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Abstract

The thesis investigates the nonlinear propagation of ion-acoustic solitons (IASs) within a

magnetized rotating relativistic plasma environment. This environment comprises relativis-

tic ion fluids and electrons following (α,q)-distributions, alongside positrons. Employing

the reductive perturbation technique, the study derives the Korteweg-de Vries equation

(KdVE) with quadratic nonlinearity. However, when the coefficient associated with this

nonlinearity approaches zero, the method encounters limitations. To address this chal-

lenge, adjustments are made to the stretching coordinates, leading to a KdVE with cubic

nonlinearity, suitable for describing soliton propagation near critical values in these plasma

conditions. Furthermore, a KdVE with quartic nonlinearity is derived, relevant for super-

critical values of specific plasma parameters in relativistic plasmas.

Prior research has predominantly explored relativistic effects on soliton propagation through

expansions of Lorentz relativistic factors up to three terms. In contrast, this thesis extends

the consideration to more than ten terms to minimize truncation errors in modeling nonlin-

ear soliton propagation within these plasmas. The investigation reveals that the relativis-

tic streaming factor significantly alters the wave potential functions. Notably, the derived

KdVE equations indicate that quadratic nonlinearity supports both compressive and rar-

efactive soliton propagations, while cubic and quartic nonlinearities exclusively support

compressive solitons in these plasma settings.

The study further examines how plasma parameters, with the inclusion of the relativis-

tic Lorentz factor up to eleven terms, influence the amplitude and width of IASs for the

first time. It finds that higher-order terms of the relativistic Lorentz factor and obliqueness

notably modify the propagation characteristics of IASs within this specific plasma environ-

ment.
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বিমূর্ত 

 

 

এই থিথিিটি একটি চ ৌম্বকীয় ঘূর্ ণায়মান আপেথিক প্লাজমা েথিপেপেি মপযে আয়ন অ্োপকাথিক 

িথিিন-এি (IAS) অ্রিথিক প্রিািপর্ি অ্র্ুিন্ধান কপি। এই েথিপেেটি আপেথিক আয়পনি 

োোোথে (𝛼, 𝑞) −েন্টনযুক্ত ইপিকট্রন ও েজজট্রন দ্বািা গটিত েপি থেপে না কিা হয়। এই অ্যেয়পন, 

থিডাথিভ োিণািপেেন েদ্ধথত েেেহাি কপি থদ্বমাজিক অ্রিথিকতাি কপিণওপয়গ-থড থিি িমীকির্টি 

প্রথতোদন কিা হয়। থকন্তু, যিন এই অ্রিথিকতাি িাপি যকু্ত িহগটি েূপনেি কাছাকাথছ চেৌৌঁছায়, 

তিন েদ্ধথতটি িীমােদ্ধতাি িম্মুিীন হয়। এই িীমােদ্ধতা চমাকাপেিা কিাি জনে, প্রিাির্ স্থানাপেি 

িামঞ্জিে কিা হয়, ফিস্বরূে জিমাজিক অ্রিথিকতাি একটি KdV িমীকির্ োওয়া যায়, যা এই 

প্লাজমা অ্েস্থাি িংকি মানগুথিি কাছাকাথছ িথিিন প্রিািপর্ি ের্ ণনা চদওয়াি জনে উেযুক্ত। 

তদ্বেতীত, আপেথিক প্লাজমাপত থনথদণষ্ট প্লাজমা েিাথমথতগুথিি অ্থত-িংকিেূর্ ণ মানগুথিি 

প্রািথিক েোিো প্রদাপনি উপেপেে  ত ু্ম ণাজিক অ্রিথিকতা িহ একটি KdV িমীকির্ প্রথতোদন কিা 

হয়। 

 

েূে ণেতী গপেষর্ািমপূহ মূিত িপিঞ্জ আপেথিক ফোিি িম্প্রিািপর্ি থতনটি েদ েয ণন্ত থেপে না 

কপি িথিিন প্রিািপর্ি উেি আপেথিকতাি প্রভােগুথি অ্পেষর্ কিা হপয়পছ। থেেিীপত, এই 

থিথিপি, উেপিাক্ত প্লাজমাি মপযে অ্রিথিক িথিিন প্রিািপর্ি মপডথিংপয় ত্রুটিগুথি হ্রাি কিপত 

দেটিিও চেথে েপদি থেপে না কিা হয়। এই তদন্তটি প্রকাে কপি চয আপেথিক থিথমং ফোিি 

তিপিি িম্ভােে জিয়াকিােগুথিি উপেিপযাগে েথিেতণন কপি। িির্ীয়ভাপে, প্রথতোথদত KdV 

িমীকির্গুথি থনপদণে কপি চয, থদ্বমাজিক অ্রিথিকতা কপম্প্রথিভ এেং চিয়ািফোথিভ উভয় িথিিন 

প্রিাির্পকই িমি ণন কপি, চযিাপন জিমাজিক এেং  ত ম ণাজিক অ্রিথিকতা এই প্লাজমা েেেস্থায় 

শুযুমাি কপম্প্রথিভ িথিিনগুথিপকই িমি ণন কপি। 

 

গপেষর্াটি প্রিমোপিি জনে আিও েিীিা কপি চদিায় চয, আপেথিক িপিঞ্জ ফোিপিি এগাপিা ো 

তািও অ্থযক েপদি অ্ন্তভ ণজক্তি িাপি প্লাজমা েিাথমথতগুথি কীভাপে িথিিপনি থেস্তাি এেং প্রস্থপক 

প্রভাথেত কপি। এপত োওয়া যায় চয, আপেথিক িপিঞ্জ ফোিপিি উচ্চ-িপমি েদ এেং থতয ণকতাি 

জনে এই থনথদণষ্ট প্লাজমা েথিপেপে IAS-এি প্রিাির্ বেথেষ্টেগুথি উপেিপযাগেভাপে েথিেথতণত হয়। 
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Chapter 1: INTRODUCTION

1.1 HISTORY OF PLASMA

The fourth state of matter, recognised as plasma, is composed of particles with positive and

negative charges in an ionized gas. In mid-19th century, Czech physician Jan Purkinje used

the word “plasma”, to describe the clear fluid that has remained after removing the cellular

material from the blood. Later, in 1922, Irving Langmuir (American scientist) suggested

that the charged particles (electrons, ions) and neutrals in ionized gas could be consid-

ered as corpuscular material suspended in a fluid medium, which he called “plasma” [1–3].

This gaseous medium differs from classical gases which are solely composed of electrically

neutral particles, by the nature of interactions among charged particles. Plasma resulting

from the ionization of neutral gases comprises myriad positive and negative charges, and

their corresponding amounts are inversely proportional to the magnitude of their individual

charges. However, not all ionized gases are considered as plasma. When charged and neu-

tral particles behave collectively in a quasineutral gas, it’s called plasma with any deviation

from charge neutrality being very small. In this state, oppositely charged particles, strongly

coupled electrostatically, tend to neutralize each other over large distances [4–6].

The universe is significantly contingent on plasma. Approximately 99% of the material in

the observable universe is estimated to be in the plasma state. The recognition of plasma as

the fourth state of matter in the physical system was a significant breakthrough exclusive

to twentieth-century physics. [6, 7].

Plasma research originated in the mid-18th century with the development of early elec-

trophoretic machines and Leyden flasks, used to demonstrate electrical phenomena and

spark discharges to the public. Later in the early 19th century, Volta’s invention of gal-

vanic cells led to the discovery of the electric arc. This era was marked as the beginning of

plasma physics, influenced by Faraday’s electrolysis laws and studies of particle behaviour

in low-pressure electric discharge tubes. Faraday and Geisler were the first to observe these

discharges and detailed studies began in the 1870s. W. Crookes in his lecture “On Radiant
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Matter or the Fourth Aggregate State”, presented evidence proving that cathode rays are

streams of particles showing their corpuscular nature in 1879.

It took roughly 16 years for electrons to be widely accepted, finally occurred in 1895 when

Thompson determined the electron-to-mass ratio for cathode particles. The term “electron”

first appeared in physics in 1891 but acquired its modern meaning after 1900, sparking

the birth of electronics and plasma physics. Subsequent breakthroughs unfolded rapidly:

Planck formulated his radiation equation in 1900, Rutherford described atomic structure in

1911, Bohr proposed his atomic model in 1912, and quantum mechanics emerged in the

early 1920s through the work of Heisenberg, De Broglie, Schrödinger, and Dirac, laying

the foundation for plasma physics.

Although significant, the progress mainly happened on the fringes of physics advance-

ments. Yet, there wasn’t a precise term for the emerging field of gas discharge physics, en-

compassing phenomena like arcs, glows, and sparks. Until the mid-1920s, only Townsend’s

research on charged particle mobility in weakly ionized gases was considered pivotal. How-

ever, the distinction between plasma physics and discharge physics is often credited to Irvin

Langmuir, whose foundational work in the 1920s marked three key achievements. Firstly,

Langmuir developed vacuum technology with diffusion pumps for producing high-purity

vacuum. Secondly, he improved methods to measure plasma parameters using electrostatic

probes, allowing better determination of electron temperature, electrical potential, and den-

sity. Thirdly, Langmuir and Tonks conducted theoretical studies, notably discovering spe-

cific plasma oscillations known as ‘Langmuir’ frequency. Finally, Langmuir introduced the

term “plasma” to define this state of matter.

Understanding of the plasmas in laboratory experiments, in astrophysics, and in space ad-

vanced parallelly over the twentieth century. The 1930s were marked by significant exper-

imental investigations and rapid theoretical development. A few isolated researchers began

studying plasma physics, motivated by practical problems. Their research focus was on

comprehending the implications of ionospheric plasma on distant shortwave radio trans-

mission and gaseous electron tubes which were used for rectification process, switching,
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and controlling voltages during the pre-semiconductor period of digital devices. In 1936,

L. D. Landau modified the Boltzmann kinetic equation for Coulomb interactions, while

B. I. Davydov derived the Boltzmann-Davydov collisional term. In 1938, A. A. Vlasov

formulated self-consistent field equations for ionized plasma and later, Landau developed

wave-particle interactions in collisionless plasma. Through the decade of the 1950s, it

became evident that this collision-free structure of thermal plasmas became an important

possessions, emphasizing the collective interactions in plasmas.

The relatively smooth yet rapid progress in plasma physics during the 1930s was com-

pletely interrupted in the 1940s, primarily due to World War II. Nonetheless, around 1930

to 1950, the groundwork of plasma physics was laid, notably as the outcome of research

in ionospheric, astrophysical, and solar-terrestrial events. This investigation was driven

by various interests such as comprehending radio wave propagation in the ionosphere, the

causes of auroral displays and magnetic storms on Earth due to solar activity, as well the

significance of magnetic forces in the physics of stars, galaxies, and the interstellar medium.

Most notable contributors to this foundational research included H. Alfvén, M. Saha, E.

Appleton, S. Chapman, L. Spitzer, S. Chandrasekhar, and T. Cowling, among others.

Modern plasma physics began to develop in the 1950s. This era was marked by two notable

events: the Soviet Union’s successful launch of the first artificial Earth satellite and the rev-

elation that both the United States and the Soviet Union were exploring thermonuclear

fusion for peaceful applications. Initially, this research was classified due to its connection

with thermonuclear weapons, but it was later declassified in 1958 when it became evident

that controlled fusion research had little military value. Since then, these countries, along

with many others, have collaborated on fusion research.

Alongside the prospect of controlled thermonuclear fusion, the late 1940s and early 1950s

were notable for another significant event. During this time, the Swedish astrophysicist

H. Alfvén published “Cosmic Electrodynamics” [8]. In this dissertation, Alfvén evaluated

the self-consistent dynamics of ideally conducting plasma and magnetization, revealing the

importance of electromagnetic phenomena in space. His recommended theory of plasma
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dynamics, known as magneto-hydrodynamics, garnered immediate attention for its novelty

and elegance. Consequently, this paved the way for serious theoretical analyses of astro-

physical phenomena on large scales, including those occurring in the solar corona, protu-

berances, and Earth’s magnetosphere. Notably, prominent figures such as Fermi and Chan-

drasekhar quickly contributed to the development of MHD models shortly after Alfvén’s

publication. MHD found rapid application not only in astrophysics but also in investiga-

tions related to controlled thermonuclear fusion. Later, it became apparent that the main

obstacles to achieving controlled fusion did not stem from a lack of understanding of nu-

clear physics, but rather from gaps in our knowledge of plasma physics [9].

Fusion work was developed slowly during the 1960s, but by the end of the decade, the

Russian tokamak configuration, established empirically, achieved significantly improved

plasma parameters compared to previous decades. Throughout the decade of the 1970s to

1980s, more tokamaks with increasingly improved performance were produced. By the

late 20th century, tokamaks were nearing fusion break-even. Alongside tokamaks, various

non-tokamak fusion approaches employing magnetic confinement have been pursued with

differing degrees of success. Additionally, plasma has been extensively explored for space

propulsion, ranging from small ion thrusters for spacecraft maneuvering to more powerful

magneto-plasma-dynamic thrusters. Which, with sufficient power, could be enabled for

interplanetary missions. Some spacecraft already use plasma thrusters, and there’s strong

interest in using them for upcoming spacecraft designs.

During the late 1980s, a novel strategy for using plasma physics emerged: plasma pro-

cessing. This process is vital for manufacturing the intricate integrated circuits found in

modern electronic devices and has since become economically significant. In the ’90s, re-

search commenced regarding dusty plasmas, where dust grains engrossed in plasma may

acquire charged electrically, behaving as extra-charged particles. Due to their compara-

tively massive size and variable charge, dusty plasmas exhibit both extended and entirely

new physical behaviours compared to regular plasmas. Additionally, during the 1980s and

1990s, investigations into non-neutral plasmas has also began. Both dusty and non-neutral
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plasmas can form peculiar, strongly coupled collective states resembling solids, such as

quasicrystalline structures. Non-neutral plasmas also found application in storing large

quantities of positrons.

Apart from the aforementioned endeavors, ongoing studies have focused on industrially

significant plasmas like arcs, plasma torches, and laser plasmas. Plasma displays are now

using in flat panel televisions, and naturally-occurring terrestrial plasmas, such as lightning,

also remain as subjects of investigation [1, 7, 10].

Plasma exists throughout the universe on all scales. In essence, much of the physical uni-

verse consists of plasma. In the solar system, plasma processes influence the Sun’s ro-

tation, magnetic fields, and mass ejections. The solar wind, made of plasma, travels to

Earth, becoming turbulent and interacting with Earth’s magnetic field to create phenomena

like auroras. This system covers a distance of about 10−4 light years. On a much larger

scale, extra-galactic jets, which start from supermassive black holes surrounded by rotating

plasma, span millions of light years and are among the largest plasma structures. These

jets are powered by plasma processes that also regulate many other astrophysical systems.

Plasma astrophysics studies plasmas beyond Earth’s atmosphere, covering both traditional

astrophysics (beyond the solar system) and space physics (the Sun, the Heliosphere, and

planetary magnetospheres). Through the plasma physics, the usual distinction between

astrophysics and space physics fades away [11, 12].

1.2 DEBYE SHIELDING

The ability of plasma to cancel out applied electric potentials is one of its basic character-

istics. In their rest frames, plasmas often do not possess a significant electric field. High

plasma conductivity could be considered the effect of the plasma concealing an external

electric field from its centre. In general terms, a plasma may conduct electricity enough

freely to short out any internal electric fields. However, it is more appropriate to think that

shielding is a dielectric phenomenon. An external electric field cannot penetrate the plasma

medium because of its polarization and the resulting redistribution of space charge. Debye
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was the first to calculate the Debye length, which is the length scale connected to this type

of shielding.

Suppose a quasineutral plasma is sufficiently close to thermal equilibrium such that the

number densities of its species (say electron) follow the Maxwell-Boltzmann distribution,

then

ne = n0e
eφ

kBTe , (1.1)

where ne,Te,n0 and kB is the number density of electron, temperature of electron, electron

having Maxwellian velocity distribution and the Boltzmann constant, respectively. As the

charged particles are assumed to be in thermal equilibrium, the electrostatic potential φ can

be obtained from the poisson equation as

∇
2
φ =− ρ

ε0
=

e
ε0

(ni −ne) , (1.2)

where ρ(= n0 −ne) is the charge density, ε0 is the permittivity of free space, respectively.

