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Abstract

The main purpose of the present work is to investigate how electrostatic plasma param-

eters modify the nonlinear ion acoustic soliton (IAS) propagation in unmagnetized colli-

sionless plasma including higher order Lorentz relativistic expansion terms. The study of

IASs in an unmagnetized collisionless relativistic plasma made of relativistic ion fluids,

Cairns-distributed electrons and Cairns-distributed positrons. In one dimensional analy-

sis, the reductive perturbation technique is employed to reduce the dynamics of the whole

system to the Korteweg-de Vries equation (KdVE) involving various nonlinearity, whose

nonlinear and dispersion coefficients are dependent on the related plasma parameters. This

indicates that KdVEs have been derived incorporating quadratic, cubic, and quartic non-

linearities. However, as the coefficient of KdVE associated with quadratic nonlinearity

approaches zero, the method encounters limitations. To overcome this challenge, adjust-

ments are made to the stretching coordinates, resulting in a cubic nonlinearity KdVE that

effectively describes soliton propagation near critical values in these plasma conditions.

Additionally, a KdVE with quartic nonlinearity is derived to model super-critical values of

specific plasma parameters in relativistic plasmas.

Previous studies have primarily focused on relativistic effects on soliton propagation using

Lorentz relativistic factor expansions up to three terms. In contrast, this thesis expands

this consideration to more higher order Lorentz relativistic expansion terms to minimize

truncation errors in modeling nonlinear soliton propagation within these plasmas. The in-

vestigation reveals that the relativistic streaming factor significantly alters the wave poten-

tial functions with the presence of more higher order Lorentz relativistic expansion terms.

Notably, the derived KdVE shows that quadratic nonlinearity supports both compressive

and rarefactive soliton propagation, whereas cubic and quartic nonlinearities exclusively

support compressive solitons. Furthermore, this study explores how plasma parameters, in-

corporating more higher order Lorentz relativistic expansion terms, influence the amplitude

and width of IASs in the unmagnetized relativistic plasma. It finds that higher order terms

of the Lorentz relativistic factor noticeably modify the propagation characteristics of IASs
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within this specific plasma environment. The effect of plasma parameters on the amplitude

and width of IASs has also been discussed with the physical interpretations.
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বিমূর্ত 

 

বর্তমান কাজের মূল উজেশ্য হল ইজলজরাস্ট্যাটিক প্লােমা প্যারামমিারগুমল কীভাজব উচ্চ-ক্রজমর লজরঞ্জ 

আজপ্মিক সম্প্রসারণ প্দগুমল সহ অচুম্বকীয় সংঘর্ তহীন প্লােমায় অররমিক Ion Acoustic Soliton (IAS) এর 

প্রসারণজক সংজশ্াধন কজর র্া র্দন্ত করা। আজপ্মিক আয়ন র্রল, Cairns-বমির্ ইজলরন এবং Cairns-বমির্ 

প্জেট্রন মদজয় তর্মর একটি অমনব তামচর্ সংঘর্ তহীন আজপ্মিক প্লােমায় IAS-এর অধযয়ন। এক মাজিক মবজের্জণ, 

হ্রাসকারী মবশ্ঙৃ্খলা ককৌশ্লটি সমগ্র মসজস্ট্জমর গমর্শ্ীলর্াজক Korteweg-de Vries সমীকরজণ (KdV) হ্রাস করার 

েনয মনযুক্ত করা হয়, যা মবমভন্ন অররমিকর্ার সাজে েম়ির্, যার অররমিক এবং মবচু্ছরণ সহগগুমল সম্পমকতর্ 

প্লােমা প্যারামমিারগুমলর উপ্র মনভতরশ্ীল। এটি মনজদতশ্ কজর কয, KdV সমীকরণগুমল মিঘার্, জিঘার্ এবং চরু্ঘ তার্ 

অররমিকর্াজক অন্তভুতক্ত কজর উদ্ভূর্ হজয়জে। যাইজহাক, মিঘার্ অররমিকর্ার সাজে যুক্ত KdV সমীকরজণর সহগ 

শ্ূজনযর মদজক এমগজয় যাওয়ার সাজে সাজে প্দ্ধমর্টি সীমাবদ্ধর্ার মুজিামুমি হয়। এই চযাজলঞ্জটি কাটিজয় উঠজর্, 

প্রসামরর্ স্থানাজে সমন্বয় করা হয়, যার ফজল একটি জিঘার্ অররমিক KdV সমীকরণ গটঠর্ হয় যা কায তকরভাজব এই 

