otherwise
(1.5)

According to research by Duan et al. [50], SVM has less computational complexity than
KNN. The reason for this is that KNN is more sensitive to dataset volume than SVM is. The
number of chosen support vectors, which is often small, determines how computationally
complex SVM is. In addition, SVM has the benefit of being able to handle datasets with
both low and high dimensions. Stated differently, it can be applied to datasets that are either
linearly separable or linearly inseparable. High-dimensional datasets can be used to train
and generalize SVM models. Furthermore, SVM has access to a variety of kernel functions,
including Sigmoid, Gaussian, and linear ones. SVM operates on binary datasets by design.
However, techniques like the "one-against-rest" strategy by Bishop et al.[45] can be used to
classify many classes.

1.2.3 Random Forest

Random Forest (RF) is a widely-used approach for categorization. E. Kremic and A. Subasi
[51] note its popularity due to a simple learning procedure and quick learning curve. Ac-
cording to A. Liaw et al. [52], RF is an ensemble of decision trees, selecting data randomly
for inducing trees (refer to Figure 1.7). RF functions as an aggregate classifier, combining
multiple decision tree classifiers. The key idea is to train the trees sufficiently so that each
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Fig. 1.6 An illustration of how to use SVM to locate the hyperplane that divides the red
square and the blue circle.

contributes to the model’s structure. In RF classification, each tree in the forest chooses a
subset of data examples and provides a classification decision. The final decision results from
aggregating all outputs through a majority vote. This model, which relies on a dataset with a
consistent distribution across the trees [53], is versatile and applicable to both classification
and regression problems.

1.2.4 Naive Bayes

The Naïve Bayes method was first presented by G.John and P.Langley in 1995 [54]. This
model is an example of a probabilistic classifier. This model suggests that it is capable
of simultaneously obtaining predictions for several classes. The Bayes Theorem is the
foundation of this model. The probabilistic classifiers in Naïve Bayes allow this model
to predict more than one class. Conditional probability is the foundation for the decision.
Instead of using a single method, this approach makes use of a collection of algorithms,
although they are all based on the same idea. According to this concept, every variable
contributes to the outcome in a distinct and equal way. Additionally, this model has a distinct
advantage over other models because it needs very little training data [55]. The Naïve Bayes
classifier selects the decision with the highest probability based on the Bayes theorem [56].
Based on known values and probabilities, Bayesian probability is computed. The following
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Fig. 1.7 An illustration of a Random Forest classifier.

formula represents the supervised machine learning algorithm Naïve Bayes 1.6.

P(A/B) =
P(A∩B)

P(B)
(1.6)

The posterior likelihood P (A|B), or the likelihood of result (A) under certain conditions
(B), can be found using the Bayes theorem. Without any knowledge of specific conditions,
the Bayes Theorem computes the later probability by relating it to the preceding likelihood of
the outcome via the probability ratio P (B|A) = P (B). The Naïve Bayes theorem is predicated
on the idea that every element affects the result separately and is, thus, naïve.
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1.2.5 Logistic Rigression

A functional technique called logistic regression (LR) [57] forecasts a binary response
probability depending on one or more factors and it is represented in 1.7 and 1.8. Data
mining tasks using additional statistical models, such as discriminant analysis, regression
analysis, multiple-logistic regression, and other analyses, are included in the LRn model.
When it comes to credit card fraud, the LR model is quite helpful since it can forecast certain
outcomes based on the presence or absence of characteristic values using a collection of
variables called predictor variables. For every independent variable in the model, odds ratios
can be calculated using LR coefficients. Compared to characteristic analysis, it is applicable
to a wider variety of study scenarios. LR is a statistical technique applied to situations
involving binary classification. Based on one or more predictor variables, it models the
likelihood that an instance belongs to a specific class. LR is used for classification, not
regression, despite its name. Predicted values between 0 and 1, which represent probabilities,
are mapped using the logistic function, also called the sigmoid function.

P(Y = 1|X) =
1

1+ e−(β0+β1X1+β2X2+...+βnXn)
(1.7)

P(Y = 1|X) =
1

1+ e−(β0+β1X)
(1.8)

Where:

P(Y = 1|X) is the probability that the dependent variable Y is 1 given the values of predictor variables X .

β0,β1, . . . ,βn are the coefficients of the model.

X1,X2, . . . ,Xn are the predictor variables.

e is the base of the natural logarithm.

1.2.6 Decision Tree

Quinlan [48] invented the Decision Tree (DT) technique, which can handle consecutive data.
A table of tree appearances composed of internal, root, and leaf nodes is called a decision
tree. Similar to Figure 1.8, the trained system that generates a set of conditions at each level
informs the conclusion made by the decision tree. The decision tree is based on data mining
methods that use the breadth-first or depth-first greedy approaches to recursively divide a
dataset of records [58] [13]. There are lines connecting each node and leaf. The Decision
Tree classification method may assign a single leaf node or several branch nodes to each
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node. An illustration of Decision Tree construction and how this model makes a decision
depending on the variables used is shown in Figure 1.8. By breaking difficult problems
down into simpler ones and building a Decision Tree based on the knowledge gained by data
mining, the Decision Tree solves problems. The foundation of the Decision Tree model is
the extremely accurate and small-scale construction of a tree.

Fig. 1.8 An illustration of a Decision Tree classifier.

1.3 Financial Fraud

Financial fraud, an insidious practice involving deceptive activities to illicitly obtain money
or assets [59], has burgeoned in recent years due to the rapid evolution of technology and the
pervasive digitization of society. The nefarious exploitation of these technological advances
by fraudsters has led to an alarming increase in the frequency and sophistication of financial
fraud cases. The spectrum of financial fraud encompasses various categories, with bank fraud,
corporate fraud, and insurance fraud being among the most prevalent [60]. In the realm of
bank fraud, the unauthorized initiation of transactions within an individual’s bank account is
a recurrent occurrence. Corporate fraud often materializes in the form of financial statement
fraud or manipulative schemes involving securities and commodities, while insurance fraud
spans diverse domains such as car and health care insurance [60].

Within the realm of bank fraud, several subtypes stand out, including credit card fraud,
money laundering, and mortgage fraud [61]. Credit card fraud, in particular, has garnered sig-
nificant attention in recent investigative efforts aimed at enhancing financial fraud detection.
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The machinations involved in credit card fraud often exploit vulnerabilities in online transac-
tions and payment systems, necessitating continuous advancements in detection mechanisms
and security protocols. The specialized focus on credit card fraud underscores the urgency of
understanding its nuances and developing robust countermeasures. Subsequent sections will
delve into the intricate details of credit card fraud, shedding light on the methodologies em-
ployed by fraudsters, emerging trends, and the technological innovations crucial for effective
detection and prevention. By unraveling the intricacies of specific types of financial fraud,
researchers and practitioners can stay one step ahead of the perpetrators, fortifying the finan-
cial landscape against deceptive practices. Credit card fraud occurs when an unauthorized
individual exploits someone else’s credit card information to make unauthorized purchases,
presenting a pervasive challenge on a global scale. Perpetrators typically gain access to the
cardholder’s physical credit card information, and in response, payment card and credit card
issuers are actively implementing measures to safeguard customers from such fraudulent
activities [62].

This type of fraud can manifest in various forms, including unauthorized online transac-
tions or the misuse of another person’s card for in-store shopping [63]. Given the prevalence
of credit card fraud, both cardholders and issuers share concerns about potential fraudulent
activities. Cardholders, understandably, worry about the security of their financial informa-
tion, while issuers face the responsibility of compensating customers for losses incurred in
many instances. The collaborative efforts of payment card and credit card issuers, coupled
with advancements in security measures, aim to mitigate the risks associated with credit
card fraud and enhance the overall safety of electronic transactions. Credit card issuers
employ rule-based methods and various strategies for fraud detection. One approach involves
utilizing highly advanced fraud detection software, which scrutinizes transactions and, based
on historical data, determines their legitimacy. Another method is to identify patterns in
credit card holders’ behavior. If a transaction deviates from the usual pattern, the credit card
company initiates an investigation to ascertain its validity [64]. For instance, individuals
often use their credit cards to pay for lunch at a restaurant or make purchases at stores while
outside their city, transactions that deviate from their normal spending patterns. In such cases,
banks may request validation of these credit card transactions to verify if the cardholder
indeed made these purchases at specific locations. This adherence to rule-based regulations
is a standard practice for banks in certain situations. However, there are instances where
these transactions are false positives. Customers might confirm that they did use their credit
card at a particular restaurant or store for the first time. In such situations, customers are
asked to verify and confirm the accuracy of the transactions. If any transactions are identified
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as invalid or fraudulent, it is crucial for the cardholder to promptly inform the credit card
issuer, request the account be closed, and obtain a new credit card.

1.4 Types of Financial Fraud

It is possible to identify many different kinds of fraud [65], such as application fraud,
theft/counterfeit fraud, computer intrusion, credit card fraud, and telecommunication fraud.

1.4.1 Credit Card Fraud

There are two types of credit card fraud.

• Online Credit Card Fraud: Online credit card fraud is a sophisticated form of
financial crime where criminals exploit the digital landscape to conduct unauthorized
transactions. In this type of fraud, perpetrators typically acquire credit card information
through various cybercriminal activities, such as data breaches, phishing schemes,
or malware attacks. Once armed with the necessary details, including card numbers,
expiration dates, and CVVs, fraudsters engage in online shopping, subscription fraud,
or other electronic transactions without the need for the physical card. The anonymity
and global reach of the internet make it challenging to trace and apprehend those
responsible for online credit card fraud. To combat this threat, security measures such
as encryption, multi-factor authentication, and real-time transaction monitoring are
crucial in detecting and preventing fraudulent activities in the virtual space.

• Offline Credit Card Fraud: Offline credit card fraud, in contrast, involves the use of
physical credit cards that have been unlawfully obtained. Criminals may steal physical
cards from individuals, wallets, or conduct skimming operations at points of sale to
copy card details. The stolen cards are then used for in-person transactions, such as
making purchases at retail stores, restaurants, or withdrawing cash from ATMs. Unlike
online fraud, offline credit card fraud leaves a tangible trail, and law enforcement
may use surveillance footage and transaction records to investigate and apprehend
perpetrators. However, the increasing prevalence of contactless payment methods and
chip technology has led to advancements in card security, aiming to mitigate the risk
of offline fraud by making it more challenging for criminals to clone or use stolen
physical cards. Figure 1.9 depicts a man using an ATM to take out cash.
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Fig. 1.9 Man withdrawing cash from an ATM

1.4.2 Telecommunication Fraud

Over the past ten years, the telecommunications sector has expanded significantly on a global
scale, especially with the introduction of various phone-based technologies [66]. Due to the
widespread usage of phone technology, there is a corresponding rise in mobile phone fraud
worldwide. This worldwide issue results in large yearly losses for numerous corporations,
enterprises, and communication service providers. The easiest fraud to commit and the one
with the least chance of illicit financial gain for perpetrators is telecommunication fraud.
Subscription fraud and overlaid fraud are the two categories of telecommunication fraud.
Subscription fraud occurs when criminals get hold of an account which functions similarly
to a phone number without intending to pay the fee. Therefore, all of the transactions using
the phone number that was received will be fake. Most likely, fraud via phone calls or other
illegal activities are employed to sell calls using these accounts. Meanwhile, superimposed
fraud is the act of obtaining a valid account through theft. In this instance, the atypical use
is placed on top of the regular use by real clients. Cloning cells is an example of overlaid
deception. Moreover, insider fraud in the telecommunications industry can happen when
a worker sells confidential information to a dishonest opponent for illicit gain. Since our
solution focuses on detecting odd payment activity through a machine learning algorithm
and halting any possible fraudulent transaction, it should safeguard credit card consumers
against both types of telecommunication fraud. Additionally, the suggested method use the
unique credit card number for each online transaction. Because the information on these
cards would be meaningless, even insiders would not be able to sell the users’ information to
anybody.
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1.4.3 Computer Intrusion

Computer intrusion is a type of cybercrime that involves gaining unauthorized access to
personal computers, mobile phones, and other electronic devices, as well as altering or
stealing data for illicit uses [67]. Stated differently, it represents an unsanctioned endeavor to
obtain data. Usually, people are the target of this kind of crime. An insider who is familiar
with the system’s architecture and infrastructure frequently commits computer intrusions.
An outsider (hacker) may also be the intruder. In order to prevent this type of fraud, the
suggested system also aims to identify the origin (location) of every payment transaction.
This allows the system to block any transactions that appear suspicious. Conversely, our
method adds an extra layer of security by using the one-time credit card information.

1.4.4 Bankruptcy Fraud

The purpose of bankruptcy is to allow a person or business to reorganize and resolve their
debts [68]. In this context, using a credit card by someone who intends to file for bankruptcy
is considered bankruptcy fraud. Since the credit card issuer cannot be certain of a customer’s
financial situation, they are obligated to cover their losses in the event of bankruptcy, making
bankruptcy fraud one of the trickiest scams to anticipate. Verifying the consumers’ financial
history by contacting the credit bureau is one way to prevent this type of scam. The credit
bureau assists credit card companies and banks in looking into the financial backgrounds of
people seeking credit.

1.4.5 Theft Fraud

Here, using a credit or debit card that is not your own is considered theft fraud. Prior to the
real customer reporting unusual transactions on their account and asking the card issuer to
block the card, the fraudster attempts to use the victim’s credit card as many times as feasible.
The quicker the victimized customer reports, the quicker the bank responds. Our method can
also be used to combat fraud of this type. Our method makes use of computer and mobile
applications to provide a virtual credit card. In order to avoid theft fraud, consumers can
conduct purchases online without a real card.

1.4.6 Application Fraud

When someone applies for a credit card using false information, it is known as application
fraud [69]. Phua et al. conducted a study that looked at over 300 million applications for
fraudulent accounts. The study found that 88% of those accounts were opened through
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identity fraud methods [70]. It is possible to distinguish between two distinct cases of
application fraud: identity thieves and duplicate applications. Applications from the same
users with the same information are considered duplicate applications. In this instance,
credit card applications employ cross-matching techniques to identify such duplication by
producing a suspicious numerical score based on implicit ties to one another in real-time.
Applications from various people with identical features constitute identity fraud. To check
credit card eligibility, most banks, however, require applicants to complete a form with
specified information. Identification, address, phone number, personal information, and other
pertinent data are all included in this data. For the objectives of identification and duplication
search, the majority of the necessary data is employed. Since machine learning (ML) can be
used to identify potentially harmful applications in the future, ML algorithms can generally
prevent this form of fraud.