From the general principle of kinetic theory substituting the value of ne in the above equa-

tion one obtains the nonlinear differential equation,

ε0∇
2
φ = en0

(
e

eφ

kBTe −1
)
. (1.3)

Analytically solving the equation (1.3) utilising eφ

kBTe
≪ 1, and implementing Taylor’s ex-

pansion, yields the linear differential equation as

∇
2
φ =

n0e2

ε0kBTe
φ . (1.4)

Since the plasma is isotropic, one can assume the electrostatic potential to be symmetric.

Then, equation (1.4) simplifies to

∂ 2(rφ)

∂ r2 − n0e2

ε0kBTe
(rφ). (1.5)
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One obtains the general solution of equation (1.5) as

φ =
A
r

e
−r
λD , (1.6)

where A denotes a constant and r represents the radius. The quantity A can be obtained

by requiring that the solution shortens to the Coulomb potential as the radius decreases to

zero. Hence, the Debye length, denoted by λD, is readily determined by

λD =

(
ε0kBTe

ne2

) 1
2

. (1.7)

In practical terms, A shorter Debye length means that charges are screened out quickly, and

the plasma can effectively shield electric fields within a small distance. A longer Debye

length means that the plasma is less effective at shielding electric fields, allowing them

to penetrate further. The Debye length is essential for various phenomena in plasmas,

such as the behavior of Langmuir waves, plasma oscillations, and the conditions under

which a plasma behaves as a collective medium. It is also relevant in many applications,

from designing fusion reactors to understanding space plasmas and even in electrolytes in

batteries and other devices [1, 3, 6, 13, 14].

1.3 PLASMA PARAMETER

The Debye length holds significant importance in plasma physics as it denotes the extent

to which the electric field of an individual charged particle propagates within the plasma.

It also represents the distance over which fluctuating electric potentials can emerge, re-

flecting the conversion of thermal kinetic energy into electrostatic potential energy. The

Debye shielding effect, a characteristic feature of plasmas, is another critical aspect where

the plasma medium screens out external electric fields. However, it’s worth noting that not

every medium containing charged particles exhibits Debye shielding. For a system to ex-

hibit plasma behaviour, its physical dimensions must be significantly larger than the Debye

length (λD). If L represents a characteristic dimension of the plasma, a primary criterion
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for defining a plasma is that L is much greater than λD. Therefore,

L ≫ λD. (1.8)

Since the shielding effect arises from collective particle behavior within a Debye sphere,

it’s important that the number of electrons within a Debye sphere is substantial. A second

criterion for defining a plasma is thus

neλ
3
D ≫ 1. (1.9)

This implies that the average distance between electrons must be much smaller than λD.

Here, g = 1
neλ 3

D
is known as the plasma parameter, and the condition g ≪ 1 defines the

plasma approximation. This parameter also signifies the ratio of the average interparticle

potential energy to the average plasma kinetic energy. Importantly, the first criterion en-

sures macroscopic charge neutrality, as deviations from neutrality typically occur only over

distances comparable to the Debye length λD [6, 14]. Macroscopic neutrality is sometimes

considered a third criterion for plasma existence, although it is not independent and can be

expressed by the equation,

ne = ∑
i

ni. (1.10)

1.4 PLASMA FREQUENCY

When a plasma experiences a sudden disturbance from equilibrium, internal space-charge

fields induce collective particle motions to re-establish charge neutrality. These motions

occur at the plasma frequency, representing high-frequency collective oscillations. Due to

their heavy mass, ions only partially follow the rapid electron motion. Instead, electrons

collectively oscillate around ions, with the ion-electron coulomb attraction providing the

necessary restoring force. In the plasma’s equilibrium state, charged particles are evenly

distributed to maintain overall neutrality. The movement of electrons relative to back-

ground ions generates an electric field, striving to preserve neutrality by attracting elec-
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trons. However, inertia causes electrons to overshoot, creating an opposing electric field

that pulls them back towards equilibrium. This results in electrons oscillating at the plasma

frequency, with their lighter mass enabling faster oscillations than ions. Consequently, ions

are less responsive to the oscillating electron field [2, 3, 15].

To determine the oscillation frequency, consider a plasma consisting of a uniform slab of

electrons with number density ne and a fixed background of positive ions of the same den-

sity. If the electron slab is displaced to the right by a small distance ∆x and then released,

the equation of motion for the electrons is,

me
d2∆x
dt2 = (−e)E =−nee2

ε0
∆x, (1.11)

which implies
d2∆x
dt2 +

(
nee2

ε0me

)
∆x = 0. (1.12)

This corresponds to the harmonic oscillator equation, with the oscillation frequency ωpe

derived from the second term of equation (1.12) is

ω
2
pe =

(
nee2

ε0me

)
. (1.13)

If a plasma has several species (s), a plasma frequency can be defined for each species

according to the equation

ω
2
ps =

(
nse2

s
ε0ms

)
, (1.14)

If the ions are allowed to move in the previously mentioned slab, it can be shown that the

oscillation frequency is ωp =
√

ω2
pe +ω2

pi, which is approximately ωpe because ωpi ≪ωpe.

1.5 MAGNETIZED PLASMA

A magnetized plasma is characterized by a surrounding magnetic field B that is sufficiently

strong to influence the motion of the particles notably. In these plasmas, the behaviour is

highly anisotropic, which means they react differently to forces depending on whether the
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forces are parallel or perpendicular to the direction of B. Additionally, when a magnetized

plasma moves with an average velocity v, it generates an electric field E = −v×B. This

electric field is unique because it isn’t influenced by Debye shielding, which usually screens

electric fields in plasmas. Particles in a magnetized plasma move freely along the direction

of B while following circular Larmor orbits, or gyro-orbits, in the plane perpendicular to

B [16]. The typical Larmor radius, or gyroradius, of a charged particle in a magnetic field

is given by ρ = vt
Ω

, where Ω = eB
m is the cyclotron frequency associated with the particle’s

circular motion. A plasma is considered magnetized if its characteristic length scale L is

much larger than the gyroradius. Conversely, if ρ ≫ L, the particles move in nearly straight

lines.

In plasma physics, an electromagnetic electron wave is characterized by a magnetic field

component and involves oscillations primarily of the electrons. Adding a magnetic field

to plasma waves introduces new phenomena like anisotropy, Alfvén waves, Larmor orbit

effects, and other modified or new waves. Since nearly all realistic plasmas found in labo-

ratories, as well as in the ionosphere and astrophysical environments, have magnetic fields,

a significant effort is required to study these effects. This effort aims to understand and

categorize the wide variety of phenomena arising within these plasmas, which can often be

quite complex and varied [17, 18].

1.6 RELATIVISTIC PLASMA

In classical statistical physics, space and time are treated differently, which complicates

making the theory relativistic. All physics theories, including those for systems like plas-

mas, must follow the principles of special relativity. This makes it essential to develop

a relativistic theory for statistical systems [19], notably for plasmas. Relativistic plasma

theory is particularly important in fields like astrophysics and controlled fusion. Many as-

trophysical environments, such as the solar corona and the atmospheres of hot stars, feature

relativistic plasmas. In controlled thermonuclear reactions, where temperatures can reach

the order of mc2 (with m being the electron mass), at least the electrons need to be treated
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relativistically [20].

When plasma becomes extremely hot, reaching relativistic temperatures, it’s temperature

surpasses the remaining mass energy of electrons. In relativistic plasma, the average energy

of each particle exceeds the electron’s rest mass, leading electron-positron pairs to emerge

and influence the plasma characteristics. In Active Galactic Nuclei, plasma near a black

hole has ion temperatures around 1013 K and electron temperatures around 109 K due to

rapid cooling. At these high temperatures, electron-positron pair creation and annihilation

become important, as noted by Tajima and Taniuti [21]. So, one needs to require the rel-

ativistic correction to a particles mass and velocity. Because, the relativistic corrections

mainly become significant when a notable number of plasma particle achieve speeds be-

yond 0.86 times to the speed of light [22]. In addition, the massive particles is required

more energy to accelerate to a significant fraction of c in the production of quark–gluon

plasma. Bhattacharyya [23] has been confirmed the velocity of ions is approaching to the

light speed c by studying the intensity-induced frequency shift and precessional frequency

rotationally polarized waves in magnetized plasma.

A thermal relativistic plasma is characterized by its particles following a Maxwell-Boltzm-

ann distribution at a certain temperature T [24] [25]. In the current universe, no astrophys-

ically significant entities are in complete thermal equilibrium at relativistic temperature.

Therefore, it was necessary to solve kinetic equations to estimate the equilibrium distri-

butions of protons and particles. Aside from intrinsic theoretical interest, there are some

observation of nonthermal relativistic plasma. Relativistic plasma research covers various

phenomena and uses, from creating specific structures to controlling strong laser fields and

plasma waves. It’s essential for progress in fields like astrophysics, laser interactions, and

fusion studies.

1.7 DISTRIBUTION FUNCTIONS

From the perspective of classical mechanics, phase space denotes the possibility of poten-

tial states within a physical system, where state refers not only the position (q) of the object
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in the system but also the velocity (v) of the object. The instantaneous dynamic state of

every particle can be defined by its position and velocity. Essentially, it’s a multidimen-

sional space that has all the information needed to describe the complete behavior of the

system. Therefore, to ordain a system’s future behaviour, one requires to understand both

the system’s position and velocity. Let, a particle in motion in a one-dimensional space,

whose position and velocity can be expressed by q = q(t) and v = v(t). A two-dimensional

graph is an approach to concurrently visualise the q and v trajectories, where q(t) and

v(t) represent the horizontal and vertical coordinates, respectively. This q − v plane is

called phase space and at any point in time, every particle possesses a particular position

and velocity. If there are N particles and each particle has a position and velocity qi and vi

(where i = 0, ...,N), then the total number of coordinates is 6N. The actual configuration of

the system at any given time is expressed by one specific location in the 6N−dimensional

space is (q1...qN ,v1...vN) [26]. A differential element of volume can be visualised as a

six-dimensional cube, denoted by

f (q,v, t) =
dn(q,v, t)

dqxdqydqzdvxdvydvz
(1.15)

is then the number of particles in the volume element dqxdqydqz at position q and the ele-

ment dvxdvydvz in the velocity space with velocity v, at time t. The function that describes

the instantaneous density of particles in phase-space is known as the distribution function

and is represented by f (q,v, t) [1]. This function typically adheres to the normalization

condition
∫

f dvdq = 1, where the integral is taken over the entire phase space. This con-

dition ensures that the total probability of all possible states is equal to one.

A plasma is a combination of an enormous amount of particles that are not bound together

in neutral atoms or molecules but instead exist in a highly ionized and electrically conduc-

tive state. Thus, using a statistical method is useful for providing a macroscopic explanation

of plasma processes. In plasma physics, distribution function describes the statistical dis-

tribution of particle properties within a plasma system. This distribution function is often

represented by f (r,v,t), gives the probability density of finding a particle with a particular
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position r and velocity v at any time t. It describes the statistical behavior of particles in

phase space, which is a mathematical space where each point represents the position and

velocity of a particle. The form of the distribution function depends on various factors, in-

cluding the characteristics of the plasma (such as temperature, density, and magnetic field

strength), the presence of external forces or fields, and the interactions between particles

(such as collisions or collective effects). This function must be continuous in its variables,

positive and finite at all times, and tend toward zero as the velocity becomes infinitely

large [13, 27].

A plasma is considered inhomogeneous when its distribution function depends on posi-

tion r. Without external forces, an inhomogeneous plasma can reach an equilibrium state

through mutual particle interactions, resulting in a homogeneous state where the distribu-

tion function no longer depends on r. The distribution function can also be "isotropic" or

"anisotropic" based on whether it depends on the orientation or only the magnitude of the

velocity vector v. Describing plasmas requires the use of inhomogeneous or homogeneous,

as well as anisotropic or isotropic distribution functions. A plasma in thermal equilibrium

is characterized by a homogeneous, isotropic, and time-dependent distribution function.

One main challenge in kinetic theory is determining the distribution function for a given

system, which is governed by the Boltzmann equation, describing its temporal and spatial

variations [13].

1.7.1 MAXWELLIAN DISTRIBUTION

The distribution function describing the system under investigation must be known to deter-

mine the average value of the physical properties of the particles. A useful way to describe

plasma dynamics is to consider that plasma particle motions are influenced by both external

fields and the averaged internal fields, smoothed over space and time. This approach results

in the Vlasov equation, which is derived from the Boltzmann equation. The Maxwellian

velocity distribution is the most probable distribution that meets the macroscopic condi-

tions of a system and occurs when particles are in thermal equilibrium [13, 27]. For a gas

where particles move in only one dimension, the one-dimensional Maxwellian distribution

Chapter 1: INTRODUCTION 13



Figure 1.1: A Maxwellian distribution function [6]

for particle species h is given by,

fh(v) = Ae−
mhv2

2kBTh . (1.16)

This is homogeneous and isotopic, where A = nh

(
mh

2πkBTh

)1/2
, fhdv is the number of par-

ticles per cubic meter with velocity between v and v+ dv, kB is the Boltzmann constant

(kB = 1.39× 1023JK−1) and Th is the particles temperature. The density nh or number of

particles per cubic meter can be written as

nh =
∫

∞

−∞

fh(v)dv. (1.17)

If we define vth =
(

2kbTh
m

)1/2
, then the function fh describes a three-dimensional distribu-

tion of velocities can be described as

fh(v) =
n(√

πvth
)3 e

− v2

v2
th . (1.18)
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By differentiating, it is possible to illustrate the maximal of this distribution is at v = vth.

For a Maxwellian distribution, several key characteristic velocities can be associated with

temperature. In three dimensions, the average particle kinetic energy can be calculated as

Eav =
3
2kBT [28]. Plasma can exhibit multiple temperatures simultaneously, with ions and

electrons often having distinct Maxwellian distributions and different temperatures (Ti and

Te) due to the higher collision rates within each species. Even one species say ions, may

possess multiple temperatures in a field of magnetic force because of the Lorentz effect,

which causes the forces along the magnetic field B to vary from those perpendicular to

it [6].

1.7.2 NON-MAXWELLIAN DISTRIBUTION

In plasma, particles frequently collide and move at varying velocities, exchanging kinetic

energy and momentum to reach thermal equilibrium. The Maxwellian distribution effec-

tively describes a plasma system where particles are in thermal equilibrium. However,

the particles are deviated from the Maxwellian case in describing long-range interacting

systems (like coulomb and gravitational). It is experimentally confirmed such deviations

for electrons due to the temperature gradient of electrons are dormant. Non-Maxwellian

distributions are common in various space plasma phenomena, such as the interstellar

medium [29], thermosphere [30], ionosphere [31], solar wind [32], planetary magneto-

spheres [33], and magnetosheaths. Vasylinuas [34] was the first to analyze the energy

spectra of electrons within the plasma sheet. In 1955, Renyi [35] introduced a generaliza-

tion of Boltzmann-Gibbs statistics, which was later expanded by Tsallis [36] in 1988 with

the addition of a non-extensive parameter q. Observations made by the Freja satellite [37]

and Viking spacecraft [38] in 1995 studied the rarefaction of ion number density, known

as cavitons. Cairns et al. [39] proposed the Cairns distribution, a type of non-thermal

distribution, and investigated cavitons in non-thermal equilibrium plasma systems. Sub-

sequently, Qureshi [40] introduced another generalized distribution function with spectral

indices r and q, called the (r,q)-distribution function, which describes energetic particles

and superthermality in the velocity distribution curve of plasma species. The Maxwellian
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distribution and plasma dispersion function are commonly used to model tenuous and col-

lisionless plasmas in space and astrophysics, even though these plasmas are often far from

equilibrium [27, 41, 42]. Many space and astrophysical plasmas, such as those found in

the solar wind [32], planetary magnetospheres [33], and the interstellar medium [29] do

not conform to Maxwellian distributions. These environments often exhibit conditions far

from thermal equilibrium, making non-Maxwellian distributions more accurate for rep-

resenting particle velocities and energies. Observations frequently show the presence of

high-energy particles that deviate from the Maxwellian distribution. These particles often

follow a power-law distribution, which can better account for phenomena such as superther-

mal particles and energetic tails in the velocity distribution [43,44]. Hence, by considering

non-Maxwellian distributions, scientists can achieve a more accurate and comprehensive

understanding of plasma behavior, leading to better theoretical models, more precise ex-

perimental interpretations, and improved predictions of plasma phenomena in both space

and laboratory settings.

q− DISTRIBUTION

In many astrophysical Environments space plasmas clearly indicate the particles are de-

viated from the Maxwellian velocity distribution [45]. For this reason, A generalized

Boltzmann-Gibbs statistics which was introduced by Renyi in 1955 [35], later, Proposed

by Tsallis in 1988 [36] by adding an additional nonextensive parameter q. This new sta-

tistical approach has been successfully applied to various systems with long-range interac-

tions. The parameter q, which bases the Tsallis’s generalized entropy, is associated with

the system’s fundamental dynamics and quantifies the degree of nonextensivity. The q-

nonextensive distribution of electrons and positrons, introducing the plasma nonthermality,

is described by the following distribution function,

fe(v) =Cq

{
1+(q−1)

mev2

2Te
− eφ

Te

} 1
q−1

. (1.19)
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Here, Cq is the normalization constant, and the parameter q represents the degree of nonex-

tensivity. It is essential to note here that for q<−1, the q-distribution cannot be normalized.