প্লােমা অবস্থার সংকি মানগুমলর কাোকামে Soliton এর মবস্তারজক বণ তনা কজর। উপ্রন্তু, চরু্ঘ তার্ অররমিকর্া সহ 

একটি KdV সমীকরণ আজপ্মিক প্লােমাজর্ মনমদতষ্ট প্লােমা প্যারামমিারগুমলর Super-critical মানগুমলর মজেল 

তর্মর করজর্ উদ্ভূর্ হয়। প্ূব তবর্ী গজবর্ণাগুমল প্রােমমকভাজব মর্নটি প্দ প্য তন্ত লজরঞ্জ আজপ্মিক ফযাক্টর 

সম্প্রসারণ বযবহার কজর  Soliton এর প্রসারজণর উপ্র আজপ্মিক প্রভাজবর উপ্র দৃটষ্ট মনবদ্ধ কজরজে। মবপ্রীজর্, 

এই মেমসসটি এই প্লােমাগুমলর মজধয অররমিক Soliton প্রসারজণর মজেমলংজয় ো াঁিাই ত্রুটিগুমল হ্রাস করজর্ আরও 

উচ্চর্র ক্রজমর লজরঞ্জ আজপ্মিক সম্প্রসারণ প্দগুমলজর্ এই মবজবচনাজক প্রসামরর্ কজর। র্দন্তটি প্রকাশ্ কজর কয 

আজপ্মিক মিমমং ফযাক্টরটি আরও উচ্চর্র ক্রজমর লজরঞ্জ আজপ্মিক সম্প্রসারণ প্দগুমলর উপ্মস্থমর্র সাজে 

র্রজের সম্ভাবয ফাংশ্নগুমলজক উজেিজযাগযভাজব প্মরবর্তন কজর। উজেিয কয, উদ্ভূর্ KdV সমীকরণ কদিায় কয 

মিঘার্ অররমিকর্া সংজকাচক এবং মবরল সজক্রয় Soliton প্রসারণ উভয়জকই সমে তন কজর, কযিাজন জিঘার্ এবং 

চরু্ঘ তার্ অররমিকর্া একজচটিয়াভাজব সংজকাচক Solitonকক সমে তন কজর। উপ্রন্তু, এই গজবর্ণাটি অনুসন্ধান কজর 

কয কীভাজব প্লােমা প্যারামমিারগুমল, আরও উচ্চর্র ক্রজমর লজরঞ্জ আজপ্মিক সম্প্রসারণ প্দগুমলজক অন্তভুতক্ত 

কজর, অচুম্বকীয় আজপ্মিক প্লােমাজর্ IAS এর প্রশ্স্তর্া এবং প্রস্থজক প্রভামবর্ কজর। এজর্ কদিা কগজে কয লজরঞ্জ 

আজপ্মিক ফযাক্টজরর উচ্চক্রজমর প্দগুমল এই মনমদতষ্ট প্লােমা প্মরজবজশ্র মজধয IAS এর প্রসারণ তবমশ্ষ্টযগুমলজক 

লিণীয়ভাজব প্মরবর্তন কজর। IAS এর মবস্তার এবং প্রজস্থর উপ্র প্লােমা প্যারামমিারগুমলর প্রভাবও কভৌর্ বযািযার 

সাজে আজলাচনা করা হজয়জে। 
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Chapter 1: INTRODUCTION

1.1 DEFINITION OF PLASMA

Around 15 billion years ago, the universe was unstable and burst into a gigantic explo-

sion when it was compressed into a tiny ball. The matter generated by this explosion was

incredibly hot, causing everything to exist in the form of plasma. Thus, plasma was the

initial state of matter at the very inception of the Universe. While expanding the Universe,

the temperature of the matter decreased and some of the plasma became gas and further

reduction of temperature converted to gas and finally to the solid state. This is the opposite

order of events as we know that the solid state is the first state of matter and sequentially

the plasma is regarded as the fourth state of matter. At the early stages of civilization, man

utilized land, water, and the rain. Usually they recognized the land and rocks as solid and

the water as liquid state of matter and nowadays the solid and the liquid are referred as the

first and second state of matter, respectively. The existence of the third state of matter was

established by the English physicist Robert Boyle discovered the first physical law of gases

in 1662. However, the existence of plasma was introduced only about a century ago. It is

different from the plasma of blood which is a transparent liquid obtained after removing of

its various corpuscles from blood. Such plasma was named by the Czech medical scientist