1.5 Fraud detection process

As seen in figure 1.10, the transactions are first verified at the terminal point to see if they are
genuine or not. Certain necessary requirements, such having a sufficient balance and a valid
PIN (personal identification number), are checked at the terminal point, and the transactions
are filtered based on the results. Following the scoring of all valid transactions, the predictive
model determines if the transactions are real or fraudulent. Every bogus alert is looked into
by the investigators, who also give the predictive model input to help it work better [71]. The
prediction model is the only topic covered in this thesis.

1.6 Imbalance Classification Challenge and Solution

Addressing imbalanced datasets in classification tasks has posed enduring challenges. A
dataset is deemed imbalanced when one or more classes exhibit a significantly larger number
of instances compared to other classes within the dataset. Various approaches exist to quantify
the imbalance, one of which is the imbalanced ratio (IR). As outlined by S. Kotsiantis et
al. [72] and W. Lee et al. [73], the IR represents the proportion of samples in the majority
class (negative class) to the minority class (positive class). In a binary dataset with classes
Cmajority and Cminority, the IR is calculated as (Cmajority/Cminority). A higher IR
indicates a more imbalanced dataset, with balance achieved when the IR equals 1.

Classifiers often exhibit strong performance for dominant classes but tend to yield weaker
results for minority classes. Consequently, a classifier may be erroneously deemed effective
based solely on high accuracy scores, primarily attributed to its accuracy on dominant classes.
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Fig. 1.10 The process of identifying and preventing fraud.

However, in practical applications, the minority classes, though outnumbered, hold greater
significance in domains such as business decisions and medical diagnoses. A. Fern´aNdez et
al.[74] demonstrated that this challenge is prevalent in binary classification tasks, such as
fraud detection, and extends to multi-class classification tasks, including depression detection.
Multi-class datasets, featuring several dominated classes, compound the complexity of the
problem.

A. Fern´aNdez et al. [75] asserted that many classifiers assume balanced datasets during
training, resulting in ineffective training and suboptimal performance in predicting minority
labels, despite achieving a commendable overall score. Several factors contribute to such
failures:

• Ineffective Training Assumptions: Many classifiers are built under the assumption that
datasets are balanced, leading to suboptimal performance when faced with imbalanced
data.

• Neglect of Minority Classes: Classifiers may prioritize accuracy on majority classes,
neglecting the minority classes that are often more crucial in real-world applications.
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• Underestimation of Imbalance Impact: The impact of dataset imbalance on classi-
fier performance may be underestimated, leading to inadequacies in addressing the
challenges posed by minority classes.

• Failure to Adapt to Multi-Class Imbalance: In multi-class datasets with multiple
dominated classes, classifiers may struggle to adapt, exacerbating the difficulty of
achieving balanced predictions across all classes.

Recognizing and addressing these issues is imperative for developing effective classifiers
that perform well across all classes, particularly in scenarios where minority classes hold
significant importance. Ongoing research and advancements in the field aim to devise
strategies to overcome the hurdles posed by imbalanced datasets and enhance the robustness
of classification models. As the challenge of data imbalance remains a focal point for various
communities, numerous methods have been devised to address it. Broadly, [76] categorized
these methods into three groups:

• Data re-sampling.

• Cost-sensitive learning.

• Ensemble techniques.

1.6.1 Data Re-sampling

Data resampling refers to the process of modifying the original dataset by either adding or
removing instances to create a more balanced distribution of classes, especially in the context
of imbalanced datasets. Imbalanced datasets occur when one class significantly outnumbers
the other, leading to challenges in training machine learning models that may exhibit biased
behavior towards the majority class. There are three main types of data resampling:

• Oversampling: This involves increasing the number of instances in the minority class
by either duplicating existing instances or generating synthetic data points. The goal
is to balance the class distribution and provide the model with more examples of the
minority class to learn from. Common oversampling techniques include Random
Oversampling, Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive
Synthetic Sampling (ADASYN). Figure 1.11 shows the over sampling process.

• Undersampling: This entails reducing the number of instances in the majority class
by randomly removing some of them. The objective is to level the class distribution
and prevent the model from being biased towards the majority class. Undersampling
methods include Random Undersampling and NearMiss. Figure 1.12 shows the under
sampling process.
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Fig. 1.11 Random oversampling process

Fig. 1.12 Random undersampling process

• Hybrid-sampling: Hybrid sampling is an approach that combines elements of both
oversampling and undersampling techniques to address class imbalance in datasets.
The goal of hybrid sampling is to create a more balanced dataset by simultaneously
adjusting the proportions of instances in both the majority and minority classes. This
approach aims to capture the benefits of oversampling (providing the model with more
instances of the minority class) and undersampling (reducing the dominance of the
majority class) while mitigating their respective drawbacks. In a hybrid-sampling
strategy, various techniques may be employed to achieve a balanced distribution,
depending on the characteristics of the dataset and the desired outcome.
Some hybrid-sampling methods involve applying oversampling to the minority class
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and undersampling to the majority class in a coordinated manner. The objective is to
strike a balance that allows the model to learn from sufficient instances of the minority
class without overwhelming it with redundant information from the majority class. The
effectiveness of hybrid-sampling techniques often depends on the specific nature of the
data and the machine learning algorithm being used. Researchers and practitioners may
experiment with different combinations of oversampling and undersampling methods
to find the most suitable approach for a given problem, aiming to enhance the model’s
generalization and predictive capabilities on imbalanced datasets. Figure 1.13 shows
the Hybrid resampling process.

Fig. 1.13 Hybrid resampling process

In the literature, [39] introduced SMOTE (Synthetic Minority Oversampling Technique), a
widely embraced data resampling method aimed at addressing the challenge of imbalanced
datasets. Belonging to the oversampling category, SMOTE stands out for its remarkable
performance, particularly in enhancing instances through duplication. Illustrated in Figure
1.14 is a depiction of a two-dimensional dataset characterized c x zz by class imbalance, with
the minority class represented by the rectangular points.

With the SMOTE approach, as demonstrated in Figure 1.15, the algorithm begins by
identifying the K-nearest-neighbors of each minority sample. Subsequently, a new sample
is synthesized at a random location along the connected line between the focal sample
and its nearest neighbors. The green dot in the figure symbolizes the synthesized sample.
SMOTE has served as a foundation for several extensions, each tailored to specific needs.
For instance, Borderline-SMOTE, proposed by [40], and Safe-level-SMOTE, developed
by [77], are among the extensions that have built upon the original SMOTE methodology.
These extensions introduce refinements and variations to further enhance the effectiveness of
SMOTE in different contexts.
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Fig. 1.14 Example of Imbalance Data

Fig. 1.15 Example of Synthetic Data using SMOTE

1.6.2 Cost-sensitive learning

The primary way that data resampling techniques contribute is through their work on data
level adjustments. P. Domingos et al. [78], however, notes that cost-sensitive learning
combines both data level and algorithmic level initiatives. The primary concept of cost-
sensitive learning is summed up by [78] as accounting for the costs associated with each
inaccurate classification. Prior to the classifiers learning, a cost matrix is constructed, and the
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cost values inside it are defined by task experts or by using references. Those cost values
will be considered when learning to minimize the classification loss. A larger cost will be
imposed for each minority class instance that is incorrectly classified since the minority class
is more significant than the majority class. A classifier should be able to categorize instances
into the class with the lowest cost given a cost matrix. Let’s take an example where Figure

Fig. 1.16 Example of a cost matrix for financial fraud detection

is a cost matrix for a task involving fraud detection. When a prognosis is accurate, there is
no expense. However, if a positive sample is anticipated to be negative, there will be a $92
fee, and if a negative sample is predicted to be positive, there will be a $10 cost. A total cost
matrix can be defined the equation 2.1 as follows based on these costs:

C =CFN×NFN +CFP×NFP (1.9)

where N is the quantity of samples. The goal of a cost-sensitive learning algorithm is to
reduce C’s value.

Overcoming data imbalance is made easier with the help of the cost matrix concept.
However, there are two significant drawbacks that prevent customers from utilizing it. To
begin with, it is typically challenging to accurately describe or obtain a high-quality cost
matrix. Using medical categorization tasks as an example, physicians can offer valuable
insights toward detecting diseases. However, they are unable to calculate the price of a
mistaken classification. If inaccurate classifications result in the loss of life, then ethical
concerns can also arise. Second, it is uncommon for machine learning algorithms to be created
expressly for learning that is cost-sensitive. It is necessary to make specific adjustments to
each algorithm. The time required for its development and testing may be considerable.

1.6.3 Ensemble techniques

R. Polikar [79] introduced an ensemble strategy that uses different classifiers to independently
learn from the same training set. Next, an aggregate of all the classifiers’ predictions is
calculated. This method aims to outperform individual classifiers in the crowd by using
crowd-classifiers. Three main categories of ensemble approaches exist:
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• BAGGing (Bootstrap AGGregating): The suggestion comes from Leo Breiman [80].
Several learning methods are taken in parallel by BAGGing and fitted individually;
the training process occurs concurrently. The Random Forest technique is often used
in BAGGing. The process of bootstrapping a given dataset into many sub-samples is
shown in figure 1.17. A decision tree is trained using each subsample. Next, using the
chosen aggregation technique, the predictions from each decision tree are combined to
get the final prediction.

Fig. 1.17 Bagging method

• Boosting: Figure 1.18 illustrates how Boosting uses various learning algorithms in a
sequential fashion. In contrast to BAGGing, which attempts to lower variance, boosting
provides the current learner with dataset observations that the prior learner handled
incorrectly. Adaptative boosting and gradient boosting are two common boosting
techniques.

• Stacking: Stacking is similar to BAGGing in that it takes multiple learners simultane-
ously. The original dataset will first be divided into two folds, as figure 1.19 illustrates.
The first fold will be used to train L weak learners. Subsequently, the skilled students
forecast the second fold. Lastly, using the predictions from the previous stage, the
second fold is used to train a meta-model. .

A series of studies were done by V. L´opez et al. [76], who summarized many particularities
for the three groups mentioned above. While the accuracy of the ensemble approaches is
good, their running times might be lengthy. More importantly, consumers typically find it
challenging to understand the learned procedures. As accurate as ensemble methods are
cost-sensitive approaches. Its use is nonetheless restricted by the need for a pre-defined
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Fig. 1.18 Boosting method

Fig. 1.19 Stacking method

cost-matrix. Finally, resilience and good outcomes are demonstrated by the data resampling
procedures. Re-sampling data might be considered the typical method for resolving data
imbalance, according to V. L´opez et al. [76].
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1.7 Role of ML in Detection of Financial Fraud

In the field of credit card fraud detection, the application of machine learning proves to be
highly effective, enabling the development of systems capable of accurately predicting and
identifying risky or abnormal behavior within vast datasets [81]. This efficacy arises from
the inherent capability of machine learning to discern patterns and make predictions without
explicit programming, leveraging the analysis of extensive data sets.

Machine learning techniques encompass various approaches, broadly classified into four
main categories. First, labeled data—which includes both input feature and matching output
label—is used to train the algorithm in supervised learning. Second, unsupervised learning
works with unlabeled data, meaning that the algorithm can find patterns and structures in
the dataset even in the absence of output labels that have been predetermined. Thirdly,
semi-supervised learning incorporates a combination of labeled and unlabeled training data,
combining aspects of supervised and unsupervised learning. Lastly, reinforcement learning
involves the interaction of the learning system with its environment, learning through actions
and feedback in the form of errors or rewards [81].

When tackling the classification problem inherent in credit card fraud detection, distin-
guishing between fraudulent and non-fraudulent transactions, the selection of a machine
learning approach is contingent upon the characteristics of the dataset. If the training dataset
includes labeled instances of fraud, supervised learning techniques are often employed. This
involves training a model to recognize patterns associated with fraudulent transactions based
on the labeled examples.

Conversely, in situations where the dataset lacks explicit labels for fraudulent transactions,
unsupervised learning techniques can be applied. These methods, such as clustering algo-
rithms, identify patterns and anomalies within the data, helping to flag potentially fraudulent
activity. Semi-supervised learning strikes a balance between the two approaches, allowing
for the utilization of both labeled and unlabeled data. This flexibility is particularly beneficial
in cases where obtaining a fully labeled dataset is challenging or expensive.

According to Abdallah et al. [82], one of the most common data mining approaches for
building credit card Fraud Detection Systems (FDS) is the utilization of classification models.
This methodology aligns with supervised learning techniques, wherein the model is trained
on labeled data to classify transactions into fraudulent or non-fraudulent categories.
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1.8 Motivation

Introducing a rule-based model for financial fraud detection and proposing the Anomaly Re-
duction Boundary Based Oversampling (ARBBO) algorithm to tackle imbalanced data offer
innovative solutions to common challenges in machine learning, especially in classification
tasks. Over the years, machine learning algorithms have gained widespread popularity for
handling classification tasks, but the issue of imbalanced datasets poses a significant hurdle
to their effective application. Imbalanced datasets, where one class is underrepresented
compared to others, impact supervised classification algorithms, particularly when assigning
prior probabilities to each class. This challenge is prevalent in real-world applications,
including financial fraud detection and medical diagnosis. Often, the minority class, such as
rare diseases or instances of fraud, is of paramount importance, and misclassification can
incur serious costs.

Traditionally, solutions for imbalanced datasets involve modifying the dataset itself
through techniques like undersampling, where instances from classes with more data are
removed. While this can help achieve balanced classes, it may hinder the classifier’s general-
ization ability, especially when the original dataset is relatively small. Instead of altering the
dataset, a more promising approach involves addressing the challenge as perceived from the
classifier’s perspective, enabling it to learn data representations effectively despite imbalance.
López et al. [76] highlighted the need for future research to emphasize the detection and mea-
surement of significant data properties, suggesting exploration of classification approaches
capable of overcoming data imbalance in various aspects, including small disjuncts, lack of
density, class overlap, noisy data, accurate management of borderline examples, and dataset
shifts.

Motivated by this, we introduce the ARBBO algorithm as a binary classification procedure
designed to handle data imbalance at the algorithm design level. Our approach aims to
outperform other classifiers by addressing the nuanced aspects of data imbalance. Through
the results obtained in this thesis, ARBBO demonstrates superior performance, providing a
more effective solution for classification tasks when dealing with imbalanced data.