In the extensive limit, as q to approaches 1, this distribution simplifies to the well-known

Maxwellian distribution. By integrating the function in equation (1.19), one obtains the

number density of electrons and positrons (Nh) as,

Nh = Nh0

[
1± (q−1)

eφ

kBTe

] 1+q
2(q−1)

. (1.20)

The condition q < 1 refers to the superextensive case [46–48], while q > 1 refers to the

subextensive case [42]. Recently, Verheest [49] suggested that only the range 1/3 < q < 1

should be used for the superextensive case and q> 1 for the subextensive case to explain the

effects of nonextensivity on the characteristics of nonlinear structures. The q-distribution

better represents these non-equilibrium conditions compared to the traditional Maxwellian

distribution. It provides a more comprehensive and accurate framework for describing plas-

mas under non-equilibrium conditions, with long-range interactions, and in the presence of

high-energy particles, making it an essential tool in plasma physics research.

(α,q)− DISTRIBUTION

The (α,q)−velocity distribution functions are very useful to describe the energy of elec-

trons in all cases of thermality since the energies of the electrons may be isothermal, non-

thermal or have a smaller (subthermal) or superior (superthermal) amount of isothermality.

The (α,q) distribution is defined by the composition of Tsallis [36] and Cairns [39] velocity

distribution functions [50] as

y(vx) = k
(

1+α
v4

x

v4
t

)
×
{

1− (q−1))
v2

x

2v2
t

}
, (1.21)

where vt = (kBTe/me)
1/2 is the electron thermal velocity, vx = (2eφ/me)

1/2 is the velocity

vector, q is the nonextensivity strength, α represents the population of faster electrons, kB

is defined as Boltzmann constant and k is the normalized constant, respectively [50]. When
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q> 1, a thermal cut-off on the maximum value allowed for electrons velocity is defined [50]

as vmax =
√

2kBTe/me(q−1) beyond which no probable states exist. Hence, the electron

density function (Ne) can be written by integrating the above equation over velocity space

in which includes an additional potential term of interacting electrons
(

vx =
√

2kBeφ

me

)
[51]

that is

Ne =


∫

∞

∞
y(vx)dv,−1 < q < 1∫−vmax

vmax
y(vx)dvx,q > 1

, (1.22)

where φ ,Te and e are the electrostatic potential function, electron temperature and mag-

nitude of electron charge, respectively. Note that the above equation is applicable if non-

thermality and nonextensivity may act concurrently on the nature (rarefactive or compres-

sive) of the acoustic wave mode [50]. Later, the proper ranges of α and q are defined in

Refs. [52, 53] based on the physical cut-off obligatory by q ≥ 5/7, and αMax = (2q−1)/4

as (i) q = 1,0 < α < 0.35 (nonthermality case), (ii) q = 1,α = 0 (isothermality case), (iii)

0.33 < q < 1,α = 0 (superthermality case), and (iv) q > 1,α = 0 (subthermality case),

respectively.

1.8 ELECTRON-POSITRON-ION PLASMA

Electron-positron (e-p) plasma is commonly defined as a completely ionised gas comprised

of electrons and positrons of equal mass and opposing charge. Theoretical studies of e-p

plasma and its electromagnetic wave dispersion properties are of significant interest due to

their relevance in various scenarios. These include astrophysical and cosmological contexts

and laboratory experiments involving ultra-intense laser pulses interacting with matter. The

e-p plasmas may be expected to be present in pulsar magnetospheres [54, 55], in Active

Galactic Nuclei [56, 57], around black holes, in the early universe [58–60], and at the cen-

tre of this galaxy [61]. Additionally, e-p plasmas are argued to be present during the MeV

era of the very early universe. According to the conventional cosmological model, temper-

atures in the MeV range (T ≈ 1010K) prevail up to one second after the Big Bang [62].

While electron-positron pairs make up the majority of the astrophysical and cosmic plas-

mas mentioned earlier, a small number of heavy ions are also likely present. For instance,
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during the MeV epoch of the early universe, there were approximately 109 to 1010 protons

and neutrons for every light particle (such as electrons, neutrinos, and photons), based on

the current understanding of baryon asymmetry. Earlier, at times less than 100 seconds

after the Big Bang, the primordial plasma contained π mesons, K mesons, and pairs of

protons-antiprotons and neutrons-antineutrons. Consequently, environments with protons

or other ions suggest the natural occurrence of a three-component electron-positron-ion (e-

p-i) plasma.

Cosmic-ray measurements of electrons and positrons provide insights into the nature and

distribution of galactic sources and the characteristics of cosmic ray propagation in the

galactic disk and halo [63]. Research referenced in [63] has shown significant discrep-

ancies between cosmic-ray positrons and electrons, especially at energies above 10 GeV.

The PAMELA satellite later confirmed the abundance of positrons in cosmic radiation with

energies ranging from 1.5 to 100 GeV [64]. The composite system gains intriguing fea-

tures from the presence of the minority ion population. Due to their long lifespan, the

positrons may be utilised to investigate particle transport in tokamaks, transforming the

two-component e-i plasma into a e-p-i one [65, 66]. This three-component plasmas have

been studied in various contexts, including pulsar magnetospheres [67, 68]. Additionally,

theoretical investigations have explored relativistic collisionless shock waves in e-p-i plas-

mas, which are relevant to astrophysical sources of synchrotron radiation [69].

1.9 WAVES IN PLASMA

Waves in plasmas are a connected system of particles and fields that propagate periodically.

Plasma is a conductive, quasineutral fluid composed of electrons and positive ions, and may

also include negative ions, positrons, or dust particles. Because it has a collective nature,

plasma interacts with electric and magnetic fields, which give rise to various wave phenom-

ena. Studying these waves is beneficial for plasma diagnostics as they depend on plasma

properties. Waves of plasma could be categorised as electromagnetic or electrostatic fol-

lowing the existence of an oscillating magnetic field. Different types of waves in plasma
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are influenced by the oscillating species within it. Typically, electron temperatures exceed

ion temperatures, reflecting the much lighter mass of electrons and their consequent faster

movement. Modes associated with electron motion are affected by electron mass, while

ions are often considered stationary due to their larger inertia. In some cases, such as the

lower hybrid wave, modes may involve both electron and ion inertia. Waves can also be

categorized based on their orientation relative to the magnetic field. Plasma’s complexity

allows it to support nonlinear waves, resulting in phenomena like solitons, double layers,

and vortices, observed in laboratories, space, and astrophysical plasmas.

Plasma waves are of mainly two types; linear waves with very small amplitude and non-

linear waves with large amplitudes. When we study linear plasma waves, we consider and

write variable quantities as perturbed and unperturbed state of plasma. This method allows

us to neglect nonlinear terms and write a basic linear equation. One must remember that

only small wave amplitude is considered for linear theory of plasma waves. In case, if we

consider large wave amplitude then nonlinearities are taken into account. Solitary waves

are very important example while studying nonlinear plasma waves [27, 70].

1.9.1 SOLITARY WAVE AND SOLITON

A common theme in the development of science is that of a important discovery which is

not widely recognised as such when it is first reported. Most often this comes about not

through the ignorance or indifference of the scientific community, but because the current

state of knowledge of the field is insufficiently developed for the full significance of the

result to be realized.

The first conscious observation of what was termed a solitary wave in 1834 was not ap-

preciated until its significance as an important stable state of some nonlinear system was

realized in the mid-1960’s. The solitary wave emerged as a mathematical fascination ap-

proximately a century ago. Still, it continues to spread across multiple practical mathe-

matics and physics domains, including meteorology, basic physics for particles, plasma

research, and laser physics.

Scottish scientist and engineer John Scott Russell published the first recognized observa-
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tion of the solitary wave in 1834. A new wave on the canal’s surface attracted Scott Rus-

sell’s attention while he observed a canal barge. This observation was not purely chance

counter. He was studying canal barge designs for the Union Canal Society of Edinburgh

on an unpaid basis. The first encounter of the solitary wave had been near the “Hermiston

Experimental Station” on the canal, approximately six miles from the heart of the Scottish

capital [71,72]. Since this particular kind of wave exists independently of other oscillatory

motion of waveforms, Scott Russell himself developed the term “solitary wave” [73–75].

He carried out investigations in which he would place weights at one end of a lengthy,

shallow water canal. Over the next ten years, he continued this experiment to examine the

single wave in tanks and canals and discovered that it was an autonomous dynamic en-

tity travelling at a consistent speed and form. He illustrated four aspects utilising a wave

tank [72]:

• The basic structure of solitary waves is hsech2[k(x− vt)];

• A sufficiently large initial quantity of water generates two or more separate solitary

waves;

• Solitary waves that are solely cross one another “without change of any kind”;

• The velocity of a wave with height h and depth d in a channel may be expressed as

v =
√

g(d +h), where d represents the greatest amplitude above the water’s surface,

h denotes a limited depth, and g represents the acceleration of gravity.

According to the correlation above, a solitary wave with a high amplitude travels quicker

than one with a low amplitude. Accordingly, a solitary wave is one that, when observed

in the reference frame travelling at the wave’s group velocity, propagates without experi-

encing no significant evolution in its overall dimensions or structure. This results from the

nonlinear and dispersive effects being balanced [76].

However, the mathematical community refused to embrace the empirical findings of Rus-

sell. In 1845 publishing a theory of long waves in his work “Tides and Waves”, Airy further
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identified a relationship between a wave’s height and amplitude and its speed. Based on

his findings, Airy assessed that a single wave could not exist, which led to a verbal con-

frontation between Russell and Airy. After Korteweg and de Vries developed their well-

known equation (referred to as the KdV equation) in 1895, this controversy was eventually

resolved and the notion of solitary waves was confirmed analytically and this equation

demonstrates the solitary character of shallow water waves [77].

Scientists have undertaken a massive amount of research to examine the topic of solitary

waves since its identification. Also the propagation of plasma waves in a dispersive medium

can be explained by the KdV equation.

1.10 LAYOUT OF THE THESIS

The focus of this thesis is to investigate nonlinear ion-acoustic solitons (IASs) generated by

completely ionized, collisionless, magnetized, obliquely propagated e-p-i relativistic plas-

mas observed in astrophysical, space, and laboratory environments. Intending to get an

in-depth understanding of the relevant physics, the purpose of the study is to investigate the

production of nonlinear IASs in e-p-i plasmas for highly relativistic regimes.

This chapter addressed the basic phenomena of plasma physics as well as a brief history of

its development. There has also been discussion of wave phenomena, Maxwellian, Non-

Maxwellian, and plasma in the relativistic region.

In Chapter-2, The fluid behaviour of plasma and its model equations have been discussed.

This chapter additionally discusses the widely used Reductive perturbation approach.

In Chapter-3, The nonlinear obliquely propagating IASs by proposing a magnetized rotat-

ing relativistic plasma environment having relativistic ion fluids, and non-extensive elec-

trons as well as positions have been investigated. KdV equation involving the potential

function has been derived by using the conventional reductive perturbation method for ana-

lyzing such wave phenomena. The effect of plasma parameters on the amplitude and width

of IASs has been discussed with the consideration of the relativistic Lorentz factor (RLF)

up to eleven terms for the first time. It is observed that the RLF up to eleven terms and
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obliqueness significantly modify the propagation characteristics of IASs in the considered

plasma environment.

In Chapter-4, the study focused on the nonlinear propagation of IASs for strongly rela-

tivistic plasmas involving relativistic ions and (α,q)-distributed electrons and positions.

Leveraging the renowned reductive perturbation approach, the mKdV equation involving

the potential function has been developed to analyse such wave phenomena. The effect of

plasma parameters on the amplitude and width of IASs has been discussed with the consid-

eration of the RLF up to twenty terms for their critical values. The RLF up to twenty terms

and obliqueness is observed, which significantly modify the propagation characteristics of

IASs in the considered plasma environment.

In Chapter-5, The KDV equation with quartic nonlinearity is developed to investigate the

properties of nonlinear propagation of IASs in strongly relativistic plasma having rela-

tivistic ions and (α,q)− distribution of electrons and positrons applying the conventional

reductive perturbation approach. The effect of plasma parameters on the amplitude and

width of IASs has been discussed with the consideration of the RLF up to twenty terms

for their super-critical values. The effect of the RLF up to twenty terms, obliqueness and

magnitude of the rotational frequency on the propagation characteristics of IASs in the con-

sidered plasma environment is observed.

Finally, in Chapter 6, this work concludes with the remarks and the potential future works

for further investigations are discussed.
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Chapter 2: THEORETICAL MODEL
EQUATIONS AND METHODOLOGY

2.1 INTRODUCTION

Plasma, a state of matter consisting of charged particles, is a subject of extensive research

due to its unique properties. While plasma exhibits complex behaviour across a wide range

of scales and environments, it can often be treated as fluid on macroscopic scales. Studies

on plasma have provided insight into its complex fluid dynamics, including viscoelastic

and non-Newtonian behaviours. For several fields of study, such as astrophysics, fusion

research, space science, and industrial applications, a comprehension of the fluid behaviour

of plasma is significant.

When the phase velocity of a wave excited in plasma exceeds the thermal velocity, most

of the plasma particles are not in resonance with the wave. Consequently, only a small

number of particles exchange energy with the wave. A fluid state of the plasma can be

implemented in this scenario. In the plasma fluid, the electron and ion fluids are supposed

to interact with each other through the electromagnetic field and exchange momentum and

energy through collisions. While kinetic theory explains transport coefficients based on

collisions, those linked to plasma waves can be understood by using fluid theory [78].

One can explore the fundamental principles underlying the fluid behaviour of plasma from

its collective motion and MHD phenomena. Considering plasma as a fluid, one may utilise

established concepts from classical fluid dynamics to describe and predict its behavior in

diverse scenarios. Through this exploration, one can provide insights into the rich and

dynamic nature of plasma as fluids, highlighting both their fundamental properties and

their practical implications in scientific research and technological applications [79].

2.2 MAXWELL’S EQUATION

Maxwell’s equations [6] are fundamental in describing electromagnetism. They unify elec-

tric and magnetic fields and predict electromagnetic wave phenomena across various fre-
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quencies [80]. These equations have been approached from various perspectives, including

an axiomatic approach [81], an inverse scattering problem for the time-dependent Maxwell

equations [82], and an examination of their relationship with the continuity equation and

charge conservation [83]. The study of Maxwell’s equations has also extended to applica-

tions in different fields, such as geophysics, optics [84], plasma physics and etc.