Johannes Purkinje after the Greek word ′πλασ µα ′ which means "moldable substance"

or "jelly". Blood plasma transports red and white blood cells akin to how an electrified

fluid conveys electrons and ions. Using this concept, the American Nobel laureate Irving

Langmuir described an ionized gas and named the new state of matter "Plasma". Actually,

plasma is considered as a gas that is sufficiently ionized to show plasma-like behavior as

any ionized gas cannot be called plasma. It is to be noted that plasma-like behavior occurs

only after a significant fraction of the atoms of a gas have experienced ionization . Due to

the ionization of neutral atoms, plasma is produced and it has almost equal number of pos-

itive and negative charge carriers. In this case, the opposite charges are tightly associated

and tend to neutralize one another on a macroscopically large scale. Therefore, plasma is
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defined as a quasineutral gas of charged and neutral particles and it reveals collective be-

havior [2–4]. So, plasma is an ionized gas containing charged particles, and neutral atoms

with many degrees of ionization. Although plasma does not exist on Earth, it is found in

almost all interstellar and extra-galactic objects. Gaseous nebulae, hot stars and upper at-

mosphere like Ionosphere are such kind of objects. Also flames (i.e. fire), lightning and

aurorae contain plasma. Since more than 99% of the matter in visible space is supposed to

be in the plasma state, the Earth magnetosphere, the Van Allen radiation belts, solar wind,

solar corona and the core of the sun are filled with plasma. Point to be noted that where

we live on the earth, only 1% of the universe, plasma does not occur here naturally. How-

ever, it can be generated in laboratories via electric discharge, photoionization, heating gas

with sufficiently large temperature etc. Plasmas in fusion energy research, plasma globes,

laser produced plasmas, rocket exhaust and ion thrusters, inside fluorescent lamps and neon

signs, plasma tv etc. are some examples of artificial and laboratory plasma.

1.2 PROPERTIES AND BASIC CRITERIA

The force resulting from electric interaction between charged particles is governed by

Coulomb’s law. This law states that opposite charges attract each other (e.g., protons attract

electrons), while like charges repel each other.

However, in plasma, there is a Coulomb force between the charged particles. Let us sup-

pose an ion in plasma which possesses a positive charge. Due to the Coulomb force, a huge

number of electrons gets attracted and surrounds the positive ion like a cloud. The nearest

electrons of the ion build a shield for the rest of existing electrons so that the force between

the ion and the shielded electrons is smaller than the Coulomb force without shielding. The

electrons far from the ion are also shielded but the force decreases successively in every

layer. Thus, the attraction force of a positive ion is not approach to infinity but to a finite

distance [5]. This finite distance is defined as the Debye radius or Debye length and such a

shielding is called the Debye shielding. Since a plasma is a composition of negatively and

positively charged particles, i.e. electrons and ions, the positively charged ions almost com-
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pletely neutralize the negatively charged electrons. Such an incident in plasma is defined

as quasineutrality [6]. Thus, in a quasineutral mixture of charged particles e.g. plasma,

the densities of positively and negatively charged particles are almost the same. However,

quasineutrality hold only in the macroscopic scale. The first characteristic of an ionized gas

to be plasma is that it must hold the quasineutrality condition. Quasineutrality is obtained

if the characteristic dimension L of the plasma system is greater than the Debye length λD.

Thus, the first criterion of plasma [2, 4, 7] is as follows:

L ≫ λD, (1.1)

Since a plasma exhibits collective behavior inside a Debye sphere, the number density of

electrons must be enormously large. So, the second criterion for being plasma is

ND ≈ neλ
3
D ≫ 1,

Another criterion for a gas to behave like a plasma is

ωpτ ≫ 1, (1.2)

where ωp is the frequency of plasma and τ is the mean time between collisions in plasma

particles.