Moreover, we introduce an additional consecutive sequence-based rule-based model for
financial fraud detection. This model is specifically crafted to bolster both the efficiency in
terms of time and the accuracy of fraud detection. By leveraging sequential patterns and rules,
this model aims to capture intricate relationships within financial transactions, providing a
complementary approach to existing methods.
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1.9 Objective

In addressing the challenge of class imbalance in machine learning datasets, we present a
novel resampling method known as ARBBO (Anomaly Reduction Boundary Based Over-
sampling). The primary objective of ARBBO is to mitigate the impact of imbalanced class
distributions by oversampling the minority class instances near the decision boundary. This
method aims to enhance the model’s ability to accurately classify rare or anomalous events,
which is particularly crucial in scenarios where certain classes are underrepresented. By
strategically oversampling instances close to the decision boundary, ARBBO seeks to im-
prove the model’s discriminatory power and reduce the likelihood of misclassifying minority
class samples.

Additionally, we propose the development of a rule-based machine learning model
specifically tailored for detecting financial fraud. The objective of this model is to lever-
age machine learning algorithms in conjunction with predefined rules to identify patterns
indicative of fraudulent activities within financial datasets. By combining the flexibility
of machine learning with the interpretability of rule-based systems, our approach aims to
enhance fraud detection capabilities in the financial domain. This hybrid model is designed
to capture intricate patterns and anomalies associated with fraudulent transactions, providing
a comprehensive and effective solution for mitigating financial risks.

Our research addresses two key objectives in the realm of machine learning:

1. We propose a resampling method named ARBBO to tackle imbalance issue.

2. We propose a machine learning rule-based model to detect financial fraud.

1.10 Scope of Work

The scope of work for Rule-Based machine learning and Anomaly Reduction Boundary
Based Oversampling (ARBBO) in fraud detection and machine learning is multifaceted and
encompasses several critical elements.

Firstly, within the realm of Rule-Based machine learning, the primary objective is to
develop explicit rules that guide decision-making processes, thereby fostering transparent
and interpretable models. This involves a meticulous process of identifying, formulating,
and validating rules derived from both domain knowledge and data analysis. By leveraging
insights from experts in the field and analyzing historical data, Rule-Based systems aim to
encode decision logic in a manner that is easily understandable and auditable.

On the other hand, the focus of ARBBO oversampling techniques is to tackle the challenge
of class imbalance prevalent in fraud detection tasks. By generating synthetic samples
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strategically around the boundaries of the minority class, ARBBO aims to enhance the
robustness of fraud detection models. This approach is geared towards creating a more
balanced training set, thereby enabling machine learning algorithms to better discern between
fraudulent and legitimate transactions.

The scope of implementing ARBBO algorithms extends beyond mere application to
include fine-tuning and optimization. This involves tailoring the oversampling process to
suit the specific characteristics of the dataset and the nuances of the fraud detection problem
at hand. Furthermore, the efficacy of ARBBO techniques is evaluated comprehensively,
with a focus on metrics such as precision, recall, and overall predictive accuracy. Through
rigorous experimentation and validation, the goal is to ascertain the effectiveness of ARBBO
in improving model performance compared to conventional methods.

Moreover, this work involves thorough comparison with existing methodologies to deter-
mine the superiority and practicality of the proposed approach. By conducting experiments
across diverse datasets and operational contexts, researchers and practitioners seek to assess
the generalizability and robustness of ARBBO in mitigating fraud risks effectively.

Finally, the scope of work for Rule-Based machine learning and ARBBO in fraud detec-
tion encompasses the development, implementation, fine-tuning, evaluation, and comparison
of methodologies aimed at enhancing the transparency, interpretability, and performance of
fraud detection systems. Through a combination of domain expertise, data-driven insights,
and innovative techniques, the objective is to build more reliable and effective defenses
against fraudulent activities across various domains and industries.

1.11 Research Questions

In our research endeavor, we aim to address two pivotal questions at the intersection of data
science and financial analysis. Firstly, we delve into the intricate challenge of balancing
imbalanced data prior to rule generation, a critical step in ensuring the robustness and reli-
ability of our subsequent analyses. Imbalanced data poses a significant hurdle, potentially
skewing the outcomes and impeding the efficacy of rule generation algorithms. Our investi-
gation seeks to explore innovative methodologies and techniques to mitigate this imbalance,
enhancing the quality and representativeness of our dataset. Secondly, we delve into the
realm of generating data-driven rules from financial data, recognizing the importance of
extracting actionable insights from vast and complex datasets. By leveraging advanced
machine learning algorithms and domain-specific knowledge, we endeavor to develop a
framework that effectively captures patterns and trends inherent in financial data, facilitating
the formulation of robust rules that can inform decision-making processes in various financial
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contexts. Through rigorous experimentation and analysis, we aim to contribute valuable
insights to both the academic community and practitioners in the financial domain, ultimately
fostering greater efficiency and accuracy in decision-making processes.

Based on the preceding discourse, we can outline our research questions as follows:

1. How to balance imbalance data before rule generation?

2. How to effectively generate data-driven rules from financial data?

1.12 Contribution of This Thesis

This thesis makes notable contributions in the realm of financial fraud detection from two
distinct perspectives.

Firstly, it introduces a data-driven rule-based model tailored for the identification of
financial fraud. This model leverages a data-driven approach to generate rules that encapsu-
late distinctive patterns associated with fraudulent activities within financial datasets. The
adaptability, real-time detection capabilities, and interpretability of the system make it a
valuable tool for effectively discerning and responding to potential fraudulent transactions.

Secondly, the thesis introduces the Anomaly Reduction Boundary Based Oversampling
(ARBBO) method as a solution to the prevalent problem of imbalance in financial datasets.
ARBBO, designed as a binary classification procedure, strategically utilizes oversampling
techniques to generate synthetic instances of the minority class, effectively balancing the class
distribution. Unlike traditional methods, ARBBO enhances the classifier’s generalization
ability by allowing it to learn effective data representations in the presence of imbalanced
data. Furthermore, the method comprehensively addresses various aspects of data imbalance,
as suggested by López et al. [76], ensuring improved performance across multiple imbalance-
related challenges. The results obtained from the thesis demonstrate the superior performance
of ARBBO compared to other classifiers, affirming its efficacy in handling imbalanced
financial datasets. Together, these contributions propel the field of financial fraud detection
forward by introducing practical and effective methodologies that bolster interpretability,
real-time detection, and overall performance.

1.13 Thesis Organization

The subsequent sections of this thesis report are meticulously organized to provide a compre-
hensive exploration of the research work conducted:
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• Literature Review (Chapter 2): In Chapter 2, an exhaustive literature review is
undertaken. This review encompasses a broad range of relevant studies, providing a
comprehensive overview of existing research and insights related to the thesis topic.
The chapter critically examines prior work in the field, identifying key theories, method-
ologies, findings, and gaps in knowledge. Through this rigorous analysis, the chapter
aims to establish a solid theoretical framework and inform the subsequent research
methodology and analysis, examining similar research endeavors that have been imple-
mented and tested in the realm of financial fraud detection. A meticulous distinction
between our work and existing studies is meticulously presented, showcasing the
unique contributions of our approach. Additionally, relevant theories that underpin
our methodology are outlined, providing a theoretical foundation for the subsequent
chapters.

• Proposed Methodology (Chapter 3): Chapter 3 delves into the heart of our research,
elucidating the proposed methodology for financial fraud detection. The chapter
meticulously details the approach, algorithms, and strategies employed in our data-
driven rule-based model and the Anomaly Reduction Boundary Based Oversampling
(ARBBO) method. This section serves as a crucial guide for understanding the
intricacies of our innovative contributions.

• Experimental Results (Chapter 4): Chapter 4 presents the empirical validation of our
proposed methodology using the paysim dataset. This section encompasses a thorough
analysis of accuracy measurements, providing insights into the effectiveness of our
approach. Furthermore, a comparative study is conducted, juxtaposing our results with
existing work that shares similar objectives. The outcomes of the experiment verify
the strength and excellence of our contributions.

• Conclusion and Future Directions (Chapter 5): The final chapter, Chapter 5, serves
as the conclusion of this thesis. Key findings are summarized in the concluding remarks,
which also highlight the importance of our contributions to the field of financial fraud
detection. Limitations encountered during the study are candidly acknowledged, and
potential avenues for future research are suggested. This chapter not only encapsulates
the culmination of our work but also provides a springboard for future investigations.

1.14 Conclusion

This chapter serves as a concise introduction to the background and objectives of the thesis.
It outlines the scope and significance of the research, providing clarity on its focus and
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importance. The upcoming chapter will delve into a comprehensive review of relevant
literature, laying the foundation for the study’s theoretical framework and methodology.



Chapter 2

Related Work

2.1 Existing Oversampling Methods

The severe disparity between minority and majority class membership leads to biases in
classifier decision-making, which is the fundamental issue with unbalanced learning. The
bulk of minority instances in this scenario could be simply categorized into the majority
group, making minority instance recognition challenging. Numerous assessment indicators
indicate that classifiers are not performing well, with a low detection rate of minority
classes. This does not exclude classifiers from learning from datasets that are unbalanced,
though. In order to achieve a more balanced distribution, the dataset is modified through a
few different ways when sampling techniques are applied to unbalanced learning. While
both oversampling and undersampling are preprocessing steps, this work focuses solely
on oversampling. We will cover a number of well-known sampling techniques in this
chapter, including adaptive synthetic sampling technique (ADASYN), synthetic minority
oversampling technique (SMOTE), and random replacement oversampling.

2.1.1 Random Oversampling with Replacement

Random oversampling with replacement is the process of adding a set E sampled from the
minority class using the subsequent mechanism: Replicate the cases and add them to S to
enlarge the initial set S, given a set of randomly selected minority occurrences in Smin [83].
By doing this, the class distribution becomes more balanced because the size of all examples
in Smin will increase by |E|. Just a subset of the minority class is replicated using this curious
strategy in order to raise the weights of those cases. Due to the complete randomness of the
replacement process, there is no distinct demarcation between the two classes in this manner.
This approach’s primary drawback is that it duplicates some of the cases that were already
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present in the initial minority class, which could result in overfitting [84]. The oversampling
technique’s core idea is this procedure. Based on this technique, numerous more widely used
oversampling algorithms for practical applications have been created.

2.1.2 Synthetic Minority Oversampling Technique (SMOTE)

In 2002 [39], Chawla introduced the Synthetic Minority Oversampling Technique (SMOTE)
in equation 2.1. The SMOTE algorithm oversamples the minority class by generating
synthetic cases, as opposed to randomly oversampling, which results in oversampling by
replacement. The SMOTE algorithm creates artificial instances [83] by employing feature
space similarities between current minority examples rather than data space similarities.
By joining some or all of the K nearest neighbors of the minority class with line segments,
these fictitious instances are produced. Based on the intended amount of oversampling,
neighbors are randomly chosen from the K nearest neighbors. Specifically, let Smin ∈ S
represent the minority class. Determine the K-nearest neighbors for each example xi ∈ Smin,
given a specified K. The K-nearest neighbors are those K elements of Smin whose euclidian
distance to xi in feature space X has the least magnitude. To begin a new sample, randomly
select one of the K-nearest neighbors, and then determine the difference between the selected
sample and its closest neighbor. Multiply this difference by a value between 0 and 1 that is
consistently generated. This factor can be changed by moving from a uniform distribution to
a different distribution, depending on the application. Lastly, incorporate this vector into the
chosen sample xi.

xsyn = xi +(x′i− xi)×λ (2.1)

where λ ∈ [0, 1] is a randomly generated number, xi ∈ Smin is the selected instance from
the minority class, and xi ∈ Smin is one of xi’s K-nearest neighbors. A SMOTE method
example is shown in Figure 2.1. K = 4 is the number of K closest neighbors. The red line
section between xi and x′i is where the synthetic examples are formed, as seen in the picture.
The original class distribution is more evenly distributed thanks to these artificial examples,
which generally greatly enhances learning. However, there are a few issues with the SMOTE
method, such as an oversimplification of the minority class space. Other SMOTE-based
algorithms have been developed from the original SMOTE technique over time, and some of
them have been demonstrated to significantly improve uneven learning performance.
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Fig. 2.1 Example of synthetic data generation using SMOTE

2.1.3 Adaptive Synthetic Sampling Approach (ADASYN)

Later, a number of oversampling techniques, including SMOTEBoost, Borderline-SMOTE
[40], and Adaptive Synthetic Sampling (ADASYN), were created based on the concept of
SMOTE. These techniques have all demonstrated improvements in unbalanced learning on
diverse datasets. The methods utilized to discover minority samples with these adaptive
algorithms are very interesting. Let’s examine the Borderline-SMOTE instance first, as
it offers the fundamental concept for the construction of ADASYN, before moving on to
ADASYN.

The following is the result of this algorithm. The quantity of closest neighbors who
are members of the majority class, or |Si:m∩ Smaj|, is determined by first determining the
set of nearest neighbors for each xi ∈ Smin, denoted as Si:m (2.2), where m is the number of
minority class. After that, it divides each xi into three categories: "Danger," "Safe," and
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"Noise" according to how many majority examples are present in its K-nearest neighbors. xi

is included in "Danger" if:
m
2
≤ |S1:m∩Sma j|< m (2.2)

These instances serve as representations of the marginalized class. xi is classified as "Noise"
if | S1:m ∩ Sma j | = m, meaning that all K of its nearest neighbors are majority examples;
otherwise, it is classified as "Safe." In contrast to SMOTE, Borderline-SMOTE only generates
synthetic examples for cases that are close to the boundary; for "Noise" instances, no synthetic
examples should be generated. ADASYN, on the other hand, adjusts the Borderline-SMOTE
idea and produces different amounts of synthetic instances for minority classes according to
their distribution. The number of a minority example’s majority nearest neighbors determines
how many synthetic examples of that example must be created, according to the ADASYN
algorithm [41]. There will be more synthetic examples produced the more majority nearest
neighbor there is. More specifically, the total number of synthetic data samples, G (2.3), is
determined by the parameter β ∈ [0, 1], which is used to designate the balanced level after
the synthetic procedure.

G = (|Sma j|− |Smin|)×β (2.3)

Next, determine each example’s K-nearest neighbors (xi ∈ Smin). For a synthetic process,
Define the density distribution as the weight of xi. (2.4) Γi.