In plasma physics these equations are foundational, governing the behaviour of electro-

magnetic fields in plasmas. These equation narrates how electric and magnetic fields are

generated by charges, currents and change of each other. In plasma simulations, these

equations are essential for comprehending the dynamics of plasma particles and fields.

Specifically, the Maxwell-Faraday equation, a component of Maxwell’s equations, can be

adjusted using extended stencils to improve its numerical treatment [85]. These equations

are as given below

ε0∇ ·E = ρ,

∇ ·B = 0,

∇×E =−∂B
∂ t ,

∇×H = J+ ε0
∂E
∂ t ,

where ε0,ρ,E,B,H,J is the permittivity of vacuum, charge density, the electric field, the

magnetic induction, magnetic field, and the current density, respectively.

2.3 EQUATION OF CONTINUITY

The equation of continuity [6,79] for plasma describes the conservation of mass and charge

within the plasma, expressing how the density and velocity of charged particles change over

time. It states that the rate of change of particle density within a given volume is equal to the

net flux of particles across the boundary of that volume. To maintain matter conservation,

let the total number of particles N within a volume V changes only if there’s a net flow of

particles across its boundary surface S. This flow, represented by n jU j, is determined using

the divergence theorem, ∮
v

∂n j

∂ t
dV =

∮
v
(n jU j) ·dS. (2.1)
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Since this rule applies to any volume V , the expressions being integrated must be equal,

∂n j

∂ t
+∇ ·

(
n jU j

)
= 0. (2.2)

For each particle species in plasma, there’s an equation of continuity, ensuring mass con-

servation. Any sources or sinks of particles are accounted for on the right-hand side of the

equation. This equation ensures that mass and charge are conserved within the plasma, with

any changes in density being balanced by corresponding fluxes across the plasma bound-

ary. The equation of continuity is a cornerstone of plasma physics, giving essential insights

into the complex dynamics and behaviors of plasma across a broad spectrum of scales and

environmental conditions.

2.4 EQUATION OF MOMENTUM

In the fluid approximation, plasma appears as a mixture of distinct fluid components (such

as ions, electrons, positrons etc.) and each representing a different species within the

plasma. As the nature of particles in a plasma system differs within particular species,

they respond in different ways in the presence of electric and magnetic fields. Yet, in the

majority of instrumental uses, the plasma’s collective behaviour i.e., the prevalence of par-

ticle collision effects and the plasma’s more continuum-like behaviour is significant. In

the most basic scenario, the equations of motion are required for the negatively charged

electron fluid and the positively charged ion fluid. One can also consider an expression

for the fluid of neutral particles in a partly ionized gas. Via the collisional interaction the

neutral particles could operate with the ions and electrons. For any specific application,

an alternative may be available for the fundamental equations like multiple dimensions;

multicomponent species; scalar, vector, or tensor forms. Also when there are no collisions,

the E and B fields that the ion and electron flows produce will lead them to interact with

one another. Maxwell’s equations offer insight into how the electric and magnetic forces

influence the plasma’s current state [70, 86]. Now, one can express the law of motion for a
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single charged particle having an electromagnetic field as,

m
dvj

dt
= q

(
E+v j ×B

)
, (2.3)

where, m is the mass of a plasma particle travelling at v j velocity with carrying charge

q. In the absence of thermal motions and collisions, all particle will move together in a

plasma system. So the average velocity U j of the system will be equal to the v j. Hence,

the equation of motion for n j plasma particles will be

mn j
dU j

dt
= qn j

(
E+U j ×B

)
. (2.4)

For the conversion of components within a particular frame, let U j(r, t) be any character-

istic of fluidity in space with three dimensions. Hence, the time-dependent variation in U j

in a fluid-moving frame is

dU j(r, t)
dt

=
∂U j

∂ t
+

∂U j

∂x
dx
dt

+
∂U j

∂y
dy
dt

+
∂U j

∂ z
dz
dt

,

Or,
dU j(r, t)

dt
=

∂U j

∂ t
+
(

U j ·∇
)

U j. (2.5)

Using equation (2.4) and (2.5) one can write

mn j

{
∂U j

∂ t
+
(

U j ·∇
)

U j

}
= qn j

(
E+U j ×B

)
. (2.6)

The addition of an external pressure is necessary on the opposite side of equation (2.6)

when the thermal motion is considered. This force is generated by the erratic movement of

particles in and out of a fluid component and isn’t represented in the calculation for a single

particle. Adding the electromagnetic force and the pressure gradient force and expanding
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to multiple dimensions, one can write the fluid formula as

mn j

{
∂U j

∂ t
+
(

U j ·∇
)

U j

}
= qn j

(
E+U j ×B

)
−∇p. (2.7)

For natural gases, charged particles provide momentum by collisional interactions. The

momentum loss of each encounter corresponds with the relative velocity U j −U0, wherein

U0 denotes the flow rate of the natural fluid. Assuming τ is the mean free time among

collisions, the equation of motion for anisotropic pressure and neutral interactions can be

expressed as,

mn j

{
∂U j

∂ t
+
(

U j ·∇
)

U j

}
= qn j

(
E+U j ×B

)
−∇p−

mn j
(
U j −U0

)
τ

. (2.8)

For any anisotropic fluid, ∇p is replaced by ∇ ·P, where P is the stress tensor,

mn j

{
∂U j

∂ t
+
(

U j ·∇
)

U j

}
= qn j

(
E+U j ×B

)
−∇ ·P−

mn j
(
U j −U0

)
τ

. (2.9)

However, in the absence of the electric (E) and magnetic (B) field, the law of motion

becomes

mn j

{
∂U j

∂ t
+
(

U j ·∇
)

U j

}
=−∇ ·P. (2.10)

Ordinary fluids follow the Navier-Stokes equation and often collide with their component

particles, hence

ρ

{
∂U j

∂ t
+
(

U j ·∇
)

U j

}
=−∇p+ρv∇

2U j. (2.11)

The above equation is identical to equation (2.9), except for lacking electric and magnetic

force and collisional interactions within species, where ρ signifies the mass density and

ρv∇2U j represents the viscosity term. A relativistic term (γ) may be included in the equa-

tion of motion of plasma species, resulting in a relativistic modification of the equation.

This addition enhances the understanding of ion movement and finite temperature effects
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on strong relativistic plasma waves.

mn j

{
∂
(
U jγ

)
∂ t

+
(

U j ·∇
)

U jγ

}
= qn j

(
E+U jγ ×B

)
. (2.12)

In deriving equation (2.9), one could implicitly assume numerous collisions, which arises

from assuming a Maxwellian velocity distribution. The Maxwellian distribution, typically

resulting from frequent collisions, is commonly assumed in fluid theory. While other dis-

tributions with the same average yield similar outcomes, deviations from the Maxwellian

distribution can be crucial in certain cases, necessitating the use of kinetic theory.

The other reason the fluid model is effective for plasmas is the presence of a B which can

influence the collisions in certain regions. Particles acceleration by an E increases the ve-

locity continuously and allow it to stream freely. And because of the frequent collisions,

the particles appear to a constrained velocity corresponding to the E. The presence of a

B restricts free-streaming by causing particles to gyrate in Larmor orbits, resulting in col-

lisional plasma acting like a collisional fluid. Hence, one can take the fluid theory as a

valid one for a plasma system. And the equation of motion for plasma is a complex yet

crucial aspect of plasma physics, with contributions from various studies shedding light on

different facets of plasma behaviour under diverse conditions [6, 79].

2.5 EQUATION OF STATE

Where the transfer of energy via external sources is prohibited in a fluid plasma [6,79], the

fluid’s density ρ and pressure p have a relation by

p =Cρ
λ , (2.13)

where C is a constant, λ =Cp/Cv represents the specific temperature ratio, Cp denotes the

specific temperature at a constant pressure, and Cv denotes the specific temperature at a

constant volume. So, ∇p can be obtained as
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∇p
p

= λ
∇n j

n j
. (2.14)

Considering the isothermal compression, we can write

∇p = ∇(nKT ) = KT ∇n j,

evidently, λ = 1. KT changes during adiabatic compression, resulting in a greater value

for λ . If N represents the number of degrees of freedom, λ can be obtained as

λ = 1+
2
N
. (2.15)

For the equation of state to be valid, there must be very little heat movement or a weak ther-

mal conductivity. Despite this, most fundamental occurrences may be effectively expressed

through the simple assumption of equation (2.13).

2.6 POISSON’S EQUATION

The Poisson equation [6,79,87] serves as an indispensable element in elucidating the elec-

tric field dynamics inherent to plasma systems, delineating the intricate interplay between

charged particles and electromagnetic fields within such complex environments. It is sig-

nificant in describing the self-consistent electric field in plasma, along with the Vlasov

equation that characterizes the distribution function of electrons and ions. It provides a

mathematical framework to determine the electric potential distribution within a plasma,

which arises from the collective behavior of charged particles. In the equation, ∇2φ rep-

resents the Laplacian of the electric potential φ , which describes how the potential varies

spatially. The right-hand side of the equation
(

ρ

ε0

)
, accounts for the charge density ρ in

the plasma divided by the vacuum permittivity. This term quantifies how the distribution

of charges influences the electric potential.

ε0∇ ·E = ρ = e(ni −ne),
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ε0∇ ·
(
−∇φ

)
= e(ni −ne),

ε0∇
2
φ = e(ni −ne), (2.16)

where, E = −∇φ ;e,ni and ne is the charge of particles and the number density of ions

and electrons, respectively. Solving Poisson’s equation allows us to understand how the

electric potential responds to the distribution of charges in the plasma. This, in turn, pro-

vides insights into various plasma phenomena, such as the formation of electric fields, the

confinement of charged particles, and the behavior of plasma instabilities. Furthermore,

the Vlasov-Maxwell equations and its electrostatic equivalent, the Vlasov-Poisson system,

contribute to understanding the microscopic dynamics of collisionless and the magnetic

plasmas.

2.7 REDUCTIVE PERTURBATION METHOD

In today’s physics research, there has been considerable concentration on nonlinear phe-

nomena, since numerous physical events intrinsically exhibit nonlinearity. Nevertheless,

the mathematical approaches utilised to analyze these problems remained mostly linear

for a considerable period. Initially, two quantities were considered to be dependent on

each other only when they were proportional; nonlinear dependency were neglected. This

situation arose due to the limitations of mathematics during that period. Where physics

responded by consistently resorting to approximations, which enabled the substitution of

the original unsolvable nonlinear mathematical problems with linear, solvable ones. From

this perspective, the multiscale evaluation is absolutely justifiable: it operates as a pertur-

bative technique with a linear approximation as its initial order. This not only enables the

derivation of minor modifications applicable for the same evolution time as in the linear

approximation but also is responsible for the cumulative impact over an extended period of

evolution [88].

In mathematics and applied mathematics, perturbation theory comprises techniques aimed

at approximating a solution to a problem by initially solving a related, simpler problem.
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The solution is typically represented as a power series in a small parameter, denoted as ε ,

within perturbation theory. The initial term of this series is recognized as the solution to the

solvable problem. Subsequent terms in the series, involving higher powers of ε , typically

diminish in magnitude. An approximate “perturbation solution” is derived by truncating

the series, often retaining only the initial two terms: the solution to the known problem and

the first-order’s perturbation correction. The underlying principle of perturbation theory is

to break down a challenging problem into an infinite sequence of comparatively simpler

ones. Consequently, the perturbation technique proves to be advantageous because the ini-

tial few phases suggest the major aspects of the solution and the subsequent ones provide

minor corrections [89].

A nonlinear evolution equation characterising any system of particles may be defined in

terms of a single variable and it seems to have a somewhat simple structure. Nonetheless,

the initial equations of that system of particles can usually be complex and involve several

dependent variables. We require a methodical process that separates each of these sets of

equations into easier-to-comprehend forms. Typically, these processes include perturba-

tions; one such technique is the reductive perturbation theory (RPT).

The reductive perturbation technique is a valuable method used to derive simplified mod-

els that describe nonlinear wave propagation and interaction [88]. This method has been

successfully applied in various fields such as physics, including the study of nonlinear ion-

acoustic waves [90], optical solitons [91], dusty plasmas [92], electron-ion plasmas [93],

and trapped gases of bosons [94]. The reductive perturbation method involves introducing

small disturbances into a stretched coordinate system to analyze nonlinear wave propaga-

tion [95]. Through the application of this method, researchers have been able to derive

fundamental equations like the KdV equation and the NLSE to explain the evolution of

waves in different mediums [96].

In RPT one can express nonlinear evolution equation in terms of a single dependent vari-

able and its partial derivatives with respect to space variables and time. It rescales both

time and space variables in the given system and introduces new space variables and time
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for describing the nonlinear wave phenomena with long wave length. It should be empha-

sised that this method has shortcomings because it depends on the individual’s expertise in

choosing the appropriate scales [97]. Since the variety of scale expansion supports the main

concepts of the RPT, we stretch the dependent variable utilizing the very small perturbation

parameter ε . As instances

n = n0 + εn1 + ε2n2 + ε3n3,

v = εv1 + ε2v2,

φ = εφ1 + ε2φ2.

. (2.17)

The boundary conditions often indicate whether a first term exists or not. For instance,

in the majority of situations, the density is usually disturbed from its equilibrium value;

hence, n → n0 as x → ±∞, but in the event of background flow, v → 0 and φ → 0. The

decision-making process is heavily influenced by the external environment. To obtain the

dispersion relation for the plasma waves, it is required to consider the linearised version

of the model equations. Any oscillatory physical quantity can be expressed as eiθ , where

θ = kx−ω(k)t and the function ω(k) (frequency) satisfies the dispersion relation in term

of k (the wave number). For propagation of long waves, one can consider k = epK, where

K denotes a new wave number of order one and p is a unrevealed constant to be obtained

later. Hence,

θ(x, t) = ε
pKx−ω(ε pK)t. (2.18)

Since one is dealing with purely dispersive wave, the Taylor series expansion of ω(ε pK)

will contain only even or only odd powers K [6]. For nonlinear wave with long wave length

only odd powers of K will materialize in the expansion. Therefore the initial two terms in

a Taylor expansion for ω(k) provides ω(k) = ω
′
(0)ε pK +ω

′′′
(0)ε3pK3. Then equation

(2.18) can be expressed as

θ(x, t) = ε
pK(x−ω

′
(0)t)− ε

3pK3
ω

′′′
(0). (2.19)
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Based on the relation (2.19), one can choose a suitable scaling for the independent variables

x and t as

ξ = ε
p(x−λ t);τ = ε

3pt. (2.20)

Stretched variables, notably ξ and τ , are new variables that must undergo significant changes

in x and t before they exhibit any noticeable change. It takes an established reasoning to

determine the value of p. An excellent option for determining the value of p generally

emerges when the fundamental set of equations expands in powers of ε and space and

time are similarly rescaled as in equation (2.20). It often turns out that once the KdV and

mKdV equation develops then p typically attains the value of 1/2 and 1. To explain the

RPT, One can suppose a linear dispersion law for an electrostatic mode as

∑
j

ω2
p j

ω2 − k2v2
th j

= 1. (2.21)

For small values of ω and k, equation (2.21) can be approximated as

ω = λk− 1
A

k3, (2.22)

where A = 2λ ∑ j

[
ω2

p j(
λ 2−v2

th j

)2

]
and 1

A represent the dispersive term’s coefficients in KdV

or mKdV equation. Also ωpi and ωpe are ion plasma frequency and electron plasma

frequency,vpi and vpe are the ion-thermal and electron-thermal speeds, respectively. Here,

will be coefficient of dispersion term in the KdV or mKdV equation. The phase for the

nonlinear wave with long wave length is given by

kx−ωt = k(x−λ t)+
1
A

k3t + ..., (2.23)

and leads to the following standard stretching of the KdV equation as

ξ = ε
1/2(x−λ t);τ = ε

3/2t. (2.24)
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Using the relation (2.24) with expansions (2.17), one can obtain the KdV equation for

the considered plasma system. Furthermore, the reductive perturbation method has been

extended and modified to address specific challenges in different systems. For example, the

extended reductive perturbation method has been utilized to study weakly nonlinear waves

in collisionless cold plasmas. Additionally, the modified reductive perturbation method

has been employed to investigate higher-order terms in perturbation expansions, balancing

nonlinearities with dispersive effects to prevent secularities in solutions [98–100]. The

reductive perturbation method is a crucial tool for simplifying the analysis of nonlinear

wave phenomena across various disciplines, offering valuable insights into the behavior of

waves in complex systems.
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Chapter 3: SOLITON PROPAGATION IN
MAGNETIZED PLASMA SYSTEM

3.1 INTRODUCTION

Over the past few decades, many researchers [41, 42, 46–48, 101–113] have focused their

attention on the e-p-i plasmas to investigate the linear and nonlinear acoustic wave propa-

gation by considering various types of plasma environment. For instance, the ion-acoustic

wave (IAW) phenomena have extensively studied by many research scholars [42, 46, 101,

105–113] with the existence of nonlinear coherent structures. In most of the studies, the

fundamental properties of nonlinear IAWs are studied via the equilibrium state of charged

particles in which the total energy is considered to be extensive. However, the particles

are deviated from the extensive case in describing long-range (like Coulomb and gravi-

tational) interacting systems [34]. It is experimentally confirmed that such deviation for

electrons due to the temperature gradients of electrons are dormant [114]. This discrep-

ancy recommended the extensive distribution function is inadequate for forecasting various

waves and instabilities [115]. Whereas, the non-Maxwellian distribution function is com-

monly used for space plasma phenomena, like, interstellar medium [29], ionosphere [31],

solar wind [32], planetary magnetosphere [33], and so on. The non-extensive (α,q)-

distribution is one of the most usable as a non-Maxwellian distribution that was proposed

in Ref. [36]. Due to the wide application of (α,q)-distribution in many astrophysical and

cosmological circumstances, such as proto-neutron stars [116], stellar polytropes [117],

quark-gluon plasma [118], and dark-matter halos [119], etc., one can still now consider the

non-extensive plasma to describe the underlying physics.