1.3 TYPES OF PLASMA

Plasmas have many characteristics based on degrees of ionization, temperature, density and

effect of the magnetic field. So, there are many types of plasma in the universe ranging from

very high density to low density. Fig. 1.1 demonstrates several plasmas as a function of

density and temperature. Plasma is also classified into several types. Some of the varieties

of plasmas are discussed below.
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Figure 1.1: Various types of plasmas in a logarithmic temperature-density parameter space
[1].
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1.3.1 THERMAL AND NON-THERMAL PLASMA

A plasma contains electrons, ions and neutral atoms with different temperatures. Accord-

ing to the comparative temperatures of the particles, plasma may be classified into thermal

and non-thermal plasma. A plasma is said to be thermal plasma if all the neutral atoms

are almost fully ionized and there is a thermal equilibrium in the particles since the tem-

peratures of the electrons and ions are almost equal i.e. Te ≈ Ti (Te = electron temperature

and Ti = ion temperature). Sometimes, thermal plasma is called hot plasma. However,

thermal plasmas are produced in two different environments such as when the heavy ions

possess extremely high thermal energy i.e. 102 − 104 eV at the temperatures in the order

of 106 − 108 k. Besides, if the atmospheric pressure is large, thermal plasmas are gen-

erated in the low temperature even at 6000 k. On the other hand, non-thermal plasma

is such a plasma where a tiny portion of total number of atoms or molecules is ionized.

Like thermal plasma, non-thermal plasmas also exist in two situations. When the electron

temperature enormously greater than the temperature of the heavy ions i.e. in the order of

104−105 k (1−10 eV ), then cold plasma is generated. Cold plasmas may also be produced

at low temperature as room temperature [8].

1.3.2 MAGNETIZED AND UNMAGNETIZED PLASMA

Plasma system may be significantly influenced by the magnetic field. In accordance with

the presence of magnetic field, plasmas can be categorized into magnetized and unmagne-

tized plasma. When the velocities of charged particles of a plasma are remarkably dom-

inated by a strong magnetic field, then the plasma is said to be magnetized plasma. As

plasma is a good conductor, so the electric field is weak. While moving the charged par-

ticles of plasma in a magnetic field, the Debye shielding does not affect the electric field.

The electric field associated with the magnetic field is expressed as

E⃗ = v⃗× B⃗, (1.3)
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where E⃗, v⃗ and B⃗ indicate the electric field, mean velocity of plasma particles and magnetic

field, respectively. The charged particles are governed in such a field by the Lorentz force

as

F⃗ = q
(

E⃗ + B⃗
)
, (1.4)

where q is the charge of particle. On the contrary, a plasma is said to be unmagnetized if

there is no magnetic field applied in the plasma system or due to the motion of the charged

particles, there is a negligible instinctive magnetic field i.e. B⃗ → 0. A uniform electric field

dominates the motion of the charged particles in such kind of plasma as the force is

F⃗ = qE⃗. (1.5)

1.3.3 COLLISIONAL AND COLLISIONLESS PLASMA

In the kinetic theory of gases, the mean free path (average distance between two colli-

sions) plays a vital role in the motion of particles. Rely on the mean free path and in-

teraction among the particles, plasma can be collisional or collisionless. When the di-

mension of the plasma system (L) is sufficiently larger than the mean free path (λmp)

for binary Coulomb collision i.e.(L ≫ λmp), then the plasma is categorized as collisional

plasma [3,8]. Whereas, the collisionless plasmas are plasma environments where the inter-

actions between individual particles occur primarily through electromagnetic forces rather

than collisions. In these plasmas, particles such as electrons and ions move freely and do

not collide frequently with each other. This unique characteristic arises when the mean free

path for collisions between particles becomes larger than the typical spatial scales of the

plasma, or when the collision frequency becomes very low. Understanding collisionless

plasmas is crucial for studying phenomena in space physics, astrophysics, and in develop-

ing technologies such as fusion energy research and advanced plasma-based devices.
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1.4 MULTI-SPECIES RELATIVISTIC PLASMA

Electrons along with positrons whereas they possess equal mass and opposite charges con-

stitute electron-positron (e-p) plasma. Most of the cosmic objects are composed with e-p

plasmas. Active galactic nuclei, pulsar magnetospheres, Van Allen radiation belts, the solar

atmosphere are the reservoir of such plasmas [9–12]. It is assumed that e-p plasmas may

exist in the upper regions of the magnetospheres of rotating neutron stars due to their ex-

treme electromagnetic radiation [13]. Despite the astrophysical plasmas consisting of e-p

plasma, there may exist a small number of heavy ions. With the presence of heavy ions like

protons in astrophysical environments, the multi-component involving electrons, positrons

and ions plasma may be produced in nature as well as in space. In scenarios like the MeV

epoch of the early universe, where temperatures range from (T ∼ 1−104MeV ) up to one

second after the Big Bang, the Universe was primarily composed of relativistic e-p plasmas