Γi =
∆i
K
Z
, i = 1, ...., |Smin| (2.4)

where Z is a normalized constant, Γi is a probability mass function; that is, ∑Γi = 1; ∆i is the
number of majority occurrences among the K-nearest neighbors of xi. Then, determine how
many synthetic examples (gi) are needed for every xi ∈ Smin. (2.5).

gi = Γi×G (2.5)

Ultimately, gi synthetic examples are produced for each xi ∈ Smin utilizing the SMOTE
algorithm. based on the idea of the SMOTE algorithm, ADASYN was created. The distinction
is that SMOTE gives every minority example an equal chance of being chosen for the
synthetic process, whereas ADASYN determines the number of synthetic cases based on
the density distribution ϒ. Because ADASYN, in contrast to BorderlineSMOTE, does not
identify "Noise" situations, a lot of bogus data can be created around those cases, thereby
giving learners an inflated minority space.
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2.1.4 Other Oversampling Techniques

A number of alterations based on the idea of the original SMOTE algorithm have been
developed in addition to the ADASYN algorithm. Chawla [39] later proposed SMOTE-
NC (Synthetic Minority Oversampling Technique Nominal Continuous) and SMOTE-N
(Synthetic Minority Oversampling Technique Nominal), which are upgraded versions of
SMOTE handling datasets with nominal characteristics. Furthermore, SMOTEBoost has
been proposed [85], which adjusts the updating weights and skewness compensates. The
F-measure indicates a noteworthy improvement in its performance. H. Han [40] suggested
two new oversampling techniques: borderline-SMOTE1 and borderline-SMOTE2. These
two strategies significantly improve the difference between the two classes by selectively
oversampling only the minority samples along the border. Their research indicates that these
two algorithms perform better in terms of F-value and TP rate than SMOTE. Borderline
oversampling has been widely used to categorize unbalanced data [86]. Usually, the result
of data extraction from medical images in data categorization was geometric complexity.
Moreover, they are not linearly separable in Euclidean space. To solve this problem, Juanjuan
Wang et al. have created a unique method that combines the locally linear embedding
algorithm (LLE) with the SMOTE algorithm[14]. In order to enable SMOTE to oversample
the data, this approach maps the high-dimensional data into a low-dimensional space. Data
obtained from medical imaging was usually the result of geometric complexity in data
classification. In addition, they cannot be separated linearly in Euclidean space. By merging
the locally linear embedding algorithm, or LLE algorithm, with the SMOTE algorithm,
Juanjuan Wang et al. have created a novel way to deal with this problem [87]. SMOTE allows
for oversampling of the data by projecting the high-dimensional data onto a low-dimensional
environment.

2.1.5 Machine Learning Based Approach

Financial fraud is found through a variety of ways. As a result, the primary methodologies
can be divided into groups, like deep learning (DL) and machine learning (ML), ensemble
and feature ranking, and user authentication approache. In [88], According to the authors,
Thanks to developments in e-commerce and communication technologies, credit card use as
a means of payment has expanded, and transaction-related fraud is also on the rise. They em-
ployed a better light gradient booster device (LightGBM), which combines Bayesian-based
hyper-parameter optimization with LightGBM parameter tuning. The suggested system
yields impressive performance metrics, with an accuracy of 98.40%, precision of 92.88%,
and an area under the receiver operating characteristic curve (AUC) of 97.34%. Additionally,
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the AUC stands at 56.95In [89], According to the writers, major financial losses are caused
by credit card theft. Based on factors including sensitivity, area under the precision-recall
curve (AUCPR), and accuracy, they have determined that the top algorithms are ANN, SVM,
C5.0 decision tree approach, and linear regression (LR). Randhawa and colleagues [? ]
presented a credit card fraud detection engine that uses these two strategies. The authors of
this study used the European Cardholders dataset. The authors also considered the AdaBoost
methodology in conjunction with machine learning methods such as Support Vector Machine
(SVM). The results demonstrated that the AdaBoost-SVM achieved an MCC of 0.044 and an
accuracy of 99.959%. Riffi et al. [90] used the Multilayer Perceptron (MLP) and Extreme
Learning Machine (ELM) algorithms to construct a credit card fraud detection engine. The
European Cardholders dataset, created in 2013, was used by the study’s authors. The results
demonstrated the 97.84% accuracy rate of the MLP technique. By contrast, the ELM’s accu-
racy rate in identifying credit card fraud was 95.46%. In Jiang et al. [91], the cardholders’
transactions are first collected, after which they are aggregated based on their behavior, the
dataset is classified, the model is trained and tested, and lastly the transactions are collected
again. The approach presented by Xuan et al. [53] combined random forest models based on
random trees and random forest models based on CARTs.

Their research made use of historical transaction data and was based on the behavioral
traits of both genuine and fraudulent transactions. The dataset of a Chinese e-commerce
corporation includes over 30,000,000 transactions, 82,000 of which are fraudulent occur-
rences, and 62 attributes. A 5:1 normal-to-abnormal transaction ratio was used. The results
of the study revealed a 98.67% recall rate, a 32.68% precision rate, and an accuracy rate of
98.67%. Large amounts of data can be analyzed using logistic regression and the stacked
auto-encoders approach, however the findings are imprecise and not useful for practical
purposes. A study by A.A.E. Naby et al. [92] provided evidence in favor of this. Awoyemi
et al.’s [55] detection of fraudulent credit activity using naive Bayes, K-Nearest Neighbor,
and logistic regression with accuracy rates of 97.92%, 97.69%, and 54.86%, respectively.
Taha and Malebary [88] proposed an enhanced light gradient boosting machine (LightGBM)
to detect fraud in credit card transactions. To optimize the LightGBM’s hyperparameters,
a Bayesian-based approach must be used. They compared a number of classifiers, such
as naive Bayes, SVM, decision trees, random forests, and categorical boosting (CatBoost).
The updated LightGBM surpassed the benchmarked classifiers with an accuracy of 98.40%,
precision of 97.34%, and area under the receiver operating characteristic curve (AUC) of
92.88%.

For credit card fraud detection, Ileberi et al. [93] proposed a feature selection model
based on genetic algorithms (GAs). The study showed that the GA-based feature selection
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enhanced the performance of the various ML classifiers, with the random forest obtaining
the highest accuracy of 99.98%. Furthermore, in order to build trustworthy credit card
fraud detection (CCFD) models, Salekshahrezaee et al. [94] examined the effects of feature
extraction and data resampling on the following machine learning classifiers: CatBoost,
Random Forest, Extreme Gradient Boosting (XGBoost), and LightGBM. The features were
extracted using principal component analysis (PCA) and convolutional autoencoder (CAE),
and the data was resampled using SMOTE, random undersampling (RUS), and SMOTE
Tomek methods. The experimental findings demonstrated that the classifiers’ performance
was greatly enhanced when feature extraction and resampling were done using the RUS and
CAE techniques, respectively. Additionally, for multidimensional and partial rectification
analysis, extensive feature selection, financial fraud detection, and importance grading of
variables, the authors of [95] recommended utilizing a random forest model. Different
machine learning algorithms were built by Khatri et al. [96] in order to detect credit card
fraud. In their investigation, the authors employed the following methodologies: Random
Forest (RF), Decision Tree (DT), k-Nearest Neighbor (kNN), Logistic Regression (LR), and
Naive Bayes (NB). The results showed that the kNN method yielded the best results, with
91.11% precision and 81.19% sensitivity, respectively. Rajora et al. conducted a comparative
study on machine learning methods for credit card fraud detection [97].

Among the methods that were examined were the RF and KNN approaches. The results
demonstrated the accuracy of 94.9% and AUC of 0.94 of the RF algorithm. In comparison,
the accuracy and AUC of the KNN were 93.2% and 0.93, respectively. While the results are
promising, this study did not address the issue of class imbalance that exists in the dataset
used. Trivedi et al. [98] presented an efficient credit card fraud detection engine using ML
techniques. The authors tested various methods using the European Cardholders dataset. The
tests’ outcomes showed that the GB had 94.01% accuracy and 93.99% precision, respectively.
In contrast, the RF achieved precision and accuracy of 95.98% and 94.00%, respectively.
Tanouz et al. [99] provided a framework for ML-based credit card fraud detection. Addition-
ally, in order to address the issue of class imbalance present in the dataset utilized, the authors
employed an undersampling method. In this study, two machine learning techniques are
considered: LR and RF. Accuracy was the main performance indicator that the researchers
used.

The results demonstrated the RF technique’s 91.24% fraud detection accuracy rate. In
comparison, the accuracy of the LR approach was 95.16%. The results showed that more
investigation is required to resolve the class imbalance problem in the European credit card-
holder dataset. Riffi et al. [90] used the Multilayer Perceptron (MLP) and Extreme Learning
Machine (ELM) algorithms to construct a credit card fraud detection engine. Although



2.1 Existing Oversampling Methods 43

they are both artificial neural networks (ANNs), the ELM and the MLP have different basic
designs. The principal performance metric utilized by the authors was the accuracy of fraud
detection. The results demonstrated the 97.84% accuracy rate of the MLP technique. By
contrast, the ELM’s accuracy rate in identifying credit card fraud was 95.46%. Although the
ELM is less sophisticated than the MLP, this investigation found that the MLP performed
better than the ELM.

2.1.6 Deep Learning Based Approach

Using the synthetic minority oversampling-edited closest neighbor approach and AdaBoost
as the base learner, E. Esenogho et al. [100] created a complicated ensemble of LSTM. The
authors used a dataset of European credit card users’ transactions over two days in September
2013 for their studies. The final result has a sensitivity of 0.996, specificity of 0.998, and
AUC of 0.990, outperforming more well-known algorithms like SVM, MLP, decision trees,
just LSTM, and AdaBoost. Alghofaili et al. [101] examined the use of long short-term
memory in 2020 to detect credit card fraud by comparing it to an auto-encoder and traditional
machine learning models, such as logistic regression, random forest, and support vector
machines. Ibtissam Benchaji et al. [102] performed another LSTM analysis using a local
bank-provided dataset of 594,643 transactions from November 2012 to April 2013. It was
certain that the card had been used by the cardholder if the data fit the pattern; otherwise,
there was a significant risk of fraud.

They intend to create another Recurrent Neural Networks variant-based model in the
future to test its competency in comparison to the existing model. To anticipate fraud,
BiLSTM-MaxPooling-BiGRU-MaxPooling was utilized by Najadat et al. [103]. The authors
also employed a naive base, voting, AdaBoost, random forests, decision trees, and logistic
regression to compare the results of each model. The extremely uneven class of the dataset
utilized in this study makes it unique. To resolve the imbalance in the dataset, the authors used
the random under-sampling, random over-sampling, and synthetic minority over-sampling
procedures. The outcomes demonstrated the models of deep learning using the three sample
methods outperformed machine learning models in terms of accuracy by a wide margin.
The machine learning-based models had an accuracy of 81% as their maximum value. To
obtain 91.37% accuracy, The authors used a random oversampling technique to combine
BiLMST-MaxPooling with BiGRU-MaxPooling.

In a different study, Mubalaike and Adali [104] investigated the use of deep learning to
detect fraud with a high degree of accuracy. With accuracy of 90.49%, 80.52%, and 91.53%,
respectively, they integrated restricted Boltzmann machines (RBM), stacked auto-encoders
(SAE), and decision tree models (EDT). . In comparison to the EDT and RBM, the SAE
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was lower. I. D. Mienye et al. [105] had proposed a robust solution that incorporated deep
learning, utilizing an MLP as a meta-learner and LSTM and GRU neural networks as basic
models. In addition, the class imbalance in the dataset had been addressed using the SMOTE-
ENN approach. Experimental results had demonstrated superior performance, attaining a
specificity of 0.997 and a sensitivity of 1.000 in comparison to other widely used machine
learning techniques in the literature. To accomplish sequential modeling To accomplish
sequential modeling and ensure enhanced fraud detection, Benchaji et al. [102] suggested a
technique for detecting credit card fraud using an LSTM network. In order to find the most
pertinent qualities, Combining the uniform manifold approximation and projection (UMAP)
with the LSTM network method and an attention mechanism. The testing outcomes showed
that the suggested method was reliable for spotting credit card fraud.

We can see from the aforementioned literature evaluations that no researchers employ
Rule-Based models for identifying financial fraud. Therefore, We provide a live binary
classification technique that utilizes the combination of Rule-Based models and anomaly
reduction boundary based oversampling (ARBBO) models in order to close the gap between
the two categories of models used today for fraud detection, including approaches based on
deep learning and machine learning.

2.2 Research Challenges

Developing Fraud Detection Systems (FDSs) employing Dynamic Data Models (DDMs)
based on Machine Learning algorithms poses significant challenges, including:

1. Fraudulent transactions represent a minority portion of daily transactions [106].

2. The distribution of fraudulent activities changes over time, influenced by seasonality
and the emergence of new attack strategies [107].

3. In many cases, the true class of the majority of transactions is only determined several
days after the transaction occurs, as investigators promptly examine only a limited
number of transactions [108].

The initial obstacle, commonly referred to as the unbalanced problem (citation), emerges
due to the skewed distribution of transactions favoring the genuine class. Not only do the dis-
tributions of genuine and fraud samples lack equilibrium, but they also display overlap. Many
Machine Learning algorithms are inadequately equipped to address both unbalanced and
overlapping class distributions (citation). Concept drift, resulting from changes in fraudulent
activities and customer behavior, introduces non-stationarity in transaction streams [109].
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FDSs must be continually updated, leveraging recent supervised samples and discarding
outdated information to remain effective without being misled. Strategies failing to adapt or
revisit frequently tend to lose predictive accuracy over time [106].

The third challenge pertains to the impracticality of scrutinizing all transactions in
real-world scenarios due to human labor constraints. These limitations restrict the number
of alerts generated by the Fraud Detection System (FDS) that investigators can verify.
Investigators evaluate FDS alerts by reaching out to cardholders, gathering feedback to
determine whether the alerts are associated with fraudulent or legitimate transactions. These
feedback responses, received for only a small portion of daily transactions, provide real-time
information for training or updating classifiers. The classification (fraudulent/non-fraudulent)
for the remaining transactions typically remains unknown until several days later, often being
automatically assigned based on a predefined timeframe for customers to identify and report
frauds. Traditional FDSs, which do not incorporate feedback from investigators, tend to
produce less accurate alerts compared to those effectively utilizing both feedback and other
available supervised samples [108].

2.3 Problem Statement

The problem statement at the core of the contributions from the data-driven rule-based model
and the ARBBO method revolves around the intricacies of financial fraud detection. A
predominant challenge lies in the highly imbalanced nature of the dataset, where instances
of fraud constitute a minority compared to non-fraudulent transactions. Addressing this
imbalance is crucial for effective machine learning algorithms, ensuring accurate identi-
fication of fraudulent activities. Real-time processing emerges as a critical requirement,
emphasizing the need for swift detection and response to potential fraud in the dynamic
landscape of financial transactions. Minimizing false positives, a key concern, underscores
the delicate balance required between high sensitivity to detect fraud and low rates of falsely
flagging legitimate transactions. Additionally, model explainability takes precedence, aim-
ing to provide transparency in decision-making processes, fostering trust among users and
meeting regulatory compliance. Notably, the problem statement recognizes the perpetual
adaptation of fraudsters, necessitating models that can dynamically counter evolving tactics.
The proposed data-driven rule-based model prioritizes interpretability, while the ARBBO
method, designed at the algorithmic level, enhances the classifier’s generalization ability,
making it more resilient to emerging fraud patterns. Together, these contributions address the
multifaceted challenges inherent in financial fraud detection, providing innovative solutions
to advance the field.
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In the context of balancing imbalanced data before rule generation, the highly skewed
distribution between fraudulent and non-fraudulent transactions poses a significant challenge.
Techniques such as oversampling of the minority class, undersampling of the majority class,
or more sophisticated methods like the ARBBO algorithm are utilized to address this issue.
These methods aim to create a more balanced dataset, ensuring that the rule generation
process is not biased towards the majority class and effectively captures patterns from both
classes.