On the other hand, the advanced Satellite for Cosmology and Astrophysics is confirmed

that the production of e-p pair with the existence of ions in the peculiar environment. The

existence of e-p pair along with the positive ions background are also supported in many

astrophysical and space environments due to the oscillatory electron overtake energy 2m0c2
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(c is the light speed). Additionally, the energetic heavy ions of energies 0.1 to 100 MeV in

the presence of highly energetic e-p pair are existed in interstellar space, solar atmosphere,

etc. [120, 121] and formed the e-p-i relativistic plasmas [105–113]. In such plasmas, one

needs to require the relativistic correction to a particles mass and velocity. Because, the

relativistic corrections mainly become significant when a notable number of plasma parti-

cle achieve speeds beyond 0.86 times to the speed of light [22,25]. In addition, the massive

particles is required more energy to accelerate to a significant fraction of c in the produc-

tion of quark–gluon plasma. Bhattacharyya [23] has been confirmed the velocity of ions

is approaching to the light speed c by studying the intensity-induced frequency shift and

precessional frequency rotationally polarized waves in magnetized plasma. However, re-

searchers [105–113] have only focused their concentration to study the impact of relativistic

ions on nonlinear IAWs in e-p-i unmagnetized plasmas by considering either two-terms or

three-terms expansions of relativistic Lorentz factor (RLF). Additionally, Hafez [110, 111]

has been clearly mentioned that one needs to consider more than three-terms expansion of

RLF for improving accuracy of the IAWs propagation characteristics in relativistic plas-

mas. Further, a few authors [27, 105] have investigated the nonlinear propagation char-

acteristics of IAWs in magnetized relativistic plasmas by considering only two-terms ex-

pansion RLF. Malik [105] has been investigated the features of IAWs in weakly relativis-

tic magnetized warm plasma and focused exclusively on the Maxwellian distribution sys-

tem. Mushtaq and Shah [27] have examined the oblique two-dimensional IAWs described

Zakharov-Kuznetsov equation in a weakly relativistic, rotating magnetized e-p-i plasma

having Maxwellian distributed electrons and positrons. To the best of author’s knowledge,

no research work has been made previously in exploring the nonlinear propagation of IAWs

in magnetized plasma having (α,q)-distributed electrons and positions by taking RLF up

to 11 terms. Thus, the presented work explores the propagation of ion-acoustic solitons

(IASs) by consider an magnetized plasma environment consisting of worm ions fluids,

(α,q)-distributed electrons and (α,q)-distributed positions, where the ion fluid velocity is

comparable to the speed of light. The effect of parameter on the propagation characteris-
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tics of IASs is investigated by deriving the Korteweg de-Vries equation from the proposed

theoretical model equations.

3.2 THEORETICAL MODEL EQUATIONS

Let us consider a three component collision-less e-p-i plasma with the presence of relativis-

tic ion-fluids and having nonthermal (α,q)- distributed charged particles. The considered

plasma system is presumed to be magnetized, relativistic, rotating and propagates in the

(x,y) plane, where the external magnetic field is directed to the x axis, i.e. B0 = B0x̂. In

this scenario, the normalized theoretical equations governing the nonlinear IASs in a rotat-

ing magnetized relativistic plasmas can be defined as:

∂ni

∂ t
+

∂

∂x
(niui)+

∂

∂y
(nivi) = 0 (3.1)

∂

∂ t
(γui)+ui

∂

∂x
(γui)+ vi

∂

∂y
(γui)+

∂φ

∂x
+

σ

ni

∂ni

∂x
= 0 (3.2)

∂vi

∂ t
+ui

∂vi

∂x
+ vi

∂vi

∂y
+

∂φ

∂y
+

σ

ni

∂ni

∂y
−Ωcwi = 0 (3.3)

∂wi

∂ t
+ui

∂wi

∂x
+ vi

∂wi

∂y
+

∂φ

∂x
+Ωcvi = 0 (3.4)

Here ui,vi and wi represents the ion fluids velocity along the x,y and z axis, respectively.

These quantities are normalized by csi = (Te/mi) and ni is the i species particle density

normalized by their unperturbed density nr0 (r = i for ions, e for electrons and p for

positrons, respectively). We have taken E = −∇φ , where E is the electric field and φ

is the wave potential function normalized by (Ti/e). The angular velocity along the x axis

is Ω = Ω0x̂ (where x̂ is the unit vector and Ω0 is the magnitude of rotational frequency)

and ωci = eB0/mic is the ion gyro-frequency (where mi is the mass of ion and e is the mag-

nitude of electron charge) and Ωc = ωci +Ω0. The spacetime co-ordinates are normalized

by the Debye length λD =
√

Te/4πnie2 (the ion Plasma period) and σ = Ti/Te is the ratio

of ion to electron temperature. Also the relativistic Lorentz factor γ = 1/
√(

1− γ2
0
)

and

γ0 =
ui
c .
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In plasma physics, the charge distribution is necessary to describe the statistical distribution

of charged particles (such as electrons and ions) for studying plasma dynamics, collisions,

transport phenomena as well as for developing models and simulations of plasma behavior

in various applications such as fusion research, space physics and semiconductor process-

ing. Maxwellian velocity distribution represents the most probable distribution function

satisfying the macroscopic conditions imposed on the system and occurs when particles

are in thermal equilibrium. However, the velocity distribution of particles in space plas-

mas has a non-Maxwellian superthermal tail and decreases generally as a power law of the

velocity. Since the inertialess charged particles are nonthermality extensive, we assume

the (α,q)-distribution for their thermal pressure. Hence, based on this (α,q)-distribution

function the electron density (Ne) and the positron density (Np) can be written as

Ne = ρ

[
1+(q−1)

(
eφ

Te

)] q+1
2(q−1) ×

[
1−B1

(
eφ

Te

)
+B2

(
eφ

Te

)2
]
,

Np = (1−ρ)
[
1− (q−1)

(
eδφ

Tp

)] q+1
2(q−1) ×

[
1+B1

(
eδφ

Tp

)
+B2

(
eδφ

Tp

)2
]
,

 (3.5)

where B1 = 16αq
3−14q+15q2+12α

and B2 = 16αq(2q−1)
3−14q+15q2+12α

. And e,Te and Tp are the magni-

tude of the electron charge, electron temperature and positron temperature, respectively.

ρ = 1
1−p , where p =

Np0
Ne0

is the ratio of positron number density and electron number den-

sity and δ = Te
Tp

is the temperature ratio of electron to positron. Here, Eq. (3.5) is ap-

plicable if nonthermality and nonextensivity may act concurrently on nature (rarefactive

and compressive) of the acoustic wave. Later the proper ranges of α and q are defined in

Refs. [52,53] based on the physical cut-off obligatory by q≥ 5/7, and αMax =(2q−1)/4 as

for superthermal case 0.33> q> 1,α = 0; for isothermal case q= 1,α = 0; for nonthermal

case q = 1,0 < α < 0.35; for subthermal case q > 1,α = 0.35. With the consideration of

charge neutrality condition, the plasma environment is closed by the following normalized
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Poisson’s equation:

∇
2
φ = 1+ k1φ + k2φ

2 + k3φ
3 + k4φ

4 + ...−ni (3.6)

where

k1 = [ρ − (1−ρ)δ ]×
(

q+1
2

−B1

)
,

k2 =
[
ρ +(1−ρ)δ 2]×(B2 −

(q+1)B1

2
+

(q+1)(3−q)
8

)
,

k3 =
[
ρ − (1−ρ)δ 3]×((q+1)B2

2
− (q+1)(3−q)B1

8
+

(q+1)(3−q)(5−3q)
48

)
,

k4 =
[
ρ +(1−ρ)δ 4]×(

(q+1)(3−q)B2
8 − (q+1)(3−q)(5−3q)B1

48 + (q+1)(3−q)(5−3q)(7−5q)
384

)
.

It is noted that the considered plasma equations are equivalent with the Ref. [27] if q = 1

and α = 0.

3.3 FORMATION OF KDV EQUATION

To study the propagation of the ion acoustic wave, the basic equations are simplified by us-

ing conventional reductive perturbation technique. For this reason, the following stretching

coordinates are introduced

ξ = ε
1/2(lx+my− vpt),τ = ε

3/2t, (3.7)

where vp is the normalized phase velocity of IASs in (ξ ,τ) plane, l = cosθ , m = sinθ and

l2 +m2 = 1 and θ is the angle. From equation (3.7), the operators are defined as

Chapter 3: SOLITON PROPAGATION IN MAGNETIZED PLASMA SYSTEM 40



∂τ

∂ t = ε3/2,

∂ξ

∂ t =−
√

εvp,

∂ξ

∂x =
√

εl,
∂ξ

∂y =
√

εm,

∂ξ

∂ z = 0.


(3.8)

Hence, Equations. (3.1)-(3.4) and (3.6) are then converts into

ε
3/2 ∂ni

∂τ
−
√

εvp
∂ni

∂ξ
+
√

εl
∂

∂ξ
(niui)+

√
εm

∂

∂ξ
(nivi) = 0, (3.9)

ε
3/2 ∂

∂τ
(γui)−

√
εvp

∂

∂τ
(γui)+

√
εlui

∂

∂ξ
(γui)+

√
εmvi

∂

∂ξ
(γui)+

√
εl

∂φ

∂ξ
+
√

εl
σ

ni

∂ni

∂ξ
= 0,

(3.10)

ε
3/2 ∂vi

∂τ
−
√

εvp
∂vi

∂τ
+
√

εlui
∂vi

∂ξ
+
√

εmvi
∂vi

∂ξ
+
√

εm
∂φ

∂ξ
+
√

εm
σ

ni

∂ni

∂ξ
−Ωcwi = 0,

(3.11)

ε
3/2 ∂wi

∂τ
−
√

εvp
∂wi

∂τ
+
√

εlui
∂wi

∂ξ
+
√

εmvi
∂wi

∂ξ
+
√

εl
∂φ

∂ξ
+Ωcvi = 0, (3.12)

ε
(
l2 +m2)(∂ 2φ

∂ξ 2

)
= 1+ k1φ + k2φ

2 + k3φ
3 + k4φ

4 + ...−ni, (3.13)

where ε is a dimensionless expansion parameter. The expansion of dependent variables are

defined as:

ni = 1+ εn1 + ε2n2 + ε3n3 + ε4n4 + ...

ui = u0 + εu1 + ε2u2 + ε3u3 + ε4u4 + ...

vi = ε2v1 + ε3v2 + ε4v3 + ε5v4 + ...

wi = ε3/2w1 + ε5/2w2 + ε7/2w3 + ε9/2w4 + ...

φ = εφ1 + ε2φ2 + ε3φ3 + ε4φ4 + ...


. (3.14)

Substituting equation (3.7) and (3.14) into equation (3.9)-(3.13), one can obtain the nonlin-

ear partial differential equations (PDEs) by collecting the order of ε . Now, the lowest order
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of ε yields,

(lu0 − vp)
∂n1

∂ξ
+ l

∂u1

∂ξ
= 0, (3.15)

(lu0 − vp)γ1
∂u1

∂ξ
+ l

∂φ1

∂ξ
+ lσ

∂n1

∂ξ
= 0, (3.16)

m
∂φ1

∂ξ
+σm

∂n1

∂ξ
−Ωcw1 = 0, (3.17)

(lu0 − vp)
∂w1

∂ξ
+Ωcv1 = 0, (3.18)

n1 = k1φ1. (3.19)

Simplifying equations (3.15)-(3.19), we obtain

n1 = ζ1u1,

u1 = ζ2φ1,

w1 =−mγ1ζ2
Ωcζ1

∂φ1
∂ξ

,

v1 = ζ3
∂ 2φ1
∂ξ 2 ,


(3.20)

where

ζ1 =− l
(lu0 − vp)

,

ζ2 =
l(lu0 − vp)

−γ1(lu0 − vp)2 + l2σ
,

ζ3 =
lmζ2γ1

Ωcζ1
,

γ1 =
∞

∑
r=0

(−1)r (−1
2

)
Γ
(
−1

2

)
r!
(
−1

2 − r
)

Γ
(
−1

2 − r
) (2r+1)β

2r.

Here β = u0
c is the relativistic streaming factor, w1 is the E×B drift along z axis and v1 is

the polarization drift along y axis. The linear phase velocity for the ion acoustic wave can
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be obtained using equation (3.15) to (3.18) as

vp =

[
u0 +

(
1

γ1k1
+

σ

γ1

) 1
2
]

l. (3.21)

Finally, from the next order of ε the following PDEs are obtained

(lu0 − vp)
∂n2

∂ξ
+ l

∂u2

∂ξ
+ l

∂

∂ξ
(n1u1)+

∂n1

∂τ
+m

∂v1

∂ξ
= 0, (3.22)

(lu0 − vp)γ1
∂u2

∂ξ
+ lσ

∂n2

∂ξ
+ l

∂φ2

∂ξ
+ γ1

∂u1

∂τ
+(lu0γ2 + lγ1 − vpγ2)u1

∂u1

∂ξ
− lσn1

∂n1

∂ξ
= 0,

(3.23)

(lu0 − vp)
∂v1

∂ξ
−mσn1

∂n1

∂ξ
+mσ

∂n2

∂ξ
−Ωcw2 +m

∂φ2

∂ξ
= 0, (3.24)

(lu0 − vp)
∂w2

∂ξ
+ lu1

∂w1

∂ξ
+

∂w1

∂τ
+Ωcv2 = 0, (3.25)

(l2 +m2)
∂ 2φ2

∂ξ 2 − k2φ
2
1 − k1φ2 +n2 = 0, (3.26)

where

γ2 =
∞

∑
r=1

(2r+1)!
(2r−1)!

(−1)r (−1
2

)
Γ
(
−1

2

)
r!
(
−1

2 − r
)

Γ
(
−1

2 − r
) β 2r

uo
.