in equilibrium with photons, neutrinos, and antineutrinos [14]. When the plasma reaches

temperatures exceeding the rest mass energy of electrons i.e., m0c2 = 0.5MeV , it becomes

relativistic, with e-p pair creation and annihilation (γ = e++e−) processes playing crucial

roles. These processes occur over longer timescales compared to the collective interactions

between charged particles [15]. In astrophysical phenomena like active galactic nuclei [16],

plasma temperatures near black holes can reach 107MeV for ions and 103MeV for elec-

trons due to rapid cooling. Various studies [17–19] have explored different types of plas-

mas, including isothermal, cold, and hot plasmas around black holes. Researchers [20, 21]

have highlighted the significance of e-p pair creation or annihilation in relativistic plasmas,

which can occur during intense interactions such as those with laser pulses. Additionally,

plasma interactions with highly energetic cosmic rays in Earth’s magnetosphere lead to

the production of e-p pairs [22, 23]. The e-p plasmas also exist in environments like the

Earth’s magneto-tail and outflows from pulsars, interacting with low density electron-ion

plasmas [24].

Additionally, positrons with sufficient lifetime can be utilized to investigate particle

transport within tokamaks [25, 26]. The plasma undergoes significant modifications when
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positrons are introduced into electron-ion (e-i) plasmas, transforming the two-component e-

i plasma into multi-species plasma. Moreover, many astrophysical compact objects contain

e-p-i plasmas, prompting numerous studies [27–30] primarily focused on non-relativistic

regimes. However, when plasma particle velocities approach the speed of light, relativistic

effects become crucial for studying these plasmas, supported by abundant evidence [31–33]

of astrophysical particles moving at relativistic velocities. In environments like the solar

atmosphere and interstellar spaces, energetic streaming ions with energies ranging from 0.1

to 100 MeV are frequently observed [31–33]. Therefore, investigating the nonlinear prop-

agation of ion acoustic waves (IAWs) in relativistic e-p-i plasmas has become essential for

understanding both astrophysical and laboratory plasma physics. Furthermore, high-energy

particles are produced by nonthermal/superthermal particles with energies exceeding ther-

mal energies [34], leading to long-range interactions characterized by non-Maxwellian dis-

tributions such as Schamel [35], nonextensive [36,37], Cairns [38], and kappa distributions

rather than the Boltzmann distribution. However, recreating astrophysical or space-like

plasmas in laboratory settings remains challenging for researchers seeking qualitative in-

sights into fundamental plasma properties. Additionally, nonlinear collective behaviors

frequently encountered in plasmas necessitate rigorous mathematical methods for proper

study. Addressing these complexities requires appropriate plasma assumptions to elucidate

the physical phenomena observed in space and astrophysical contexts. This work aims to

derive fluid model equations that capture wave propagation characteristics in multi-species

plasmas, encompassing the relativistic regimes.

1.5 NONLINEARITY IN PLASMA

It is well confirmed that the natural systems respond predictably to specific conditions, with

small changes in conditions causing small changes in the response. This appealing idea has

led to a view of the world as linear, where effects are directly proportional to their causes.

Though interesting and reassuring, this long-standing idea is now being challenged. It is

seen as only partially accurate, as many situations, especially those affecting our daily lives,
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show drastic deviations from proportional responses. A key difference between linear and

nonlinear laws is whether superposition applies. In a linear system, the combined effect

of two causes is just the sum of their individual effects. In a nonlinear system, combining

two actions can produce dramatic new effects due to interactions between elements. This

can lead to unexpected structures, abrupt transitions, multiple states, pattern formation, or

unpredictable changes known as deterministic chaos. Thus, nonlinear science deals with

evolution and complexity [39].

Today, research in physics heavily focuses on nonlinear phenomena, as most physical

phenomena are inherently nonlinear. Nonlinear science, similar to quantum mechanics

and relativity, introduces fundamentally new ideas and surprising results. To address the

mathematical challenges of nonlinearity, physics often uses approximations to transform

unsolvable nonlinear problems into solvable linear ones [40,41]. Very recently, a significant

advance in the study of nonlinear effects, which holds a special place in plasma physics,

has been reported [42].