Regarding the effective generation of data-driven rules from financial data, it involves
extracting meaningful patterns and relationships from the dataset to construct rules that
accurately distinguish between fraudulent and non-fraudulent transactions. This process
often entails feature engineering, where relevant attributes of the transactions are identified
and transformed to facilitate rule generation. Additionally, various rule induction algorithms
such as decision trees, association rule mining, or sequential pattern mining are employed to
automatically generate rules from the data. The resulting rules are then evaluated based on
their interpretability, predictive performance, and ability to capture fraud patterns accurately.



Chapter 3

Proposed Methodology

The training dataset D comprises N transactions, denoted as T = [T1,T2,T3, ...TN ], with each
transaction defined by a set of attributes A = [A1,A2,A3...Am]. Each attribute in D has a
predetermined limit. For instance, if we consider feature A, a limit L is established for A
values. This limit serves as a condition, such that if a value is less than L or greater than L,
the class value assigned to the transaction is either 0 or 1. Here, 0 represents a non-fraudulent
transaction, while 1 signifies a fraudulent one. The process involves extracting relational
rules from an imbalanced financial dataset to identify fraudulent transactions. The proposed
Rule-Based approach, depicted in Figure 3.2, incorporates an Anomaly Reduction Boundary
Based Oversampling (ARBBO). To detect fraud using the rule based model with ARBBO
resampling technique from dataset, the following steps are followed:

The dataset is clustered based on transaction types, including CASH_IN, CASH_OUT,
TRANSFER, DEBIT, and PAYMENT. In the paysim dataset, for instance, these five transac-
tion types result in five distinct clusters for subsequent rule generation.

3.1 Feature Selection

Feature selection is crucial for removing irrelevant data from large datasets, improving model
efficiency. This study proposes a dynamic feature selection strategy that iteratively traverses
the dataset to assess feature importance and automatically filters out less significant features.
This approach allows the model to retain only relevant and important features, enhancing
its accuracy and efficiency. Among the many feature selection methods used are Random
Forest and Decision Tree. First, Random Forest selects the top 80% of important features,
followed by Decision Tree refinement for optimal results. An automated loop evaluates
feature importance and eliminates less significant ones without user intervention, effectively
reducing the number of features from 11 to 9.
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3.2 Cluster

Fig. 3.1 Details Schematic Diagram of Proposed Model

The dataset undergoes a partitioning process utilizing the K-means clustering algorithm,
whereby it is divided into distinct clusters based on transaction types. Each cluster corre-
sponds to a specific transaction category, such as CASH_IN, CASH_OUT, TRANSFER,
DEBIT, and PAYMENT. This segmentation facilitates a more focused analysis and rule
generation for each transaction type.

To illustrate, consider the paysim dataset, which encompasses diverse financial transac-
tions, each falling into one of five categories: CASH_IN, CASH_OUT, TRANSFER, DEBIT,
and PAYMENT. The K-means clustering algorithm is applied to this dataset, resulting in the
creation of five distinct clusters, each representing transactions of a particular type.

For instance, one cluster may predominantly comprise CASH_IN transactions, while
another focuses on CASH_OUT transactions. This segregation enables a more nuanced
exploration of patterns and behaviors specific to each transaction type, as the algorithm
groups together transactions with similar characteristics.
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By dividing the dataset into these clusters 3.1, subsequent rule generation processes
can be tailored to the unique attributes and dynamics of each transaction category. The
model’s capacity to recognize patterns and relationships unique to different transaction types
is improved by this focused approach, thereby contributing to a more refined and effective
rule set for fraud detection or other analytical purposes. Figure 3.2 displays a detailed
schematic diagram of the suggested model and Algorithm 1 shows the procedure of the
proposed model.

Fig. 3.2 Details Schematic Diagram of Proposed Model

3.3 Anomaly Reduction Boundary-Based Oversampling
(ARBBO)

Within this segment, we outline the steps of the ARBBO method, which comprises three
stages: Anomaly ratio calculation, safe boundary computation, and synthetic data generation.
Addressing class imbalance in data, the ARBBO approach involves oversampling minority
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Algorithm 1: Proposed model Algorithm
Data: Input Dataset DS, a dataset containing n financial transactions
Result: Fraud and non-fraud transactions
if DS.dataTaype ̸= numeric then

convert data into numeric;
if f eatureImportance≤ minimumT hreshold then

eliminate feature;
//Anomaly Reduction Boundary Based Oversampling(ARBBO) begins here;
while i in transactions do

if isFraud==1 then
if type==Cluster[key] then

Cluster[key].append(i)

tssynthetic← (Nmaj−Nmin)×θ ; where θ is the balance level. while xi in Nmi do
Kxi ← Find the k neighbors o f xi
tdxi = ∑x j∈Nmin∧x j∈Kxi

d(xi,x j)

Anomaly ratio of xi : arxi =
log(e

1
tdxi )

∑x j∈Nmintdx j

tssxi =rxi ×Samplesync
while j← 1 to tssxi do

for k← 1 to NLimit( j) do
for l← 1 to minorAttributesSa f eBorder do

Samplenew← Two synthetic samples in opposite direction
D′=D′ ∪ Samplenew

ConsecutiveSequence()Find Consecutive sequence f rom each cluster
while custerIndex in Cluster do

while amount in ConsecutiveSequence do
if con f idence≥Con f idenceT hreshold then

Confidence[cI][amount].append(confidence)
if support ≥ SupportT hreshold then

Support[cI][amount].append(support)

AllPossibleRules()← Create all possible relational rules for each category;
while ruleIndex in AllPossibleRules do

support()← Calculate support of rule
Con f idence()← Confidence of rule
if con f idence≥ con f idenceT hreshold && support ≥ supportT hreshold then

RuleSet.append(rule)

prediction← Each transaction is valided by the rule set;
return prediction;
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class samples to enhance transaction support. Figure 3.3 presents the suggested ARBBO
model’s block diagram.

Fig. 3.3 Block diagram of proposed ARBBO model.

Fig. 3.4 Total distance of x1 and x2 with their neighbors.

3.3.1 Anomaly Ratio Based Total Synthetic Data

The model evaluates the level of class imbalance and calculates the quantity of synthetic sam-
ples needed to get a reasonable imbalance ratio. If the degree is below the specified threshold,
subsequent steps are taken to create a balanced dataset. For a dataset with Nma j samples
of the majority class and Nmin samples from minority classes, the degree of imbalance in
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Fig. 3.5 Illustration of an anomaly within the dataset.

equation (3.1) and the total quantity of synthetic samples needed, tssynthetic, are computed in
equation (3.2):

degree =
Nmin

Nma j
(3.1)

tssyncthetic = (Nma j−Nmin)×θ (3.2)

For every sample xi ∈ Nmin, the nearest k neighbors kxi that are members of the minority class
are found. The distance between this sample and its closest k neighbors is known as the total
distance of xi, and it is computed as follows:

tdxi = ∑
x j∈Nmin∧x j∈Kxi

d(xi,x j) (3.3)

Where d(..) represents the distance between the two data samples in equation (3.3). The
following formula is used to find the anomalous ratio of xi:

arxi =
log(e

1
tdxi )

∑x j ∈ Nmintdx j

(3.4)
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Note that ∑ari = 1 as equation (4) has been utilized for normalization. In Figure 3.4, the
aggregate lengths of two samples from minority classes, x1 and x2, are illustrated. The sum
of the distances to x2, x3, and x4 determines the overall distance of x1 in Figure 3.4 left,
while that of x2 is the sum of distances to x1, x3, and x4 in Figure 3.4 right. Notably, tdx1 is
smaller than tdx2 , showing that the overall distance is reduced for a sample that is closer to its
k nearest neighbors. Equation (3.4) is used to compute the anomaly ratio for each minority
class sample; a larger total distance results in a smaller value, and vice versa. This method
works well with anomalous and imbalanced datasets because it produces more synthetic data
for samples that are near their k nearest neighbors and less for those that are farther away.
Equation (3.5) is used to determine the number of synthetic data samples for each xi ∈ Nmin:

tssxi = rxi×Samplesync (3.5)

3.3.2 Boundary Calculation

In the context of categorizing sample data into SAFE and ANOMALY, the proposed method
diverges from the traditional SMOTE approach. Although the closest minority data points
are connected with an interpolation line in the standard SMOTE method to create synthetic
data, the KNN approach’s precision in locating these nearby points may lead to potential
data overlap between majority and minority classes. This paper suggests a change to address
this worry: using the safe border distance in place of the nearest neighbors parameter in the
SMOTE approach.

Finding the closest majority data point from the chosen minority sample defines the safe
border distance, which then confines all newly created synthetic data points inside the bounds
this distance establishes. Moreover, a circular shape formula is applied to data generated
within this boundary, as depicted in equations (3.6), (3.7), and (3.8), where a two-dimensional
vector example is illustrated.

|x− c| ≤ dist2 (3.6)

n

∑
i=1

(xi j− ci j)
2 ≤ dist2 (3.7)

dist2 =
n

∑
i=1

(c j−mp j)
2 (3.8)

The nearest majority point from the circle’s center is shown as’mp’ with coordinates
(mp1, mp2, mp3, ...mpn). The circle’s center, or ’c’, is represented by the coordinates
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(c1,c2,c3, ...cn). The newly generated synthetic data under a safe radius distance is expressed
as xi with a first-direction interpolation scheme, having components (x1,x2,x3, ...xn) for i =
1...n. Similarly, yi represents synthetic data using a second-direction interpolation scheme
with components (y1,y2,y3, ...yn) for i = 1...n. The distance between ’c’ and ’mp’, dist2 is
determined by equations (3.7) and (3.8), as depicted in Figure 3.6.

Fig. 3.6 Boundary of a selected minority sample.

3.3.3 Synthetic Data Generation

The creation of fresh synthetic data is the main goal of the last stage. The distance between
each minority sample that has been chosen and all of the majority data points is calculated
using the Euclidean distance formula. Finding the closest majority data point is essential;
among the chosen minority samples, it is the one with the least distance in relation to the
overall distance. This process is illustrated in equation (3.9).

disti j = min
n

∑
i=1

n

∑
i=1

√
(c j−mp j)2 (3.9)

disti j in equation (3.9) denotes the smallest distance between minority sample ’j’ and
majority sample ’i’. Once these nearest majority data points are identified, the generation of
synthetic data is executed along an interpolation line connecting these two points. Notably,
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the synthetic data generation is performed in two directions, disti j and −disti j, as elaborated
in equations (3.10) and (3.11).

xi j = center j +
(
rand 0,1 X (disti j− center j)

)
(3.10)

yi j = center j +
(
rand 0,1 X (center j−disti j)

)
(3.11)

In equations (3.10) and (3.11), xi j and yi j represent the components of the synthetic data
point along a line of interpolation connecting the minority sample to the closest majority
sample. The generation involves random scaling factors determined by the distance between
these two points in the respective directions, contributing to the diversity of the synthetic
data.

3.4 Consecutive Sequence Based Rule Generation

Fig. 3.7 Blog Diagram of Rule Generation Process.

3.4.1 Consecutive Sequence

In this work, we employ the Consecutive Sequence Mining Algorithm described in Algo-
rithm 2. Figure 3.7 describes the rule generation process. The consecutive sequences are
calculated from each type of transaction from each cluster. Let’s think about a set of values
of amount attribute:
1000, 1001, 2000, 3000, 5000, 4000, 5001, 1003, 2001, 3001, 4001, 2003, 2004, 2004, 5003,
5004, 5005, 4001, 3002, 1004, 4003, 1004, 6000, 3003.
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Algorithm 2: Consecutive Sequence Mining Algorithm
Initialization:

1. Maintain two empty lists: current_sequence and sequences.

2. Set a variable previous_number to None.

3. Sort the data.

4. Divide the input data into N chunks.

Iterate through each of N chunks:

1. For each number n in the list:

2. If previous_number is None or n is equal to previous_number + 1:

• Append n to current_sequence.

3. Otherwise:

• If the length of current_sequence is greater than 1 (meaning it’s a valid
sequence),

– Append it to sequences.

• Reset current_sequence to a new list containing only n.

4. Update previous_number to the current number n.

Finalize:

• Return sequences.
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From the above values, the consecutive sequences are as follows:
1. 1000, 1001, 1004, 1004, 2. 2000, 2001, 2003, 2004, 2004, 3. 3000, 3001, 3002, 3003,
4. 4000, 4001, 4001, 4003, 5. 5000, 5001, and 6. 6000. To generate relational rules
that set the proposed model apart from other models such as Apriori and FP-Growth, each
sequence’s maximum and minimum bounds are computed. Sequences 1, 2, 3, 4, and 5
have minimum and maximum limits of 1000 and 1004, 2000 and 2004, 3000 and 3003,
4000 and 4003, 5000 and 5001, respectively, while sequence 6 has a single value for its
minimum and maximum limits of 6000. As a result, the rule terms of amount attribute are
1000 <= amount && 1044>=amount, 2000 <= amount && 2004>=amount, 3000 <=

amount && 3003>=amount, 4000 <= amount && 4003>=amount, 5000 <= amount &&
5001>=amount, and amount=6000.
Similarly, let’s consider about a set of values of the oldbalanceOrg attribute:
9203, 9200, 9201, 6099, 7000, 7001, 6301, 6302, 6303, 5501, 5502, 5503, 5504, 5000, 5001,
5003, 5004, 5005, 4001, 4001, 4003, 1003, 1004, 1000, 1001, 1002, 999.
The following are the sequential sequences derived from the values above:
1. 999, 1000, 1001, 1002, 1003, 1004, 2. 4001, 4001, 4003, 3. 5000, 5001, 5003, 5004,
5005, 4. 5501, 5502, 5503, 5504, 5. 6301, 6302, 6303, 6. 6099, 7000, 7001,7. 9200, 9201,
9203. The rule terms of the oldbalanceOrg(OBO) property are constructed as follows after
determining the lowest and maximum values of each sequence:
999 <= OBO && 1004>=OBO, 4001 <= OBO && 4003>= OBO, 5000 <= OBO &&
5005>= OBO, 6301 <= OBO && 6303>= OBO, 6099 <= OBO && 7001>= OBO, and
9200 <= OBO && 9203>= OBO.
The rule words for other attributes, including newbalanceOrig, oldbalanceDest, and newbal-
anceDest, are produced by adhering to the amount and oldbalanceOrg attributes mentioned
above. From the experiment dataset, the rule terms of amount, oldbalanceOrg, newbalance-
Orig, oldbalanceDest, and newbalanceDest are 578, 566, 10, 415, and 585 respectively. If we
apply nCr on each attribute of the dataset to form the rules, then according to the proposed
model, the possible minimum number of rules is 578C1× 566C1× 10C1× 415C1× 585C1.