Simplifying the above equations, we obtain the following nonlinear KdV equation for the

first-order electrostatic potential as,

∂φ1

∂τ
+Aφ1

∂φ1

∂ξ
+B

∂ 3φ1

∂ξ 3 = 0, (3.27)

where,

A =
l
2

[(
3− γ2

ζ1γ1
−

ζ 2
1 σ

γ1

)
ζ2 −

(
2k2

ζ1ζ 2
2 γ1

)]
,

B =
1

2ζ1ζ2

(
l

γ1ζ2
+mζ3

)
,

which are the coefficients of the nonlinear and dispersion term, respectively.
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3.4 SOLUTION OF KDV EQUATION

The KdV equation is a non-linear one-dimensional equation which describes small ampli-

tude non-linear waves in plasmas. One can use the following traveling wave transformation

to find the analytical wave solutions of the KdV equation (3.27):

χ = ξ −U0τ, (3.28)

where U0 stands for the constant reference speed. Using the transformation (3.27) in the

KdV equation (3.28), one can obtain

−U0
dφ1

dχ
+Aφ1

dφ1

dχ
+B

d3φ1

dχ3 = 0. (3.29)

Now integrating equation (3.29) with respect to χ using boundary conditions, φ1 → 0, ∂φ1
∂ χ

→

0,... as χ →±∞, one can obtain

−U0φ1 +
A
2

φ
2
1 +B

d2φ1

dχ2 = 0, (3.30)

or,
d2φ1

dχ2 =
U0

B
φ1 −

A
2B

φ
2
1 . (3.31)

Equation (3.31) can be represent in planar dynamical system as
dφ1
dχ

= z,
dz
dχ

= U0
B φ1 − A

2Bφ 2
1 .

(3.32)

The dynamical system (3.32) can be represented a Hamiltonian system with Hamiltonian

function

H(φ1,z) =
z2

2
− U0

2B
φ

2
1 +

A
6B

φ
3
1 = h(say). (3.33)
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For any homoclinic orbit of the dynamical system (3.32) at (0,0), one can have H(φ1,z) =

0, which gives
z2

2
− U0

2B
φ

2
1 +

A
6B

φ
3
1 = 0,

or, z =±
√

U0

B
φ1

√
1− A

3U0
φ1,

or,
dφ1

dχ
=±

√
U0

B
φ1

√
1− A

3U0
φ1,

or,
dφ1

φ1

√
1− A

3U0
φ1

=±
√

U0

B
dχ. (3.34)

Let A
3U0

φ1 = f 2, applying this equation into equation (3.34) and integrating, we obtain

∫ d f

f
√

1− f 2
=±

∫ 1
2

√
U0

B
dχ,

or, sech−1 f =±1
2

√
U0

B
χ,

or, f = sech

(
±1

2

√
U0

B
χ

)
. (3.35)

Using f in equation (3.35), one can obtain

φ1 = φ0sech2
{

χ

W

}
. (3.36)

Equation (3.36) represents the solitary wave solution of the KdV equation (3.27) where

φ0 =
3U0
A and W =

√
4B
U0

are the amplitude and width of the soliton, respectively.

Chapter 3: SOLITON PROPAGATION IN MAGNETIZED PLASMA SYSTEM 45



Figure 3.1: The influence of q on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.1, σ = 0.05, δ = 1, Ω0 = 0.001, ωci = 1, θ = 450, β = 0.1 and U0 = 0.0075.
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Figure 3.2: The influence of δ on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.2, q = 0.1, σ = 0.1, Ω0 = 0.001, ωci = 1, θ = 300, β = 0.5 and U0 = 0.0075.
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Figure 3.3: The influence of σ on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.1, q = 0.1, δ = 1, Ω0 = 0.001, ωci = 1, θ = 300, β = 0.5 and U0 = 0.0075.
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Figure 3.4: The influence of p on the IASs in e-p-i relativistic rotating magnetized plasmas
with q = 0.1, σ = 0.1, δ = 1, Ω0 = 0.001, ωci = 1, θ = 300, β = 0.5 and U0 = 0.0075.
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Figure 3.5: The variation of IASs width with regards to Ω0 and θ for the e-p-i relativistic
rotating magnetized plasmas with p = 0.2, q = 0.5, σ = 0.1, δ = 1, ωci = 1, β = 0.5 and
U0 = 0.0075.
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Figure 3.6: The influence of β on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.2, q = 0.5, σ = 0.1, δ = 1, Ω0 = 0.001, ωci = 1, θ = 300, and U0 = 0.0075.
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3.5 RESULTS AND DISCUSSIONS

In this section, the effects of plasma parameters on the small but finite amplitude non-

linear propagation characteristics of IASs have been discussed via the soliton solution of

KdVE. In the presented analysis, the parametric values of the parameters are assumed

based on the Refs. [27], which are relevant to some astrophysical and space environ-

ment [116–119, 122, 123]. Figures 3.1, 3.2, 3.3 and 3.4 display the effect of q,δ , σ and

p on the nonlinear propagation of IASs in the relativistic plasma by considering the RLF

up to 11 terms and the remaining parameter constant. It is found from these figures that the

amplitude and width of IASs are decreasing with the increase of non-exensivity, electron

to positron temperature ratio’s, ion to electron temperature ratio’s and positron to elec-

tron density ratio’s. Figure 3.1 also indicates that the considered plasma environment sup-

ports both of compressive and rarefactive IASs in the presence of super-thermality index,

whereas the considered plasma supports only the compressive IASs in the presence of sub-

thermality index for electrons and positrons. Figure 3.5 displays the variation of width of

the IASs with regards to the magnitude of rotational frequency and obliqueness. It is found

from Figure 3.5 that the obliqueness significantly modified the width of IASs in which the

width is monotonically increasing upto 450 and then decreasing. Whereas, the widths of

IASs are decreasing with the increasing values of the magnitude of rotational frequency.

Finally, the effect of relativistic streaming index (β ) on the nonlinear propagation of IASs

is displayed in Figure 3.6 by considering the remaining parameters constant. It is found

from this Figure 3.6 that the variation of IASs are very slightly changes with increase of

relativistic streaming index up to less than 0.1, like weakly relativistic plasma [105–113].

But, the peak amplitudes of nonlinear propagation of IASs are increasing with the increase

of relativistic streaming index up to greater than 0.1 due to the consideration of RLF up

to 11 terms. It is provided that one needs to consider not only the RLF up to 11 terms but

also more higher order terms of RLF for improving of the nonlinear propagation of IASs in

the relativistic plasmas, but the beyond the scope of this investigation. It is also observed

from the physical perspective that the deriving force is notably contributed to produce the
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IASs with the decrease (increase) of ion temperature (RLF), as a result, the energy of soli-

ton increases with the decrease (increase) of ion temperature (RLF). Whereas the restoring

force contributes significantly with the increase of positron temperature. Thus, the inves-

tigations made in this article may be very useful in understanding the nature of obliquely

propagating IASs dynamics of nonextensive relativistic plasmas not only in laser-plasma

interaction, quark-gluon environment, dark-matter hole, solar atmosphere, etc but also lab-

oratory verification.

3.6 CONCLUSIONS

In this work, we have investigated the obliquely propagation characteristics of IASs of the

relativistic three component magnetized e-p-i plasmas having ion fluids and q-distributed

electrons as well as positrons. The KdVE has been derived by implementing the reductive

perturbation method. The effects of obliqueness and plasma parameters on the propaga-

tion characteristic of IASs described by KdVE have investigated by taking the RLF up

to 11 terms. It is found that the proposed relativistic plasma environment is supported

both of compressive and rarefactive IASs in the presence of superthermality. The plasma

parameters are significantly modified the amplitudes and widths of IASs by their increas-

ing numeric values. The relativistic streaming factor is remarkably modified the nonlinear

propagation of IASs in which the energy of solitons slightly gains (considerably gains) with

the increase of relativistic streaming index up to less than 0.1 ( greater than 0.1). Thus, the

outcomes described in this work may be helpful in understanding the high-energy protons

motion existed in the Van Allen radiation belts [124], and pulsar magnetospheres [33], the

rotating flows of magnetized plasma in cosmic environment and solar atmosphere [120],

etc. It is still now required to do research work on the propagation characteristics of IASs

around the critical and super-critical values of any specific plasma parameter by consider-

ing the magnetized relativistic plasma environment, which will be reported in our future

investigations.
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Chapter 4: SOLITON PROPAGATION NEAR
CRITICAL VALUES IN MAGNETIZED
PLASMA SYSTEM

4.1 INTRODUCTION

This chapter extends the previous one, illustrating methods to overcome challenges in

studying soliton propagation around critical values within the considered plasmas. It is

found from equation (3.36) that φ1 → ∞ when the nonlinear coefficient A → 0, signifying

that the KdV equation is incapable of accurately describing the solitary wave phenomena

under such circumstances. The nonlinear coefficients A of the KdV equation as in equation

(3.27) can nullify for certain critical values of the physical parameters. By considering

A = 0, one can precisely ascertain the critical values of any specific parameter. To mitigate

this limitation, one may derive the KdV-type equation by taking higher-order nonlinearities.

In the plasmas, the modified form of KdV equation provides a more precise description of

the small amplitude nonlinear waves. The modified form of KdV equation is a nonlinear

PDE that appears in various contexts, such as fluid dynamics, nonlinear optics, and plasma

physics. Like the KdV equation, the modified form of KdV equation, so called the mKdV

equation supports soliton solutions, which are stable, localized waves that can travel long

distances without changing its shaped. It is noted that no research work has been done

previously to study the IAS propagation in the proposed plasmas that presented in section

3.2 by deriving mKdV equation to best of our knowledge. Thus, this chapter explores the

following:

• The derivation of mKdV equation with the existence of critical values by taking

higher-order correction of the reductive technique from the considered plasma envi-

ronment.

• The small but finite amplitude of the IASs are investigated around the critical values

with the influences of related plasma parameters.
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• The effect of the obliqueness and the magnitude of the rotational frequency on the

width of the IASs are investigated.

• The effect of the relativistic streaming factor by taking upto 20 terms are investigated.

4.2 FORMATION OF MKDV EQUATION

To study the acoustic wave phenomena around the critical values, we consider the stretching

coordinates by taking the higher order correction of the reductive perturbative method as

ξ = ε(lx+my− vpt),τ = ε
3t. (4.1)

From equation (4.1), the operators can be defined as

∂τ

∂ t = ε3,

∂ξ

∂ t =−εvp,

∂ξ

∂x = εl,
∂ξ

∂y = εm,

∂ξ

∂ z = 0.


(4.2)

Hence, equations (3.1)-(3.4) and (3.6) are then converts to

ε
3 ∂ni

∂τ
− εvp

∂ni

∂ξ
+ εl

∂

∂ξ
(niui)+ εm

∂

∂ξ
(nivi) = 0, (4.3)

ε
3 ∂

∂τ
(γui)− εvp

∂

∂τ
(γui)+ εlui

∂

∂ξ
(γui)+ εmvi

∂

∂ξ
(γui)+ εl

∂φ

∂ξ
+ εl

σ

ni

∂ni

∂ξ
= 0, (4.4)

ε
3 ∂vi

∂τ
− εvp

∂vi

∂τ
+ εlui

∂vi

∂ξ
+ εmvi

∂vi

∂ξ
+ εm

∂φ

∂ξ
+ εm

σ

ni

∂ni

∂ξ
−Ωcwi = 0, (4.5)

ε
3 ∂wi

∂τ
− εvp

∂wi

∂τ
+ εlui

∂wi

∂ξ
+ εmvi

∂wi

∂ξ
+ εl

∂φ

∂ξ
+Ωcvi = 0, (4.6)

ε
2 (l2 +m2)(∂ 2φ

∂ξ 2

)
= 1+ k1φ + k2φ

2 + k3φ
3 + k4φ

4 + ...−ni. (4.7)
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Equations (4.3)-(4.7) are then converted in terms of various power of ε by using equation

(4.1) and equation (3.14). From the lowest order of ε , we obtain the same equation as in

equation (3.15)-(3.16) and (3.19). The obtained linear phase velocity is also in same form

as in equation (3.21). From equation (4.5) and (4.6), we obtain

−Ωcw1 = 0,

Ωcv1 = 0.

 (4.8)

The solution of the first order equations of ε are determined as

n1 = ζ1u1,

u1 = ζ2φ1,

w1 = 0,

v1 = 0.


(4.9)

From the next order of ε , we determine the following PDEs:

(lu0 − vp)
∂n2

∂ξ
+ l

∂u2

∂ξ
+ l

∂

∂ξ
n1u1 +m

∂v1

∂ξ
= 0, (4.10)

(lu0 − vp)γ1
∂u2

∂ξ
+ lσ

∂n2

∂ξ
+ l

∂φ2

∂ξ
+(lu0γ2 + lγ1 − vpγ2)u1

∂u1

∂ξ
− lσn1

∂n1

∂ξ
= 0, (4.11)

−Ωcw2 = 0, (4.12)

Ωcv2 = 0, (4.13)

−k2φ
2
1 − k1φ2 +n2 = 0. (4.14)
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The solutions of these equations are also obtained as

n2 = ζ 2
1 ζ 2

2 φ 2
1 +ζ1u2,

u2 = ζ4φ 2
1 +ζ2φ2,

w2 = 0,

v2 = 0.


(4.15)

where ζ4 =
{

ζ 3
2
2

(
σζ 2

1 − γ2
ζ1
+ γ1

)}
. By implying equation (4.15) into equation (4.14), we

obtain (
ζ

2
1 ζ

2
2 +ζ1ζ4 − k2

)
φ

2
1 +(ζ1ζ2 − k1)φ2 = 0, (4.16)

which gives the critical point C f =
(
ζ 2

1 ζ 2
2 +ζ1ζ4 − k2

)
= 0. Finally, the next order of ε

yields

(lu0 − vp)
∂n3

∂ξ
+ l

∂u3

∂ξ
+m

∂v2

∂ξ
+ l

∂

∂ξ
(n1u2)+ l

∂

∂ξ
(n2u1)+m

∂

∂ξ
(n1v1)+

∂n1

∂τ
= 0,

(4.17)

(lu0 − vp)γ1
∂u3
∂ξ

+ lσ ∂n3
∂ξ

+ l ∂φ3
∂ξ

+(lu0γ2 + lγ1 − vpγ2)
∂

∂ξ
(u1u2)

−lσ ∂

∂ξ
(n1n2)+ lσn2

1
∂n1
∂ξ

+ lγ2u2
1

∂u1
∂ξ

+mγ1v1
∂u1
∂ξ

+ γ1
∂u1
∂τ

= 0,
(4.18)

−Ωcw3 = 0, (4.19)

Ωcv3 = 0, (4.20)

(l2 +m2)
∂ 2φ1

∂ξ 2 − k3φ
3
1 −2k2φ1φ2 − k1φ3 +n3 = 0. (4.21)

By eliminating the third-order quantities, we obtain the following nonlinear mKdV equa-

tion which describes obliquely propagating ion-acoustic waves in relativistic, magnetized

and collisionless e-p-i plasmas:

∂φ1

∂τ
+A

′
φ

2
1

∂φ1

∂ξ
+B

′ ∂ 3φ1

∂ξ 3 = 0, (4.22)
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where

A
′
=

l
2

{
3ζ1ζ

2
2 − 3k3

ζ1ζ 2
2 γ1

+9ζ4 −
3ζ4γ2

ζ1γ1
−
(
2ζ1ζ 2

2 +3ζ4
)

ζ 2
1 σ

γ1
+

ζ 2
2 γ2

γ1

}
,

B
′
=

l
2ζ1ζ 2

2 γ1
.

4.3 SOLUTION OF MKDV EQUATION

To determine the soliton solution of the mKdV equation as in equation (4.22), one can be

considered the following reference frame:

χ = ξ −U0τ, (4.23)

where U0 stands for the constant reference speed. Using the transformation (4.23) in the

modified KdV equation (4.22), one can obtain

−U0
dφ1

dχ
+A

′
φ

2
1

dφ1

dχ
+B

′ d3φ1

dχ3 = 0. (4.24)

Now integrating equation (4.24) with respect to χ using boundary conditions, φ1 → 0, dφ1
dχ

→

0,... as χ →±∞, one can obtain

−U0φ1 +
A

′

3
φ

3
1 +B

′ d2φ1

dχ2 = 0, (4.25)

or,
d2φ1

dχ2 =
U0

B′ φ1 −
A

′

3B′ φ
3
1 . (4.26)

Equation (4.26) can be represent in planar dynamical system as
dφ1
dχ

= z
′
,

dz
′

dχ
= U0

B′ φ1 − A
′

3B′ φ
3
1 .