A plasma is inherently a nonlinear medium. Collective processes are crucial in plasma,

especially in causing different plasma instabilities. These instabilities often result in an

increase in electric field strength, which can become quite significant. The presence of

various instabilities is a defining characteristic of plasma as a state of matter. In the linear

approximation, various instabilities are studied assuming small perturbation amplitudes,

indicating whether waves grow or dampen. However, as the amplitude increases, the lin-

ear approximation becomes inadequate. Nonlinear effects typically serve to constrain the

growth of instabilities through mechanisms known as nonlinear saturations. High ampli-

tudes lead to nonlinear conversion, potentially causing additional radiation and affecting

plasma cooling. Plasma radiation provides vital information about interstellar and solar

processes. Nonlinear conversion helps interpret phenomena like solar flares and supernova

emissions, offering insights into cosmic ray origins. This also applies to the investigation

of the most interesting astronomical objects, namely the quasars discovered in 1962 [43].

They are plasma formations emitting radiation due to nonlinear conversion of plasma waves
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into transverse waves [44, 45]. This conversion is also observed in solar flares, where

plasma emission results from the nonlinear interaction of two plasma waves [46]. Ex-

perimental observations of plasma emission through charged particle beam transmission

further support this phenomenon [47–50]. Additionally, when external forces excite large

amplitude waves, nonlinear effects become significant. For instance, in ion acoustic waves,

nonlinearities counteract dispersion, allowing ion acoustic solitons to propagate without

significant distortion.

Plasma nonlinear effects vary greatly and can be classified based on electromagnetic

field strength, interaction timescales, and characteristic lengths. Distinguishing between

weak and strong nonlinearities is crucial. Weak nonlinearities involve describing processes

with the first terms of the field’s amplitude expansion. Typically, plasma fields are time-

varying, with characteristic frequencies ω assigned to them. Nonlinear interactions occur-

ring much faster than collision times are most effective and termed nondissipative. Con-

versely, when interactions are weak and time far exceeds length over velocity, they become

dissipative. In dissipative nonlinearities, the effective collision frequency depends on field

amplitude. Dissipative nonlinearities were initially explored in relation to problems of ra-

dio wave propagation and have been extensively examined by Ginzburg and Gurevich [51].

It is crucial to emphasize that nonlinear interaction processes undergo substantial changes

when the characteristic lengths of certain interacting waves exceed the typical dimensions

of the system, particularly in the context of transverse modes. Thus, nonlinearities play a

crucial role in the localization of waves, giving rise to various fascinating coherent struc-

tures.

1.6 WAVE PHENOMENA IN PLASMA

Production and recombination of interacting charged particles and fields give rise to plasma

waves which propagate periodically [8]. Along with the waves, wave-pushed transport, in-

stabilities, fluctuations etc. occur in the plasma system. Plasmas are capable of supporting

nonlinear waves due to their inherent complexity. Nonlinear effects arise when nonlinearity
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interacts with the dispersion or dissipation characteristics of the medium, creating wavelike

disturbances that propagate through the plasma. When absorption is present, these waves

gradually lose amplitude as they travel. In dispersive media, where different frequencies

propagate at different speeds, waves tend to spread out, leading to a decrease in their am-

plitude over time.

Studying nonlinear waves and oscillations in plasmas is crucial because these wave

phenomena establish a close relationship between theoretical predictions and experimental

observations. Understanding these interactions is essential for advancing both theoretical

models and experimental techniques in plasma physics. Plasma exhibits a diverse array

of interconnected wave phenomena involving particles and fields that propagate in peri-

odic patterns. Plasma is typically an electrically conductive quasi-neutral fluid composed

of electrons and ions (which can include multiple ion species, negative ions, dust parti-

cles, neutral particles, etc.), as well as positrons in some cases. These constituents interact

through collective behaviors, coupling via electric and magnetic fields within the plasma

medium. This complex interplay underlies the rich variety of wave behaviors observed in

plasmas across different scales and conditions. Due to its many degrees of freedom, plasma

supports various types of acoustic wave phenomena. These include ion acoustic, electron

acoustic, and others, reflecting the diverse interactions and dynamics within the plasma

medium.