3.4.2 Support of Consecutive Sequence

The assessment of the support for every rule term is an important part of the financial dataset
analysis process. The procedure entails applying each potential rule term to the transactions
in the dataset in order to determine its frequency. Subsequently, the count of satisfactory
outcomes, referred to as support, is computed for each rule term. For instance, consider a
financial dataset containing various transactions representing customer purchases. One rule
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term could be the combination of specific items or products that tend to co-occur frequently
in these transactions. The support for this rule term would be the number of transactions in
which this combination of items is observed. The entire dataset undergoes this process for
each possible rule term generated by the output of a consecutive sequence mining algorithm.
The support for each rule term is calculated based on the cumulative support of its occurrences
across all transactions. The equation (3.12) represents the support of a pattern.

After establishing the support for all possible rule terms, the subsequent step involves
combining sequences whose support exceeds a predefined threshold, typically greater than 0.
These sequences are essentially the building blocks of rules, representing patterns or associa-
tions discovered within the financial dataset. In summary, the analysis entails systematically
assessing the support of individual rule terms through the examination of transactional data,
and subsequently forming rules by aggregating sequences with significant support. This
method allows for the identification of meaningful patterns and associations within the fi-
nancial dataset, facilitating insights into customer behavior, market trends, or other pertinent
financial aspects.

3.4.3 Rule Generation

The suggested model employs association rules in the form of A → C, where A represents
the antecedent comprising rule terms connected by "and," and C signifies the consequent
denoting fraud. These rules are formulated by combining rule terms associated with each
attribute and their respective transaction types in a financial dataset.

For example, consider a rule: "If the transaction involves a high-value amount (A1) and
occurs during non-business hours (A2), then classify it as fraud (C)." Here, A1 and A2
are rule terms representing attributes like transaction amount and time, and C denotes the
consequence of fraud.

To ensure that only pertinent rules are considered, the model applies minimum support
and confidence thresholds. In other words, a rule is deemed eligible only if it surpasses
these predefined thresholds. This selective approach aims to generate a refined set of rules
that exhibit both sufficient support and confidence, enhancing their efficacy in identifying
fraudulent transactions within the financial dataset.

For instance, the minimum support threshold may require that a rule must be applicable
to a certain percentage of transactions in the dataset, ensuring its relevance. Similarly,
the confidence threshold might dictate that a rule must have a minimum accuracy level in
predicting fraud, adding a layer of reliability to the selected rules.

The model assesses candidate rules by comparing their support and confidence scores
against user-defined thresholds. This evaluation process ensures that only rules meeting the
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specified criteria are considered for inclusion in the final set. The outcome is a collection of
efficient rules that have demonstrated both statistical significance and predictive accuracy in
identifying instances of fraud within the financial dataset.

In summary, the proposed model leverages association rules to systematically combine
rule terms related to various attributes and transaction types. By applying minimum support
and confidence thresholds, the model refines this rule set, ensuring that only relevant and
reliable rules contribute to the identification of fraudulent transactions in the financial dataset.

3.4.4 Support and Confidence

The analysis of each sequence of clusters in the proposed model involves a careful exami-
nation of their frequency of occurrence. Subsequently, the support and confidence of these
sequences are calculated. If the computed support and confidence values meet or surpass
the user-specified threshold, the corresponding rule is considered final and is then integrated
into the system’s knowledge base. This crucial step ensures that only the most pertinent and
trustworthy rules become part of the model, contributing to optimal performance.

To illustrate with a financial example, consider a sequence of clusters representing
patterns of transaction behavior in a credit card dataset. A rule derived from such a sequence
might be: "If a customer makes multiple high-value transactions within a short time frame
(sequence), then flag the transactions for further scrutiny as potential fraud (rule)." The
frequency of occurrence of this pattern is analyzed, and if it consistently exhibits both support
3.12 (the frequency of the pattern’s occurrence in the dataset) and confidence 3.13 (the
accuracy of the rule in identifying fraud) above a specified threshold, it becomes a finalized
rule.

To refine the rule set specifically for fraud detection, the model employs a selection
process based on the least amount of confidence and support. Minimum support ensures that
a rule occurs frequently enough to be considered relevant, while minimum confidence ensures
that the rule is consistently correct in its predictions. By eliminating unreliable rules that
fall below these thresholds, the model captures meaningful patterns indicative of fraudulent
behavior. This selective approach leads to the development of a more accurate and dependable
fraud detection model, as it focuses on rules with a strong empirical basis and predictive
capability. Association rule mining frequently uses representations of confidence and support.
The equations (3.12) and (3.13) show a rule’s confidence and support, respectively.

Support(X) =
Number of transactions containing X

Total number of transactions
(3.12)
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Confidence(X ⇒ Y ) =
Support(X ∪Y )

Support(X)
(3.13)

3.4.5 Rule Set

By choosing the most pertinent rules based on the minimum support and confidence notions,
the rule set can be refined. But not every regulation has the same weight, and some might
even be deceptive. The model assesses each rule according to its confidence and support to
make sure the set of rules is effective and efficient. The confidence indicates how frequently
the rule is accurate, whereas the minimal support indicates how often a rule appears in the
dataset. In order to ensure that the rules capture significant trends in the data and avoid false
or unreliable rules, the selection procedure of the rules is based on minimum support and
confidence. The refined rule set is then produced by choosing just those rules that do so,
based on the user-defined minimal support and confidence levels. Therefore, a rule-based
machine learning model that is more reliable and accurate could be able to detect fraudulent
financial transactions with more precision.

3.4.6 Rule Validation

Ensuring the accuracy and efficacy of rules in a fraud detection system is critical, and
rule validation serves as a pivotal step in achieving this objective. Two essential methods,
namely rule structure verification and rule consistency verification, play integral roles in this
validation process.

Rule structure verification ensures that each rule strictly adheres to the IF-THEN structure.
For example, in a financial dataset, a rule might state: "IF a transaction involves an unusually
large sum of money (condition), THEN flag it for further investigation (consequence)." Rule
structure verification ensures that such rules are properly formulated and adhere to the logical
structure required for effective fraud detection.

On the other hand, rule consistency verification is concerned with assessing the alignment
of a given rule with other association rules within the repository. This involves examining
antecedent (IF part) and consequent (THEN part) constraints across multiple rules to identify
any conflicts or inconsistencies. In the context of a financial dataset, if one rule identifies a
suspicious transaction based on a certain criterion, Verification of rule consistency guarantees
that this decision aligns seamlessly with other rules governing similar transactions.

By meticulously implementing these validation methods, the reliability and effectiveness
of the rules are fortified. This is crucial in the context of fraud detection within a financial
dataset, where inaccurate or inconsistent rules could lead to both false positives and false
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negatives. In summary, rule validation is a key safeguarding measure, ensuring that the
rules governing the detection of fraudulent activities are not only logically sound but also
consistent with other rules in the system.

3.4.7 Rule Optimization

Fig. 3.8 Diagram depicting the procedural steps of the rule optimization process.

Rule optimization is a crucial step aimed at improving the effectiveness of a fraud detec-
tion classifier by eliminating unnecessary rules. This process involves iterative exploration,
assessing the significance of rule support, confidence, and redundancy. Lowering thresholds
may lead to the inclusion of redundant rules, while maintaining a confidence threshold
between 50% and 100% is found to yield optimal fraud prediction and minimize redundancy.
Figure 3.8 shows the details schematic diagram of proposed model.

For example, let’s consider a rule (r1) stating that "IF a transaction involves an unusually
large amount," and another rule (r2) stating "IF the transaction occurs during non-business
hours." Both rules individually may have lower confidence, but when combined as [(r1∧r2)∨
r3], where r3 represents another rule, the confidence level can be significantly increased. This
merging process allows for the creation of more impactful rules, contributing to improved
fraud detection accuracy.

The optimized rule, [(r1∧r2)∨ r3] → Fraud, serves to eliminate redundant rules while
enhancing the classifier’s accuracy. This consolidated rule encapsulates the combined
conditions of r1 and r2, maximizing confidence in identifying fraudulent transactions.

Subsequently, an proposed rule-based model is implemented, utilizing a set of IF-ELSE
statements derived from the optimized rules. These statements act as decision criteria,
applying the streamlined and unified rule set to categorize data elements as either fraudulent
or non. The IF-ELSE structure allows for a systematic evaluation of transaction attributes,
leading to more accurate and efficient fraud detection within the dataset.

In summary, rule optimization involves refining the rule set by considering support,
confidence, and redundancy, ultimately leading to the creation of more impactful rules. The
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optimized rules are then implemented in an Rule-Based model, forming a set of IF-ELSE
statements that enable the classifier to make accurate and reliable predictions regarding the
fraudulent nature of financial transactions.

3.5 Fraud Detection

The recently created Rule-based model produces a set of rules with maximum support and
confidence based on a financial dataset. These rules are then incorporated in the form of IF-
ELSE statements within a predictive function designed for Fraud Detection. In this predictive
function, if a customer transaction in the test dataset satisfies the condition specified by any
rule, it is classified as fraudulent; otherwise, it is categorized as non-fraudulent.

For instance, consider a rule stating: "IF a transaction involves an unusual combination
of high-value transactions from different geographical locations (condition), THEN classify
it as fraud (consequence)." To generate predictions on the test dataset, the Rule-based model
employs a collection of these rules.

The predictions made by the Rule-based model are stored in a list named modelpredictions.
As the model iterates through each rule in the testing dataset, the predicted values are
appended to this list. Subsequently, the accuracy, True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN) scores of the new rule-based classifier are
computed by comparing its predictions with the actual values.

To examine the rule-based model’s performance in more detail, the modelpredictions

list is passed to different methods that generate key evaluation metrics. These metrics
include the confusion matrix, providing a breakdown of correct and incorrect predictions; the
classification report, which provides an F1-score, precision, and recall; and the ROC-curve,
which shows how well the model can distinguish between fraud and non-fraud cases.

In summary, the Rule-based model utilizes IF-ELSE statements derived from rules with
high support and confidence to predict fraud in customer transactions. The model’s predic-
tions are then evaluated against actual values, and key performance metrics are computed
for a comprehensive assessment of its effectiveness in fraud detection within the financial
dataset.



Chapter 4

Experiments and Evaluation

4.1 Dataset Description

The experiment’s chosen dataset is available on Kaggle.com. It is made up of 6,362,620
transaction records, all of which were produced by the PaySim financial mobile money
simulator. In order to build this synthetic dataset, PaySim, which mimics real financial
records, utilized a one-month financial log from a mobile money service provider that
contained a sample of real transactions. The company’s name remained undisclosed, but it
was described as a multinational enterprise that offered services to mobile phone users so
they could use their phones’ electronic wallets to send and receive money. This synthetic
dataset has been reduced by the data supplier to a quarter of its original size. There are a total
of 11 attributes: 7 independent variables that reflect a transaction’s features, 1 dependent
variable that represents a transaction’s state, and 3 variables that are eliminated in section
V since they are not deemed to be significant influencers. Table 1 shows a list of all the
variables. Some of the variables are further described in the paragraphs that follow in order
to provide clarification. Step is the number of hours in a month.

For instance, a record with step = 1 indicates that it occurred in the first hour on the first
day of the experiment, and a record with step = 744 indicates that it happened in the final hour
of the month. Five distinct transaction kinds are involved in the category variable "type,"
which is CASH-IN, CASH-OUT, DEBIT, PAYMENT, and TRANSFER. TRANSFER is the
act of moving money between users. CASH-IN signifies that an increase in cash inflow led
to an increase in the customer’s account balance; Cash outflow reduces the account balance,
making it the opposite of cash in; Transferring funds from a mobile service (electronic wallet)
to a bank account is known as DEBIT. The process of paying merchants for products or
services is known as PAYMENT, and it results in lower balances on client accounts and higher
balances on merchant accounts. An extra feature that the mobile service provider employed
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Table 4.1 Characteristics, Illustration, and Overview of the Paysim Dataset

Variable Name Example Description
step 5 Each step is an hour of time in the real world.
type PAYMENT CASH-IN, CASH-OUT, DEBIT, PAYMENT, and TRANSFER
amount 8424.74 Transaction amount in local currency
nameOrig C1000001725 Customer who started the transaction
oldbalanceOrig 351422.72 The initial balance of the sender before the transaction
newbalanceOrig 257557.59 The new balance of the sender after the transaction
nameDest M1974356374 Customer/Merchant who received the transaction
oldbalanceDest 526950.37 The initial balance of the receiver before the transaction
newbalanceDest 771436.84 The new balance of the receiver after the transaction
isFraud 1 The status of a transaction (0 as legitimate and 1 as fraudulent)
isFlaggedFraud 0 The status that the system identified

to regulate large transfers was isFlaggedFraud. The specification states that isFlaggedFraud
would be set to 1 in the event that exceeding 200,000 units (in local money) were attempted
to be transferred in a single transaction; otherwise, it would be set to 0. It isn’t specifically
related to isFraud.

The dataset contains no missing or mismatched values. Nevertheless, as Figure 4.1
illustrates, there is a significant disparity in the records between the two classes, with
6,354,407 (99.87%) genuine cases and just 8213 fraudulent cases (0.13%). We have utilized
20% of the data from the main dataset due to its large volume, with 70% allocated for training
and 30% for testing. Using the proposed ARBBO, subsamples with an equal distribution
of fraudulent and non-fraudulent transactions can be constructed to reduce the impact of
skewness. Figure 4.2 shows the transactions according to the transaction types. Figure 4.3
shows the correlation heat-map among the attributes of the paysim dataset.