(4.27)
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The dynamical system (4.27) is a wamiltonian system with Hamiltonian function

H(φ1,z
′
) =

(z
′
)2

2
− U0

2B′ φ
2
1 +

A
′

12B′ φ
4
1 . (4.28)

For any homoclinic orbit of the dynamical system (4.28) at (0,0), one can have H(φ1,z
′
) =

0, which gives
(z

′
)2

2
− U0

2B′ φ
2
1 +

A
′

12B′ φ
4
1 = 0,

or, z
′
=±

√
U0

B′ φ1

√
1− A′

6U0
φ 2

1 ,

or,
dφ1

dχ
=±

√
U0

B′ φ1

√
1− A′

6U0
φ 2

1 ,

or,
dφ1

φ1

√
1− A′

6U0
φ 2

1

=±
√

U0

B′ dχ. (4.29)

Let A
′

6U0
φ 2

1 = ( f
′
)2. By applying this into equation (4.29) and then integrating, we obtain

∫ d f
′

f ′
√

1− ( f ′)2
=±

∫ √U0

B′ dχ,

or, sech−1 f
′
=±

√
U0

B′ χ,

or, f
′
= sech

(
±
√

U0

B′ χ

)
. (4.30)

Using f
′
in equation (4.30), one can obtain

φ1 = φmsech
{

χ

W ′

}
. (4.31)

Equation (4.31) represents the solitary wave solution of the modified KdV equation (4.22),

where φm =
√

6U0
A′ and W

′
=
√

B′

U0
are the amplitude and width of the soliton, respectively.
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Figure 4.1: The influence of q (qc < q) on the IASs in e-p-i relativistic rotating magnetized
plasmas with p = 0.2, α = 0.1, σ = 0.1, δ = 1, Ω0 = 0.001, ωci = 1, θ = 300, β = 0.5 and
U0 = 0.0075.
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Figure 4.2: The influence of δ on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.1, α = 0.01, q = 0.1(qc < q), σ = 0.1, Ω0 = 0.001, ωci = 1, θ = 300, β = 0.5
and U0 = 0.0075.
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Figure 4.3: The influence of σ on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.1, α = 0.01, q = 0.1(qc < q), δ = 1, Ω0 = 0.001, ωci = 1, θ = 300, β = 0.5
and U0 = 0.0075.
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Figure 4.4: The influence of p on the IASs in e-p-i relativistic rotating magnetized plasmas
with α = 0.01, q = 0.1(qc < q), σ = 0.1, δ = 1, Ω0 = 0.001, ωci = 1, θ = 300, β = 0.5
and U0 = 0.0075.
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Figure 4.5: The influence of θ on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.2, α = 0.01, q = 0.1(qc < q), σ = 0.1, δ = 1, Ω0 = 0.001, ωci = 1, β = 0.5
and U0 = 0.0075.
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Figure 4.6: The influence of β on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.2, α = 0.1, q = 0.1(qc < q), σ = 0.1, δ = 1, Ω0 = 0.001, ωci = 1, θ = 450 and
U0 = 0.0075.

Chapter 4: SOLITON PROPAGATION NEAR CRITICAL VALUES IN MAGNETIZED
PLASMA SYSTEM

65



4.4 RESULTS AND DISCUSSIONS

In this section, the propagation characteristics of the small but finite amplitude nonlinear

IASs have been discussed for the effects of plasma parameters by analyzing the soliton

solution of the mKdV equation. In the presented study, the values of the parameters are

assumed based on ref [27], which are relevant for astrophysical and space environments.

To study the soliton propagation, one needs to determine the critical values of any one pa-

rameter. With the parametric values of the parameters held constant at p= 0.2,σ = 0.1,δ =

1 and α = 0, the critical value is determined to be q = qc = −0.49. Figures 4.1, 4.2, 4.3,

and 4.4 displays the effect of q,δ ,σ , and p on the nonlinear propagation of IASs around the

critical values in the relativistic plasma by taking the RLF up to 20 terms and the remain-

ing parameter constants. It is found the investigated e-p-i plasma provides finite-amplitude

solitary structures, with characteristics such as polarity, amplitude, and width being signif-

icantly dependent on the plasma parameters. Figure 4.1 shows the amplitude and width

of the IASs decreases (increases) within the range −0.41 < q < 0.08 (0.08 < q < 0.21),

and there are no IASs between the range 0.22 < q < 0.8 and then again decreases with

the increase of q. It is also found for the considered plasmas that the effect of the nonex-

tensivity parameter q supports compressive IASs in the presence of the super-thermality

index as well as the sub-thermality index, for electrons and positrons. It is further noted

that for q > qc, hump-shaped IASs are present. Analysis of figures 4.2, 4.3, and 4.4 shows

that the amplitude and width of the IASs are decreasing (increasing) with the increase of

the ion to electron temperature ratio’s and positron to electron density ratio’s (electron to

positron temperature ratio’s). In Figure 4.5 the obliqueness significantly modifies the width

and amplitude of the IASs, in which the amplitude increases with the increasing value of

obliqueness while the width is decreasing. However, it is also found that the magnitude of

the rotational frequency has no impact on the width of the IASs.

Finally, Figure 4.6 displays the effect of relativistic streaming index (β ) on the nonlinear

propagation of IASs by considering the remaining parameters constant. The variation of

IASs are very slightly changing with the relativistic streaming index up to less than 0.1, like
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weakly relativistic plasma [105–113]. But the peak amplitudes of nonlinear propagation of

IASs are increasing with the increase of relativistic streaming index up to greater than 0.1

due to the consideration of RLF up to 20 terms. It is recommended that, for advancing the

nonlinear propagation of IASs in relativistic plasmas, one should consider not only the RLF

up to 20 terms but also additional higher-order terms of the RLF, although this is beyond

the scope of this investigation. From a physical perspective, it is evident that the driving

force remarkably influences the generation of IASs with a decrease in ion temperature (or

an increase in RLF), resulting in an increase in the soliton’s energy. The restoring force,

on the other hand, becomes notably significant with an increase in positron temperature.

Thus, the investigations presented in this article may be highly valuable for understanding

the dynamics of obliquely propagating IASs in (α,q)−distributed relativistic plasmas not

only in contexts such as laser-plasma interactions, quark-gluon environments, dark-matter

anomalies, and the solar atmosphere but also for laboratory verification.

4.5 CONCLUSIONS

This chapter has been investigated the oblique propagation characteristics of IASs for

the relativistic three-component magnetized e-p-i plasmas having ion fluids and (α,q)-

distributed electrons as well as positrons. The mKdV equation has been derived by using

the reductive perturbation method. By using the solution of this equation, the effects of

obliqueness and plasma parameters on the propagation characteristic of IASs incorporat-

ing the RLF up to 20 terms have investigated. It is found that the proposed relativistic

plasma environment has supported the compressive IASs in the presence of superthermal-

ity. Also this analysis helps in understanding how varying q influences the formation and

characteristics of solitons in a relativistic plasma environment in the presence of popula-

tion parameter α . Therefore, the plasma parameters significantly modified the amplitudes

and widths of IASs by their increasing numeric values. The relativistic streaming factor

is remarkably modified the nonlinear propagation of IASs in which the energy of solitons

slightly gains (considerably gains) with the increase of relativistic streaming index up to
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less than 0.1 ( greater than 0.1) around the critical values for nonextensivity. Consequently,

the findings presented in this chapter may be contributed to understanding the nature of

wave phenomena in some astrophysical and space environments, such as high-energy pro-

ton motion in the Van Allen radiation belts [124], pulsar magnetospheres [33], magnetized

plasma rotating flows in cosmic environments, and solar atmospheres [120].
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Chapter 5: SOLITON PROPAGATION IN
MAGNETIZED RELATIVISTIC PLASMAS
INVOLVING QUARTIC NONLINEARITY

5.1 INTRODUCTION

This chapter extends the previous chapters 3 and 4, illustrating methods to overcome chal-

lenges in studying the propagation IASs in a relativistic magnetized plasma around super-

critical values. It is found from equations (3.36) and (4.31) that φ1 → ∞ when the nonlinear

coefficients A → 0 and A′ → 0 of the KdV and mKdV equations, respectively at the same

time. This indicates that both KdV and mKdV equations fails to accurately describe the

solitary wave phenomena under the above conditions. The nonlinear coefficients A and A′

of the KdV and mKdV equations as in equations (3.27) and (4.22) can become zero at the

same time for specific values of the physical parameters. One can precisely determine the

supercritical values of any particular parameter by setting A = 0 and A′ = 0 at the same

time with the consideration of remaining parameters constant. To address this limitation,

the higher-order nonlinearities can be considered, leading to the derivation of the KdV

equation with quartic nonlinearity. Thus, the main contribution of this chapter is to derive

KdV equation involving more higer-order nonlinearity with the existence of supercritical

values from our considered plasma system. Some other contributions are as follows:

• The small but finite amplitude of the IASs around the super-critical values with con-

sideration of the effects of related plasma parameters.

• The impact of obliqueness and the magnitude of rotational frequency on the IASs

width around the super-critical values.

• The influence of the relativistic streaming factor, analyzing up to 20 terms of the RLF

on the IASs around the super-critical values.
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5.2 FORMATION OF KDV EQUATION WITH QUARTIC NONLIN-
EARITY

To study the acoustic wave phenomena around the super-critical values, we consider the

stretching coordinates by taking the higher order correction of the reductive perturbative

method as

ξ = ε
3
2 (lx+my− vpt),τ = ε

9
2 t. (5.1)

From equation (5.1), the operators can be defined as

∂τ

∂ t = ε9/2,

∂ξ

∂ t =−ε3/2vp,

∂ξ

∂x = ε3/2l,
∂ξ

∂y = ε3/2m,

∂ξ

∂ z = 0.


(5.2)

Hence, equation (3.1)-(3.4) and (3.6) are then converts to

ε
9/2 ∂ni

∂τ
− ε

3/2vp
∂ni

∂ξ
+ ε

3/2l
∂

∂ξ
(niui)+ ε

3/2m
∂

∂ξ
(nivi) = 0, (5.3)

ε9/2 ∂

∂τ
(γui)− ε3/2vp

∂

∂τ
(γui)+ ε3/2lui

∂

∂ξ
(γui)+ ε3/2mvi

∂

∂ξ
(γui)+

ε3/2l ∂φ

∂ξ
+ ε3/2l σ

ni

∂ni
∂ξ

= 0,
(5.4)

ε
9/2 ∂vi

∂τ
− ε

3/2vp
∂vi

∂τ
+ ε

3/2lui
∂vi

∂ξ
+ ε

3/2mvi
∂vi

∂ξ
+ ε

3/2m
∂φ

∂ξ
+ ε

3/2m
σ

ni

∂ni

∂ξ
−Ωcwi = 0,

(5.5)

ε
9/2 ∂wi

∂τ
− ε

3/2vp
∂wi

∂τ
+ ε

3/2lui
∂wi

∂ξ
+ ε

3/2mvi
∂wi

∂ξ
+ ε

3/2l
∂φ

∂ξ
+Ωcvi = 0, (5.6)

ε
3 (l2 +m2)(∂ 2φ

∂ξ 2

)
= 1+ k1φ + k2φ

2 + k3φ
3 + k4φ

4 + ...−ni. (5.7)

Using equation (5.1) and the quantities from equation (3.14) in to equations (5.3)-(5.7),

one can convert the above equation in terms of the power of ε . From the lowest order of ε ,

we obtain the same equation as in equations (3.15)-(3.16),(3.19) and (4.8). The solution of
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these equations are same as in equation (4.9) and the obtained linear phase velocity is also

in same form as in equation (3.21). From the next order of ε , we obtain the same equations

as in equations (4.10)-(4.11) and (4.14) that yields

mσ
∂n1

∂ξ
+m

∂φ2

∂ξ
−Ωcw2 = 0, (5.8)

(lu0 − vp)
∂w1

∂ξ
+Ωcv2 = 0. (5.9)

The solution of these equations are

n2 = ζ 2
1 ζ 2

2 φ 2
1 +ζ1u2,

u2 = ζ4φ 2
1 +ζ2φ2,

w2 =
m(ζ1ζ2σ+1)

Ωc

∂φ1
∂ξ

,

v2 = 0.


(5.10)

Using equation (5.10) in equation (4.14), the similar mathematical equation as in equation

(4.16) is obtained, which allow us to determine the critical point for any one parameter with

the remaining parameters constant by setting the nonlinear coefficient of KdV equation is

equal to zero. Now, the next order of ε yields

(lu0 − vp)
∂n3

∂ξ
+ l

∂u3

∂ξ
+m

∂v2

∂ξ
+ l

∂

∂ξ
(n1u2)+ l

∂

∂ξ
(n2u1)+m

∂

∂ξ
(n1v1) = 0, (5.11)

(lu0 − vp)γ1
∂u3
∂ξ

+ lσ ∂n3
∂ξ

+ l ∂φ3
∂ξ

+(lu0γ2 + lγ1 − vpγ2)
∂

∂ξ
(u1u2)

−lσ ∂

∂ξ
(n1n2)+ lσn2

1
∂n1
∂ξ

+ lγ2u2
1

∂u1
∂ξ

+mγ1v1
∂u1
∂ξ

= 0,
(5.12)

(lu0 − vp)
∂v1

∂ξ
−mσn1

∂n1

∂ξ
+mσ

∂n2

∂ξ
+m

∂φ2

∂ξ
−Ωcw3 = 0, (5.13)

(lu0 − vp)
∂w2

∂ξ
+ lu1

∂w1

∂ξ
+Ωcv3 = 0, (5.14)

−k3φ
3
1 −2k2φ1φ2 − k1φ3 +n3 = 0. (5.15)
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It is found that one can only solve the above equations by setting A = 0 and A′ = 0 at

the same time, which allows us to determine the supercritical values of any one parameter

along with the constant parametric values of the remaining parameters. As a result, the

solution of the above equations are determined as

n3 =
(
ζ 3

1 ζ 3
2 +2ζ 2

1 ζ2ζ4
)

φ 3
1 +2ζ 2

1 ζ 2
2 φ1φ2 +ζ1u3,

u3 = ζ5φ 3
1 +2ζ4φ1Φ2 +ζ2φ3,

w3 =
mζ1σ(ζ1ζ 2

2 +2ζ4)
Ωc

φ1
∂φ1
∂ξ

+ m(ζ1ζ2σ+1)
Ωc

∂φ2
∂ξ

,

v3 = ζ6
∂ 2φ1
∂ξ 2 ,


(5.16)

where ζ5 =
ζ 2

2
3

(
ζ 3

1 ζ 2
2 σ +3ζ 2

1 ζ4σ +ζ 2
2 γ2 − 3ζ4γ2

ζ1
+3ζ4γ1

)
and ζ6 =

l
Ω2

c

(
mσζ2 +

m
ζ1

)
. Fi-

nally, the following PDEs are obtained from the next order of ε:

(lu0 − vp)
∂n4
∂ξ

+ l ∂

∂ξ
(n1u3)+ l ∂

∂ξ
(u1n3)+ l ∂

∂ξ
(u2u2)+m ∂

∂ξ
(n1v2)+m ∂

∂ξ
(n2v1)

+l ∂u4
∂ξ

+m∂v3
∂ξ

+ ∂n1
∂τ

= 0,
(5.17)

(lu0 − vp)γ1
∂u4
∂ξ

+ lσ ∂n4
∂ξ

+ l ∂φ4
∂ξ

+(lu0γ2 + lγ1 − vpγ2)
{

∂

∂ξ
(u1u3)+u2

∂u2
∂ξ

}
−lσ

{
∂

∂ξ
(n1n3)+n2

∂n2
∂ξ

}
+ lσ

{
n2

1
∂n2
∂ξ

−n3
1

∂n1
∂ξ

}
+ lγ2u2

1
∂u2
∂ξ

+2lγ2u1u2
∂u1
∂ξ

+2lσn1n2
∂n1
∂ξ

+mγ1v2
∂u1
∂ξ

+mγ1v1
∂u2
∂ξ

+mγ2v1u1
∂u1
∂ξ

+ γ1
∂u1
∂τ

= 0,

(5.18)

(lu0 − vp)
∂v2

∂ξ
+ lu1

∂v1

∂ξ
+mσn2

1
∂n1

∂ξ
−mσ

∂

∂ξ
(n1n2)+mσ

∂n3

∂ξ
+m

∂φ3

∂ξ
−Ωcw4 = 0,

(5.19)

(lu0 − vp)
∂w3

∂ξ
+ lu1

∂w2

∂ξ
+(lu2 +mv1)

∂w1

∂ξ
+Ωcv4 = 0, (5.20)

(l2 +m2)
∂ 2φ1

∂ξ 2 − k4φ
4
1 −3k3φ

2
1 φ2 −2k2φ1φ3 − k2φ

2
2 − k1φ4 +n4 = 0. (5.21)

By eliminating the fourth-order quantities, we obtain the following nonlinear KdV equa-

tion with quartic nonlinearity which describes obliquely propagating IASs in relativistic,
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magnetized and collisionless e-p-i plasmas with the existence of supercritical values:

∂φ1

∂τ
+A

′′
φ

3
1

∂φ1

∂ξ
+B

′′ ∂ 3φ1

∂ξ 3 = 0, (5.22)

where

A
′′
= l

2γ1

{(
4ζ 2

1 ζ 2
2 γ1 +12ζ1ζ4γ1 +4ζ4γ2 +

12ζ5γ1
ζ2

+
2ζ 2

4 γ1
ζ 2

2

)
ζ2

−
(

3ζ 2
1 ζ 2

2 +8ζ1ζ4 +
4ζ5
ζ2

+
2ζ 2

4
ζ 2

2

)
σζ 2

1 ζ2 − 4k4
ζ1ζ 2

2
− 2ζ 2

4 (γ2−ζ1γ1)+4ζ2ζ5γ2
ζ1ζ2

}
,

B
′′
=

1
2ζ1ζ2

(
mζ6 +

l
ζ2γ1

)
.