1.7 ION ACOUSTIC WAVE

Ion acoustic waves (IAWs) are electrostatic waves similar to acoustic waves, where the

restoring force originates from the pressure of lighter particles (like electrons, positrons,

etc.), and the inertia is due to the ion species’ mass density. These waves travel longitu-

dinally and arise from compressions and rarefactions within the plasma medium, akin to

sound waves in neutral gases. Ions fulfill a role analogous to neutral atoms in ordinary

sound waves. However, IAWs can propagate in collisionless media because ions interact

with electrostatic or electromagnetic fields over long distances, unlike sound waves. Ad-
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ditionally, plasmas contain electrons, which influence wave dispersion. Due to electrons’

high mobility relative to ions, they quickly adjust to ion motions to maintain charge neu-

trality. Electron motion results from small internally generated electric fields due to local

variations in ion density within the plasma. In the absence of a magnetic field and consid-

ering the motions of massive ions, the low-frequency IA mode is excited with a specific

dispersion relation

ω
2 = k2

[
kBTe

mi
× 1

1+ k2λ 2
di
+

γikBTi

mi

]
,

where ω , k, kB, λdi and Te(Ti) are the frequency, propagation constant, Debye’s length and

electron (ion) temperature, respectively. For k2λ 2
di >> 1 and Ti → 0, one obtains

ω
2 = k2 noe2

ε0mi
= ω

2
pi.

where ωpi is the ion plasma frequency. Baumjohann and Treumann [52] also derived the

dispersion relation considering the motion of both electrons and ions, expressed as

ω

k
=

√
γekBTe

mi
= vs,

where vs is the ion acoustic speed. It has been observed that the group velocity of IAWs

equals the phase velocity, and these waves are present only when thermal motions of

charged particles occur. In IAWs, ions oscillate despite their significant inertia, supported

by restoring forces from the pressure exerted by lighter species. In space plasmas, IAWs are

often observed as highly energetic particles stream upstream of planetary bow shock fronts.

Various types of IAWs exist in plasmas, including solitary waves, shock waves, double lay-

ers, and others. These wave phenomena are crucial for advancing our understanding of

plasma physics and related phenomena.

1.8 ION ACOUSTIC SOLITON

A soliton is a nonlinear wave characterized by a self-sustaining hump or dip shape that

maintains its form and velocity as it propagates. It represents a relatively stable disturbance,
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which can be seen as a combination of sinusoidal wave trains of varying frequencies. In a

non-dispersive medium, where each of these component waves travels at the same velocity,

pulses propagate without distortion [40]. Conversely, in a dispersive medium where veloc-

ities differ, pulses spread over time. Solitons arise from a balance between nonlinearity and

dispersion, with minimal dissipation. Understanding soliton propagation is crucial for com-

prehending how particles or energy move in plasmas, playing a significant role in nonlinear

plasma physics research. High-intensity laser energy can excite nonlinear plasma waves,

transferring energy to the plasma. Solitons in plasmas manifest as localized wave modes,

such as electrostatic or electromagnetic solitons coupled nonlinearly to space charge fields.

These stable, stationary structures result from the interplay between dispersion and non-

linear effects in the medium. Ion acoustic soliton (IAS) propagation can be studied by

deriving the Korteweg-de Vries equations (KdVEs) from the proposed , which are mainly

a type of localized solitary wave with small but finite amplitudes. These nonlinear wave

phenomena, occurring far from thermodynamic equilibrium, can be replicated in labora-

tory settings under controlled conditions to investigate physical phenomena akin to those

observed in astrophysical and space plasma environments [40].

1.9 CAIRNS VELOCITY DISTRIBUTION

The plasma particles are distributed in physical and velocity space. In order to describe the

distribution of these particles the distribution functions f (x,v, t) are introduced. When the

temperatures of electrons are the same as the ions in the plasma system, then the system is

said to be at thermal equilibrium. At the thermal equilibrium, plasma particles move with

an average speed. Like temperature, the other physical properties of particles yield average

values at the equilibrium position. With the study of the distribution function for such a

plasma system, the average values of the physical properties of the particles can be de-

termined. The Maxwell-Boltzmann function is an equilibrium distribution function which

represents the most probable distribution suitable to the macroscopic properties of parti-

cles at thermal equilibrium [40, 53]. The normalized distribution function for the particle
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velocities [3] is defined as:

f 3(v)d3vd3x = n/(
√
(π)vt)

3 exp(−v2/v2
t ), (1.6)

where vt =
√
(2KB Te/me) is the root mean square thermal speed. However, due to the

long-ranged interactions i.e. Coulomb forces and gravitational force, the values of particle

properties may deviate from the average values. In such case, the Maxwellian distribution

function is inadequate for describing the properties of particles. In most of the astrophys-

ical environments [54–58], plasma properties do not follow the Maxwellian distribution

as the particles may not be in thermal equilibrium. Non-Maxwellian distribution is then

applied for such types of plasmas. There are many distribution functions to be used as

non-Maxwellian cases such as Cairns distribution [38], non-extensive q-distribution [59],

kappa distribution [35], generalized (α,q)−distribution [38, 59, 60].