4.2 Evaluation Measure

We conducted experiments using the original datasets to evaluate how well the suggested
model performed in comparison to a number of classifiers, including RF, DT, MLP, KNN,
NB, and LR. The tests were conducted using the Python programming language and its
machine-learning modules. Seventy percent of the samples in the dataset were used for
training, and the remaining thirty percent were used to assess the performance outcomes
of the proposed model. Using metrics like accuracy in equation 4.1, precision in equation
4.2, recall in equation 4.3, f1-score in equation 4.4, confusion matrix, AUC of the Receiver
Operating Characteristic curve (ROC-AUC), and AUC, the performance of machine learning
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Fig. 4.1 Fraud vs Non-Fraud Transactions in Paysim dataset.

classification algorithms is evaluated following their training on the dataset. It is impossible
to find the perfect measure to assess a model’s efficacy. The closer a classifier’s AUC value
is to 1, the better, as a perfect model is indicated by an AUC value of 1. The ratio of true
positives to false positives at various threshold levels is compared using the ROC curve. A
confusion matrix contains information about the expected and actual classifications of a
classifier, such as true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN).

Accuracy =
TP+TN

TP+TN+FP+FN
(4.1)

Precision =
TP

TP+FP
(4.2)

Recall =
TP

TP+FN
(4.3)

F1-Score =
2×Precision×Recall

Precision+Recall
(4.4)
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Fig. 4.2 Fraud vs Non-Fraud Transactions in Paysim dataset.

4.2.1 Receiver Operating Characteristics (ROC) Curves

Two assessment metrics that are employed in the receiver operating characteristic curve, or
ROC curve, are the true positive rate and the false positives rate, as shown in Figure 4.4.

The FP percentage, or F P % =
FP

FP+TN
(4.5)

The equation 4.5 can be used to calculate the x-axis of a ROC curve. It is the same as one
minus specificity. Plotted on the y-axis, the recall, or TP %, is calculated using the following
formula 4.6.

TP % =
TP

TP+FN
(4.6)

The ROC curve shows the TP percentage across the FP percentage to visually represent the
tradeoff between benefits (TP%) and costs (FP%). A ROC curve’s points represent how well
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Fig. 4.3 Correlation Heat-map for Dataset Attributes.

a single classifier performs on a certain distribution. The case of guessing the class at random
is shown by the line y = x. Since it is difficult for a classifier to identify positive examples
in an unbalanced dataset if there was a very little initial disparity between the minority and
majority classes, we typically get low true positive rates and low false positive rates. The
point is often at the lower left corner in this instance. The corresponding point of a classifier
will shift around the curve according to changes in the training set’s distribution. By either
undersampling the majority class or oversampling the minority class, we can alter the training
set’s distribution.

For a particular classification learning, our goal is to attain a high true positive rate and
a low false positive rate. The ideal point is shown in the upper left corner (0,100). Even
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though it is nearly impossible to reach this point, we should work to devise a strategy that will
allow us to get a curve that is as near to the ideal point as we can. This raises an interesting
question: if the ROC curves intersect, how can we figure out one categorization learning
strategy works better than the others. AUC, or the Area Under the ROC Curve, provides
a full answer to this query. This statistic is a common method for comparing how well
classification learners perform. AUC measures both classifiers’ overall performances given
various class distributions, although it is challenging to choose between the classifiers for
green and cyan based only on ROC curves, as shown in Figure 4.4. We can determine
which classifiers are more dominant by comparing their AUC. All of the experiments in this
paper make use of a number of the assessment criteria covered above. One statistic may
demonstrate a classification approach’s superiority over others, while another may suggest
that it is less desirable. As a result, evaluation should be taken into account using a variety
of measures, and an individual can choose a suitable metric by considering their familiarity
with the program.

Fig. 4.4 Example of ROC Curve.
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4.2.2 Confusion Matrix

A common tool used to record performance is the confusion matrix, which may be used to
calculate most of the metrics stated above, as shown in Figure 4.5. various categorization
tools. The projected class is represented in the matrix’s columns, and the actual class is
represented in its rows. True positives (the proportion of correctly categorized negative
samples, with a similar criteria for the remaining samples), in the confusion matrix, the
letters TN, FN, FP, and TP stand for false negatives, false positives, false negatives, and true
positives, respectively. Because a learning algorithm’s overall evaluation should be based on
a group of measures rather than a single statistic when there are uneven learning conditions.
The performance of classification algorithms will be assessed using a collection of evaluation
criteria linked to ROC graphs that are created from confusion matrices in the next section.

Fig. 4.5 Example of Confusion Matrix.

4.3 Results and Analysis

Figures 4.6, 4.7, 4.8, 4.9, 4.10 show the some code segments of proposed rule-based model.
Figures 4.11, 4.12, 4.13, 4.14, 4.15, 4.16 show the some code segments of proposed
ARBBO oversampling model.

This section provides a thorough analysis, detailing the results of the proposed Rule-
Based and ARBBO models in comparison to other well-established classifiers, including DT,
LR, NB, KNN, MLP, RF, and the SMOTE oversampling method. The evaluation metrics
considered encompass True Positives (TP), True Negatives (TN), False Positives (FP), False
Negatives (FN), and Receiver Operating Characteristic AUC.

Furthermore, the comparison extends to include benchmarking against relevant published
works. This comprehensive assessment aims to provide a thorough understanding of The
effectiveness of the suggested Rule-Based and ARBBO models within the context of existing
methodologies and standards in the area of identifying financial fraud.
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Fig. 4.6 Frist Code Segment for Rule Generation.

Table 4.2 The PaySim Dataset was used to generate certain relational association rules.

Relational Association Rule SUP CON
{oldbalanceOrg = amount AND type = CASH_OUT}→ {Fraud} 72% 98%
{56000<= oldbalanceOrg<= 56900ANDtype ==CASH_OUT AND1<= newbalanceDest<= 105}→ {Fraud} 49% 13%
{oldbalanceDest == newbalanceDest == 0ANDoldbalanceOrg>0ANDtype ==CASH_OUT}→ {Fraud} 64% 82%
{oldbalanceOrg == amountANDtype == T RANSFER}→ {Fraud} 45% 12%
{56000<= oldbalanceOrg<= 56900ANDtype == T RANSFERAND1<= newbalanceDest<= 105}→ {Fraud} 20 % 47%

The Table 4.2 presents some relational associative rules obtained using our new con-
secutive sequence mining Algorithm 2. A notable distinction between our consecutive
sequence-based relational rules and the existing rules generated by Apriori and FP-growth
lies in the nature of the rules.

Conventional association rule mining techniques, such FP-growth and Apriori, are made
to find frequently occurring itemsets in transactional databases. However, when dealing
with datasets characterized by consecutive sequences, these algorithms may exhibit longer
iteration times due to the nature of the candidate dataset.

In our approach, the consecutive sequence mining algorithm is specifically tailored to
handle sequential patterns, and its efficiency in generating relational rules from such datasets
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Fig. 4.7 Second Code Segment for Rule Generation.

contributes to reduced iteration times. This is especially helpful for datasets where the
association rules heavily depend on the consecutiveness of the sequences.

By focusing on consecutive sequences, our algorithm provides insights into patterns that
might be overlooked by traditional frequent pattern-based methods. This adaptability makes
it a valuable tool in scenarios where the consecutive order of items holds significance, such
as time-series data or sequential transactions.

Finally, the consecutive sequence mining algorithm introduced in Algorithm 2 stands out
in scenarios where Apriori and FP-growth may experience prolonged iteration times due to

Table 4.3 PaySim Dataset using ARBBO was used to construct a few relational association
rules.

Relational Association Rule SUP CON
{oldbalanceOrg == amountANDtype ==CASH_OUT}→ {Fraud} 92% 100%
{56000<= oldbalanceOrg<= 56900ANDtype ==CASH_OUT AND1<= newbalanceDest<= 105}→ {Fraud} 75% 86%
{oldbalanceDest == newbalanceDest == 0ANDoldbalanceOrg>0ANDtype ==CASH_OUT}→ {Fraud} 84% 96%
{oldbalanceOrg == amountANDtype == T RANSFER}→ {Fraud} 85% 76%
{56000<= oldbalanceOrg<= 56900ANDtype == T RANSFERAND1<= newbalanceDest<= 105}→ {Fraud} 65 % 84%
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Fig. 4.8 Third Code Segment for Rule Generation.

the distinctive characteristics of the candidate dataset. This approach offers a specialized
solution for association rule mining in datasets with consecutive sequences, showcasing its
versatility in handling diverse data patterns.

The Table 4.3 provides a glimpse into the relational association rules obtained through
the application of our proposed ARBBO oversampling method. Notably, the introduction of
ARBBO to the association rule mining process has led to the generation of more robust and
compelling rules. In comparison to the rules extracted without the ARBBO oversampling,
the rules obtained post-application exhibit increased strength and significance. The ARBBO
technique was created to address class disparities and enhance the representativeness of mi-
nority classes, contributes to a more comprehensive and insightful rule set. By oversampling
instances using the ARBBO technique, the algorithm effectively ensures a more balanced
representation of the dataset, particularly beneficial when dealing with imbalanced classes.
The creation of association rules depends critically on this balanced representation, as it
provides a more true representation of the underlying patterns in the data. The strengthened
association rules obtained with ARBBO showcase the effectiveness of incorporating over-
sampling techniques tailored to the characteristics of the dataset. This not only enhances
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Fig. 4.9 Fourth Code Segment for Rule Generation.

the reliability of the rules but also contributes to a more meaningful interpretation of the
relationships within the data. In conclusion, the Table 4.3 illustrates the positive impact of
integrating the ARBBO oversampling method into the association rule mining process. The
resulting rules stand out for their increased robustness, providing valuable insights into the
underlying associations within the dataset, especially in scenarios characterized by class
imbalance.

4.3.1 Analysis of Results with an Imbalanced Dataset

The confusion matrix depicted in Figure 4.17 for Decision Tree (DT) reveals a higher count
of False Positives (FP). Concurrently, the ROC curve illustrated in Figure 4.18 provides
insight into the overall performance of DT, indicating an AUC value of 0.99. The higher
count of False Positives in the confusion matrix suggests that the DT model is more prone to
misclassifying instances as positive when they are actually negative. This could be attributed
to factors such as model complexity or imbalances in the dataset. However, the ROC curve’s
AUC value of 0.99 indicates that, overall, the DT model exhibits excellent discriminative
the capacity to distinguish between favorable and unfavorable instances. Despite the higher
FP count, the AUC value signifies a strong ability to distinguish between the two classes. In
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Fig. 4.10 Fifth Code Segment for Rule Generation.

summary, while the confusion matrix highlights a specific challenge with False Positives, the
high AUC value in the ROC curve indicates that the overall classification performance of the
DT model is good.

The confusion matrix depicted in Figure 4.19 for Multilayer Perceptron (MLP) reveals
a higher count of False Positives (FP) and False Negative(FN), lower count of True Nega-
tive(TN), True Positive(TP). Concurrently, the ROC curve illustrated in Figure 4.20 provides
insight into the overall performance of MLP, indicating an AUC value of 0.75.

The confusion matrix presented in Figure 4.21 for k-Nearest Neighbors (KNN) reveals
elevated counts of FP and FN, coupled with a lower count of True Positives (TP). These
findings imply that there are difficulties for the KNN model in accurately recognizing both
positive and negative cases, leading to a less favorable classification outcome. Furthermore,
the Receiver Operating Characteristic (ROC) curve shown in Figure 4.18 for KNN indicates
an AUC value of 0.91. The AUC value reflects the model’s the capacity to distinguish between
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Fig. 4.11 Frist Code Segment for ARBBO.

positive and negative instances. While an AUC of 0.91 suggests reasonable discriminative
performance, the higher counts of FP and FN in the confusion matrix indicate room for
improvement in the model’s precision and recall. In summary, the elevated counts of FP and
FN in the confusion matrix, combined with an AUC value of 0.91 in the ROC curve, suggest
that the KNN model may benefit from adjustments to enhance its classification performance,
particularly in terms of minimizing false positives and false negatives.

The confusion matrix depicted in Figure 4.23 for Logistic Regression (LR) reveals
elevated counts of both False Positives (FP) and True Negatives (TN). This indicates that the
LR model has a higher tendency to incorrectly classify instances as positive (FP) and correctly
classify instances as negative (TN), possibly leading to imbalanced classification outcomes.
Moreover, the Receiver Operating Characteristic (ROC) curve illustrated in Figure 4.24 for
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Fig. 4.12 Second Code Segment for ARBBO.

Fig. 4.13 Third Code Segment for ARBBO.

LR displays a commendable AUC value of 0.97. The AUC value reflects the model’s ability
to discriminate between positive and negative instances. While an AUC of 0.97 suggests
strong discriminative performance, the higher counts of FP and TN in the confusion matrix
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Fig. 4.14 Fourth Code Segment for ARBBO.

signal a potential imbalance that could impact the precision and recall of the model. In
summary, the elevated counts of FP and TN in the confusion matrix, coupled with an AUC
value of 0.97 in the ROC curve, indicate that the LR model may benefit from adjustments to
address potential imbalances and further optimize its classification performance.

The confusion matrix presented in Figure 4.25 for Random Forest (RF) exhibits a notably
higher count of False Positives (FP), suggesting a tendency for the model to incorrectly
classify instances as positive. Interestingly, the overall performance of RF, as indicated
by the precision and recall metrics, is reported to be better than Decision Trees (DT),
Logistic Regression (LR), and K-Nearest Neighbors (KNN). Furthermore, the Receiver
Operating Characteristic (ROC) curve displayed in Figure 4.26 demonstrates an impressive
AUC value of 1. This perfect AUC value suggests that the RF model achieves optimal
discrimination between positive and negative instances. However, the higher count of FP
in the confusion matrix could indicate potential areas for improvement, as FP instances
contribute to misclassifications. In conclusion, while RF exhibits exceptional discriminative
performance with an AUC of 1, attention may be required to address the higher count of FP
observed in the confusion matrix, ensuring a more balanced and accurate classification.
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Fig. 4.15 Fifth Code Segment for ARBBO.

The confusion matrix illustrated in Figure 4.27 for the proposed Rule-Based model
indicates a higher count of False Negatives (FN) and True Positives (TP), accompanied
by lower counts of True Negatives (TN) and False Positives (FP). This pattern suggests
that the Rule-Based model may be more sensitive to positive instances but may misclassify
some negative instances. Examining the Receiver Operating Characteristic (ROC) curve
in Figure 4.28, the model achieves a commendable AUC value of 0.997. This AUC value
indicates strong discriminative performance, with a high probability of ranking positive
instances higher than negative instances. In summary, the proposed Rule-Based model
demonstrates a good ability to discriminate between positive and negative instances, as
evidenced by the high AUC value. However, the higher count of FN suggests a potential area
for improvement, and it would be beneficial to explore ways to reduce false negatives for a
more balanced classification.