5.3 SOLUTION OF KDV EQUATION WITH QUARTIC NONLIN-
EARITY

To determine the soliton solution of the quartic KdV equation as in equation (5.22), one

can assume in the following reference frame:

χ = ξ −U0τ, (5.23)

where U0 stands for the constant reference speed and Using the transformation (5.23) in

the quartic KdV equation (5.22), one can obtain

−U0
dφ1

dχ
+A

′′
φ

3
1

dφ1

dχ
+B

′′ d3φ1

dχ3 = 0. (5.24)

Now integrating equation (5.24) with respect to χ using boundary conditions, φ1 → 0, dφ1
dχ

→

0,... as χ →±∞, one can obtain

−U0φ1 +
A

′′

4
φ

4
1 +B

′′ d2φ1

dχ2 = 0,

or,
d2φ1

dχ2 =
U0

B′′ φ1 −
A

′′

4B′′ φ
4
1 . (5.25)
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Equation (5.25) can be represent in planar dynamical system as
dφ1
dχ

= z
′′
,

dz
′′

∂ χ
= U0

B′′ φ1 − A
′′

4B′′ φ
4
1 .

(5.26)

The dynamical system (5.26) is a Hamiltonian system with Hamiltonian function

H(φ1,z
′′
) =

(z
′′
)2

2
− U0

2B′′ φ
2
1 +

A
′′

20B′′ φ
5
1 . (5.27)

For any homoclinic orbit of the dynamical system (5.26) at (0,0), one can have H(φ1,z
′′
) =

0, which gives
(z

′′
)2

2
− U0

2B′′ φ
2
1 +

A
′′

20B′′ φ
5
1 = 0,

or, z
′′
=±

√
U0

B′′ φ1

√
1− A′′

10U0
φ 3

1 ,

or,
dφ1

dχ
=±

√
U0

B′′ φ1

√
1− A′′

10U0
φ 3

1 ,

or,
dφ1

φ1

√
1− A′′

10U0
φ 3

1

=±
√

U0

B′′ dχ. (5.28)

Let A
′′

10U0
φ 3

1 = ( f
′′
)2, applying this in equation (5.28) and by integrating we obtain

∫ d f
′′

f ′′
√

1− ( f ′′)2
=±

∫ 3
2

√
U0

B′′ dχ,

or, sech−1 f
′′
=±3

2

√
U0

B′′ χ,

or, f
′′
= sech

(
±3

2

√
U0

B′′ χ

)
. (5.29)
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Using f
′′

in equation (5.29), one can obtain

φ1 = φqsech
2
3

{
χ

W ′′

}
. (5.30)

Equation (5.30) represents the solitary wave solution of the quartic KdV equation (5.22)

where φq =
(

10U0
A′′

) 1
3 and W

′′
=
√

4B′′

9U0
are the amplitude and width of the soliton, respec-

tively.
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Figure 5.1: The supercritical point qsc of the IASs in e-p-i relativistic rotating magnetized
plasmas with p = 0.011, α = 0, σ = 0.5, δ = 1, Ω0 = 0.001, ωci = 1, θ = 450, β = 0.1
and U0 = 0.0075.
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Figure 5.2: The supercritical point psc of the IASs in e-p-i relativistic rotating magnetized
plasmas with α = 0, q =−0.1308, σ = 0.5, δ = 1, Ω0 = 0.001, ωci = 1, θ = 450, β = 0.1
and U0 = 0.0075.
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Figure 5.3: The influence of q on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.2 (psc < p), α = 0.1, σ = 0.1, δ = 1, Ω0 = 0.001, ωci = 1, θ = 450, β = 0.5
and U0 = 0.0075.
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Figure 5.4: The influence of δ on the IASs in e-p-i relativistic rotating magnetized plasmas
with p= 0.2 (psc < p), α = 0.01, q= 0.1 (qsc < q), σ = 0.1, Ω0 = 0.001, ωci = 1, θ = 300,
β = 0.5 and U0 = 0.0075.
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Figure 5.5: The influence of σ on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.2 (psc < p), α = 0.01, q = 0.1 (qsc < q), δ = 1, Ω0 = 0.001, ωci = 1, θ = 300,
β = 0.5 and U0 = 0.0075.
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Figure 5.6: The influence of p (psc < p) on the IASs in e-p-i relativistic rotating magnetized
plasmas with α = 0.01, q = 0.1 (qsc < q), σ = 0.1, δ = 1, Ω0 = 0.001, ωci = 1, θ = 300,
β = 0.5 and U0 = 0.0075.
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Figure 5.7: The variation of IASs width with regards to Ω0 and θ for the e-p-i relativistic
rotating magnetized plasmas with p = 0.2 (psc < p), α = 0.1, q = 0.1 (qsc < q), σ = 0.1,
δ = 1, ωci = 1, β = 0.5 and U0 = 0.0075.
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Figure 5.8: The influence of β on the IASs in e-p-i relativistic rotating magnetized plasmas
with p = 0.2 (psc < p), α = 0.1, q = 0.1 (qsc < q), σ = 0.1, δ = 1, Ω0 = 0.001, ωci = 1,
θ = 450 and U0 = 0.0075.

Chapter 5: SOLITON PROPAGATION IN MAGNETIZED RELATIVISTIC PLASMAS
INVOLVING QUARTIC NONLINEARITY

83



5.4 RESULTS AND DISCUSSIONS

In this section, the propagation characteristics of the small but finite amplitude nonlinear

IASs are discussed, considering the effects of plasma parameters by analyzing the soliton

solution of the KdV equation with quartic nonlinearity. In the presented analysis, the values

of the parameters are assumed based on reference [27], which are relevant for astrophysical

and space environments. It is observed that the KdV equation with quartic nonlinearity are

only obtained when the nonlinear coefficients of both KdV and mKdV equations are zero.

As a result, one can determine the supercritical values by setting the nonlinear coefficients

of these equations are equal to zero. It is found that our plasma environment supports the

supercritical values. Thus, our finding based on the above assumptions are given below.

The appearance of super-critical points qsc and psc for the nonextensivity parameter q

and density ratio p, respectively along with the constant values of the remaining parameters

are presented in Figures 5.1 and 5.2 by plotting the nonlinear coefficients A and A′ of the

KdV and mKdV equations. It is found from these figures that both A and A′ are becomes

zero at the points qsc and psc, which allows us to study the IASs propagation around qsc and

psc. Based on the appearance of super-critical points, Figures 5.3, 5.4, 5.5, and 5.6 show

the effects of q, δ , σ , and p on the nonlinear propagation of IASs in relativistic plasma

with the consideration of RLF up to 20 terms and other parameters held constant. The

findings indicate that the studied e-p-i plasma exhibits finite-amplitude solitary structures,

with their polarity, amplitude, and width being heavily dependent on the plasma parameters.

In Figure 5.1, increasing the nonextensivity parameter q leads to a decrease in the amplitude

and width of IASs within the range −0.41 < q < 0.2, followed by an increase in the range

0.2 < q < 0.27. There are no IASs found between 0.28 < q < 0.76. Beyond this interval,

further increases in q result in a decrease in the amplitude and width of IASs. It is also

observed that the nonextensivity parameter q supports compressive IASs in the presence of

both super-thermality and sub-thermality indices for electrons and positrons. The analysis

of Figures 5.4, 5.5, and 5.6 is also showed that the amplitude and width of the IASs decrease
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with the increase in the electron to positron temperature ratio’s, ion to electron temperature

ratio’s, and positron to electron density ratio’s. Figure 5.7 displays the variation in the

width of the IASs concerning the magnitude of rotational frequency and obliqueness. It

is observed that obliqueness significantly affects the width of the IASs, with the width

monotonically increasing between 30◦ and 45◦, then decreasing. Conversely, the width of

the IASs decreases with increasing values of the magnitude of the rotational frequency.

Finally, Figure 5.8 displays the influence of the relativistic streaming index (β ) on the

nonlinear propagation of IASs, assuming constant values for the other parameters. The

variation in IASs are very slightly changing with the relativistic streaming index up to less

than 0.1, similar to weakly relativistic plasma [105–113]. However, the peak amplitudes of

nonlinear IAS propagation increase with the relativistic streaming index up to 0.5 followed

by a very slight increase due to the inclusion of the RLF up to 20 terms. It is recommended

that, for advancing the nonlinear propagation of IASs in relativistic plasmas, one should

consider not only the RLF up to 20 terms but also additional higher-order terms of the RLF

and increasing the value of the relativistic streaming index (β ), although this is beyond

the scope of this investigation. From a physical perspective, it is evident that the driving

force remarkably influences the generation of IASs with a decrease in ion temperature (or

an increase in RLF), resulting in an increase in the soliton’s energy. The restoring force,

on the other hand, becomes notably significant with an increase in positron temperature.

Thus, the investigations presented in this article may be highly valuable for understanding

the dynamics of obliquely propagating IASs in (α,q)−distributed relativistic plasmas not

only in contexts such as laser-plasma interactions, quark-gluon environments, dark-matter

anomalies, and the solar atmosphere but also for laboratory verification.

5.5 CONCLUSIONS

The investigation of this chapter has been focussed on the oblique propagation characteris-

tics of IASs in the considered relativistic three-component magnetized e-p-i plasmas with

the appearance of super-critical values of any one parameter. To archive our goals, the
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KdV equation with quartic nonlinearity has been determined for the first time by taking

more higher-order correction of the reductive perturbation method. The solution of this

equation has also been determined. The analysis made in this chapter have demonstrated

how the obliqueness and plasma parameters affect IAS propagation, incorporating the RLF

up to 20 terms. It is found that the proposed relativistic plasma environment has supported

the compressive IASs in the presence of both super-thermality and sub-thermality around

the super-critical values. This analysis would be helpful in understanding how varying q

influences the formation and characteristics of solitons in a relativistic plasma environment

in the presence of population parameter α . It is also found that the relativistic stream-

ing factor significantly influences the nonlinear propagation of IASs, with soliton energy

slightly increasing for relativistic streaming index less than 0.1 and considerably increas-

ing for relativistic streaming index up to 0.5 and followed by a very slight increase. Thus,

the presented results may be enhanced our understanding of wave phenomena in many as-

trophysical and space environments such as high-energy proton motion in the Van Allen

radiation belts [124], pulsar magnetospheres [33], magnetized plasma flows in cosmic set-

tings, and solar atmospheres [120], among other, where the plasma environment supports

the super-critical values. One may design a new laboratory experiment to verify the theo-

retical results that presented in this chapter.
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Chapter 6: CONCLUDING REMARKS AND
FUTURE ASPECTS

This work has made a theoretical approach on the propagation characteristics of IASs in a

rotational, magnetized e-p-i plasma consisting of relativistic ion fluid and (α,q)−distributed

electrons and positrons. By using the reductive perturbation technique, various types of

KdV equations has been derived. The effect of plasma parameters on the nonlinear propa-

gation characteristics has been investigated by determine the solutions of these equations.

The results found from the previous chapters are summarized below.

Chapters 1 and 2 primarily cover a lucid description of the foundational concepts of plasma,

criteria for defining plasma, magnetized and relativistic plasma, theoretical model and soli-

ton formulation, and the methodology used in the study.

In Chapter 3, the proposed theoretical model equations for a rotational, magnetized e-p-i

plasma consisting of relativistic plasmas have provided. The KdV equation was derived

using the reductive perturbation method. The study investigated the effects of obliqueness

and various plasma parameters on the propagation characteristics of IASs by extending

the RLF up to the 11th order. It was observed that in the proposed relativistic plasma

environment, both compressive and rarefactive IASs are supported in the presence of su-

perthermality. The plasma parameters significantly influence the amplitudes and widths of

the IASs as their numerical values increase. Particularly, the relativistic streaming factor

plays a notable role in modifying the nonlinear propagation of IASs, resulting in a slight

increase (or considerable increase) in soliton energy as the relativistic streaming index in-

creases, either just below 0.1 or above 0.1.

Chapters 4 and 5 extend the findings and discussions presented in Chapter 3. In Chapters

4 and 5, the mKdV equation and KdV equation with quartic nonlinearity were derived by

adjusting the stretching coordinates within the framework of reductive perturbation theory.

It was observed that the mKdV equation applies to soliton propagation near critical values,

whereas the KdV equation with quartic nonlinearity describes soliton propagation around
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supercritical values. Importantly, these equations were derived for the first time in the con-

text of relativistic magnetized plasmas. Solutions to these equations were determined, en-

abling the investigation of the nonlinear propagation characteristics of ion-acoustic solitons

(IASs) around critical and supercritical values, respectively. It is found that the considered

plasma supports only the compressive soliton propagation around critical and supercritical

values.

Therefore, the results presented in this thesis would be enhanced our understanding of wave

phenomena in numerous astrophysical and space environments, such as high-energy proton

dynamics in the Van Allen radiation belts [125], pulsar magnetospheres [27], magnetized

plasma flows in cosmic settings, and solar atmospheres [39]. These environments often

involve plasma conditions that support not only critical but also supercritical values. It may

be beneficial to design new laboratory experiments to validate the theoretical findings pre-

sented in this Thesis. Such experiments could provide valuable insights and further confirm

the applicability of theoretical models to real-world astrophysical scenarios.

However, there is lot of scope to do further research works by proposing new theoretical

model equation in magnetized relativistic plasma under various types of plasma assump-

tion. Addition, one can consider the expansion of RLF not only up to 20 terms but also

more than 20 terms. One may also study (i) the dynamical behaviours of acoustic wave

propagation by displaying the phase portrait diagrams, (ii) the chaotic motion of acoustic

wave phenomena with the influence of external periodic forces, (iii) rouge wave phenomena

dy deriving complex nonlinear evolution equations, and so on in the relativistic plasmas.

In the presented thesis, we have considered the homogeneous relativistic plasma environ-

ments. The inhomogeneous relativistic plasma environments can also be considered to

investigate the effect of plasma parameters on the dynamics of acoustic wave phenomena,

but beyond the scope of this thesis.
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