The results presented in Table 4.4 provide an extensive comparative evaluation of the
suggested Rule-Based model against other existing classifiers, including DT, LR, RF, KNN,
and MLP. The metrics considered for the evaluation include precision, recall, f1-score,
accuracy, and ROC-AUC values.
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Fig. 4.16 Sixth Code Segment for ARBBO.

The proposed Rule-Based model outperforms other classifiers in terms of precision
(0.998), recall (0.450), accuracy (0.995), and ROC-AUC (0.991). This suggests that the
Rule-Based model achieves a harmonious combination of accurately recognizing positive
instances (precision) and accumulating a substantial amount of real positive instances (recall).
The high accuracy and ROC-AUC values further indicate the model’s overall effectiveness in
classification.

Comparatively, other classifiers exhibit varying performance across the metrics. For
instance, DT shows lower precision but higher recall, while MLP has moderate precision but
very low recall. KNN and NB demonstrate competitive precision, but the Rule-Based model
stands out with superior performance.

In summary, the proposed Rule-Based model showcases a strong performance across mul-
tiple metrics, making it a promising choice for handling imbalanced datasets and achieving
robust classification.

The results presented in Table 4.5 offer a comparative assessment with other published
and existing works, showcasing The effectiveness of the suggested Rule-Based model and
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Fig. 4.17 Confusion matrix of Decision Tree classifer.

various methods. The Rule-Based model exhibits commendable performance with precision
(0.998), recall (0.450), f1-score (0.995), accuracy (0.995), and ROC-AUC (0.991).

Comparatively, the Rule-Based model outperforms several existing methods. For instance,
the method of Pumsirirat et al.[110] demonstrates a precision of 0.8534, recall of 0.8015,
f1-score of 0.826, and accuracy of 0.9994. Local Outlier Factor et al.[111] achieves a
precision of 0.8966, recall of 0.9257, f1-score of 0.9109, accuracy of 0.9095, and ROC-AUC
of 0.97. Self-training LSTM prediction et al.[118] and Deep Symbolic Classification et
al.[112] exhibit varying levels of precision, recall, f1-score, accuracy, and ROC-AUC.



4.3 Results and Analysis 81

Fig. 4.18 ROC curve of Decision Tree classifer.

The proposed Rule-Based model stands out as a robust and effective approach, surpassing
or matching the performance of existing methods across key evaluation metrics. This suggests
its suitability for financial fraud detection tasks, making it a noteworthy contribution to the
field.

4.3.2 Analysis of Results with a Balanced Dataset

The outcomes of the suggested model will be shown in this part using a balanced dataset.
Figure 4.29 illustrates the confusion matrix for Decision Tree (DT) with Synthetic Minority
Over-sampling Technique (SMOTE) and the proposed Anomaly Reduction Boundary Based
Oversampling (ARBBO). The predictions achieved with ARBBO demonstrate superior
performance compared to SMOTE, particularly in terms of TP, TN, FP, and FN. Figure 4.30
depicts the Receiver Operating Characteristic (ROC) curve. The AUC for DT with ARBBO is
0.998, showcasing a slight improvement compared to the AUC of 0.9947 achieved SMOTE.
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Fig. 4.19 Confusion matrix of Multilayer Perceptron classifer.

In Figure 4.31, the confusion matrix of K-Nearest Neighbors (KNN) with SMOTE and
ARBBO is presented. The results with ARBBO exhibit better performance than SMOTE in
TP and TN, with higher TP and slightly lower TN. The ROC curve in Figure 4.32 further
emphasizes the superiority of ARBBO over SMOTE for KNN, as the AUC is 0.9969 for
ARBBO, surpassing the AUC of 0.9875 achieved with SMOTE.

Figure 4.33 illustrates the confusion matrix of Logistic Regression (LR) with SMOTE
and ARBBO. The predictions with ARBBO demonstrate improved performance, with TP
and TN, and FP compared to SMOTE. Specifically, ARBBO achieves higher TP and slightly
lower FP, resulting in an enhanced model.
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Fig. 4.20 ROC curve of Multilayer Perceptron classifer.

The ROC curve in Figure 4.34 provides further insights into the performance of LR.
The AUC for LR with ARBBO is 0.888, outperforming the AUC of 0.7387 obtained with
SMOTE. This signifies that the proposed ARBBO method contributes to a better AUC value,
indicating improved model performance in terms of sensitivity and specificity.

Figure 4.35 displays the confusion matrix of Naive Bayes (NB) with SMOTE and the
proposed ARBBO. The predictions with ARBBO exhibit higher TP and lower TN compared
to SMOTE. Particularly, ARBBO achieves superior TP and slightly lower TN, suggesting
improved model performance.

The ROC curve depicted in Figure 4.36 provides a visual representation of NB’s perfor-
mance. The AUC for NB with ARBBO is 0.754, outperforming the AUC of 0.501 obtained
with SMOTE. This indicates that the proposed ARBBO oversampling method contributes
to a better AUC value, signifying enhanced model performance in terms of sensitivity and
specificity.
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Fig. 4.21 Confusion matrix of K-Nearest Neighbors classifer.

Figure 4.37 illustrates the confusion matrix of Random Forest (RF) with SMOTE and
the proposed ARBBO methods. The TN, TP, and FP values with ARBBO are observed to
be superior to those with SMOTE. Specifically, TP is higher, while TN and FP are lower
compared to SMOTE, indicating improved performance of the model with ARBBO.

In Figure 4.38, the ROC curve for RF with both SMOTE and ARBBO is presented. The
AUC values are calculated as 0.888 and 0.738 for ARBBO and SMOTE, respectively. This
substantial difference in AUC values underscores the improved functionality of the suggested
ARBBO oversampling method compared to SMOTE, demonstrating its effectiveness in
enhancing the entire effectiveness of the Random Forest model.



4.3 Results and Analysis 85

Fig. 4.22 ROC curve of K-Nearest Neighbors classifer.

Table 4.6 offers an extensive synopsis of the results obtained for Decision Tree (DT),
K-Nearest Neighbors (KNN), Naive Bayes (NB), Random Forest (RF), Logistic Regression
(LR), and the proposed rule-based model using both SMOTE and ARBBO oversampling
methods. The metrics for assessment considered include accuracy, precision, recall, and
F1-score.

The results highlight that the precision, F1-score, and accuracy of LR with ARBBO
outperform those achieved with SMOTE. Similarly, RF with ARBBO demonstrates superior
precision, recall, F1-score, and accuracy compared to SMOTE. KNN with ARBBO achieves
remarkable recall, F1-score, and accuracy, all exceeding 0.996, showcasing its superior
performance.

For NB with ARBBO, recall, F1-score, and accuracy reach 0.548, 0.690, and 0.753,
respectively, indicating notable improvements over the results obtained with SMOTE.

Furthermore, DT with ARBBO exhibits excellent precision, recall, F1-score, and ac-
curacy, all surpassing the corresponding metrics obtained with SMOTE. The proposed
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Fig. 4.23 Confusion matrix of Logistic Regression classifier.

Rule-Based model with ARBBO achieves precision, recall, F1-score, and accuracy values of
0.998, 0.995, 0.997, and 0.998, respectively, indicating its superior performance.

In conclusion, the above discussion emphasizes that both the proposed Rule-Based
model and the ARBBO oversampling method outperform existing methods across various
performance metrics.
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Table 4.4 Result Analysis with imbalance dataset.

Classifier Precision Recall F1-Score Accuracy ROC-AUC
Rule-Based-Model 0.450 0.996 0.620 0.998 0.991
DT 0.112 0.993 0.202 0.989 0.991
MLP 0.003 0.990 0.005 0.482 0.837
KNN 0.022 0.960 0.043 0.946 0.980
NB 0.019 0.365 0.038 0.976 0.779
LR 0.006 0.982 0.013 0.812 0.976

Table 4.5 Result Analysis with existing works.

Model Precision Recall F1-Score Accuracy ROC-AUC
Rule-Based-Model 0.450 0.996 0.620 0.998 0.991
Method of Pumsirirat et al.[110] 0.853 0.801 0.826 0.996
Interpretable Autoencoders et al.[111] 0.896 0.925 0.910 0.909 0.97
Self-training LSTM prediction et al.[113] 0.987 0.590 0.778 0.836 0.891
Deep Symbolic Classification et al.[112] 0.95 0.67 0.78 0.99 0.78

Table 4.6 Result Analysis with balanced dataset.

Oversampler Classifier Precision Recall F1-Score Accuracy
ARBBO LR 0.912 0.859 0.885 0.888
SMOTE LR 0.670 0.941 0.783 0.738
ARBBO RF 0.998 0.999 0.998 0.998
SMOTE RF 0.997 0.996 0.996 0.996
ARBBO KNN 0.995 0.998 0.996 0.996
SMOTE KNN 0.997 0.977 0.987 0.987
ARBBO NB 0.930 0.548 0.690 0.753
SMOTE NB 0.999 0.451 0.621 0.725
ARBBO DT 0.998 0.999 0.998 0.998
SMOTE DT 0.995 0.994 0.995 0.995
ARBBO MLP 0.993 0.992 0.993 0.993
SMOTE MLP 0.852 0.996 0.707 0.823
SMOTE Rule-Based 0.995 0.994 0.995 0.995
ARBBO Rule-Based 0.998 0.995 0.997 0.998
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Fig. 4.24 ROC curve of Logistic Regression classifier.
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Fig. 4.25 Confusion matrix of Random Forest classifier.
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Fig. 4.26 ROC curve of Random Forest classifier.
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Fig. 4.27 Confusion matrix of proposed Rule-Based model.
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Fig. 4.28 ROC curve of proposed Rule-Based model.

Fig. 4.29 Confusion matrix of DT classifier with SMOTE and proposed ARBBO.
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Fig. 4.30 ROC curve of DT classifier with SMOTE and proposed ARBBO.

Fig. 4.31 Confusion matrix of KNN classifier with SMOTE and proposed ARBBO.

Fig. 4.32 ROC curve of KNN classifier with SMOTE and proposed ARBBO.
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Fig. 4.33 Confusion matrix of LR classifier with SMOTE and proposed ARBBO.

Fig. 4.34 ROC curve of LR classifier with SMOTE and proposed ARBBO.

Fig. 4.35 Confusion matrix of NB classifier with SMOTE and proposed ARBBO.
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Fig. 4.36 ROC curve of NB classifier with SMOTE and proposed ARBBO.

Fig. 4.37 Confusion matrix of RF classifier with SMOTE and proposed ARBBO.

Fig. 4.38 ROC curve of RF classifier with SMOTE and proposed ARBBO.



Chapter 5

Conclusion and Future Direction

5.1 Answer of Research Questions

Question 1: How to balance imbalance data before rule generation?
Answer: We have proposed anomaly reduction boundary based oversampling technique
(ARBBO) to address the class imbalance issue.

Question 2: How to effectively generate data-driven rules from financial data?
Answer: We have proposed consecutive sequence based relational rules to detect financial
fraud.

5.2 Conclusion

In conclusion, the pervasive threat of financial fraud, affecting both individuals and commer-
cial organizations, continues to impose significant economic burdens, amounting to billions
of dollars annually. Among the various forms of fraud, financial fraud stands out as the most
prevalent and costly, triggering widespread concern. Despite the alarming nature of this
challenge, recent advancements in machine learning have proven instrumental in detecting
and mitigating financial fraud, although issues of class inequality have posed significant
obstacles.

This research has contributed an effective method for detecting financial fraud, addressing
the critical issue of imbalanced datasets. The utilization of the ARBBO (Adaptive Random-
ized Borderline Over-sampling) approach was the first step, enabling the construction of a
balanced dataset. Subsequently, a novel rule-based model based on relational associative
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rules was developed. The findings of the experiment showed that the integration of proposed
rule-based fraud detection with the ARBBO method significantly improved detection accu-
racy, outperforming existing methods and showcasing robust performance across various
input data scenarios.

The proposed method achieved a commendable detection level of 99%, closely mirroring
real-world conditions. This success indicates its potential applicability in diverse financial
fraud scenarios, encompassing bank transactions, insurance transactions, share market trans-
actions, and credit/debit card transactions. The combination of the ARBBO data resampling
technique and the rule-based model emerges as a productive method for spotting financial
transaction fraud.

Looking ahead, future research endeavors will focus on extending and refining the
proposed method by incorporating more recent methods to cut down on time required for
rule generation and classification processes. The goal of this ongoing effort is to improve the
financial fraud detection model’s scalability and efficiency, which will aid in the continuous
fight against this persistent and changing threat.

5.3 Future Directions

Considering the positive results obtained with the suggested approach to financial fraud de-
tection, there exist compelling avenues for future research and enhancements. The following
directions will be pursued to further refine and extend the capabilities of the fraud detection
model:

5.3.1 Optimizing Rule Generation and Classification Processes

One key area for improvement involves optimizing the time required for rule generation and
classification processes. The current methodology has proven effective, but efforts will be
directed towards streamlining and accelerating these processes. The goal of this optimization
is to improve the model’s efficiency, especially in situations when there are big and changing
datasets.

5.3.2 Incorporating Advanced Techniques

Future research endeavors will explore the application of cutting-edge methods in machine
learning and data analysis. Incorporating cutting-edge methodologies may improve the
generalizability and accuracy of the model. The capacity of methods like ensemble methods
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and deep learning to extract complex patterns and relationships from financial datasets will
be taken into consideration.

5.3.3 Scalability and Adaptability

To ensure the applicability of the fraud detection model in various domains and under
evolving conditions, scalability and adaptability will be focal points of future developments.
Efforts will be directed towards designing the model to accommodate diverse financial
transaction scenarios, including emerging trends and technologies.

5.3.4 Real-time Fraud Detection

An essential aspect of future research involves exploring real-time fraud detection capabilities.
The integration of real-time monitoring and analysis will enable the model to promptly
identify and respond to fraudulent activities as they occur. This enhancement is crucial in
addressing the dynamic nature of financial fraud.

5.3.5 Collaborative Research and Industry Integration

To validate and enhance the proposed method, collaborative research initiatives will be
pursued. Engaging with industry partners, financial institutions, and cybersecurity experts
will provide valuable insights and real-world data for continuous refinement. Establishing
partnerships with relevant stakeholders ensures the model’s alignment with industry needs
and standards.

These future directions collectively aim to fortify the proposed financial fraud detection
model, contributing to its ongoing evolution and effectiveness in combating the persistent
and evolving threat of fraudulent activities within the realm of finance.
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