Whereas Cairns distribution is assigned in this research work, only the mentioned distribu-

tion function is described in the following section. Since the electrons may be isothermal,

nonthermal, subthermal or superthermal in plasma system, the Cairns velocity distribu-

tion functions are suitable for describing the velocity and energy of electrons. The Cairns

velocity distribution function is given by [38]

f (v) =C1 +α(
v
vt
)4 exp(−v2/2v2

t ), (1.7)

where vt =
√

(KB Te/me ) indicates the thermal speed of electron. Here α is the number of

nonthermal populations electrons, and C1 = Ne0/((3α + 1)
√

(2πv2
t )) is the normalizing

constant. Integrating Eq. (1.7) over the total velocity space the electron density (Ne) is

obtained as

Ne = Ne0 [1−Γe

(
eψ

KBTe

)
+Γe

(
eψ

KBTe

)2

]exp
(
−eψ

KBTe

)
, (1.8)

where Γe = (4αe)/(1+ 3αe ) calculates the deviation from the thermalized state and αe

measures the concentration of nonthermal electrons inside the plasma. ψ, Te and e are the
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electrostatic potential, electron temperature and absolute value of electric charge, respec-

tively.

1.10 STATEMENT OF THE PROBLEMS

Plasma is a medium of charged particles that follows the collective behavior. There are

different types of plasma depending on the degree of ionization and temperature. Plasma

can be either fully ionized when all the particles are ionized or partially ionized when the

fraction of the neutrals is ionized. This means that the charged particles are produced by

different ionization or excitation mechanisms of the neutral particles, which create ions

and electrons. Plasma is then a collection of the various charged particles that are free

to move and as a whole electrically neutral. However, astrophysical and space plasmas

are consistent with electrons, positrons, and ions along with neutrals. The positrons have

equal masses but different charges in ordinary electron-ion plasmas. They can be produced

in laboratory [61–63] and available in nature such as in the active galactic nuclei [64],

in the neutron stars [58], in pulsar magnetospheres [65], at the center of the Milky Way

Galaxy [66] and in laser-plasma experiments [67]. Most of the astrophysical and space

environments contain ions as well as electrons and positrons, forming multi-species plas-

mas [68–70]. On the other hand, in plasma, when the velocities of the particles approach or

exceed the speed of light, it is referred to as relativistic plasma [27, 32, 33, 71]. Relativistic

plasmas have garnered significant attention from researchers due to their diverse applica-

tions and potential for investigating various collective processes in astrophysical, space,

and laboratory plasmas. They exist not only in the early universe’s evolution but also in the

inner regions of accretion discs near black holes [27], in the plasma sheath boundary layer

of Earth’s magnetosphere [27], and in laser-plasma interactions [72], among others.

Such plasmas, characterized by relativistic kinetic energies and arbitrary concentra-

tions, are known to convert into radiation in gamma-ray bursts, though the exact conversion

mechanism remains unknown. Recent experimental verifications [73, 74] have addressed

some astrophysical issues. Additionally, interactions of relativistic shells with background
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plasma in shock waves and pulsar wind nebulae have been studied. Creating such astro-

physical plasmas in laboratory settings for studying their nonlinear physical phenomena is

challenging. However, their properties can be explored through numerical simulations that

incorporate suitable plasma assumptions, reflecting observations in space and astrophysical

environments.

Since plasma has fluid-like behavior. Thus, the continuity and momentum equations

will be formulated via the mass andmomentum conservation laws. Also, the charged parti-

cles are interconnected to the electric field (E⃗ =−∇φ ), where φ is the electrostatic potential

. As a result, the continuity and the momentum equations are supplemented with the fol-

lowing Maxwell’s equation ∇⃗ · E⃗ = −4πρ , where ρ is the overall charge density on the

surface. Already many researchers [75–81] have studied the propagation of ion acoustic

soliton (IAS) by assuming various types of unmagnetized collisionless relativistic plasma

environments. But, they ignored what happens with the propagation of IAS not only around

the critical points but also around the critical composition of any specific parameters. Ac-

cordingly, finding the basic features of the nonlinear propagation of IAS by formulating

the evolution equations of higher-order nonlinearity is still now in initial stage. Hence, this

research work will focus on the basic features of nonlinear propagation of IAS not only

around the critical points but also around the critical composition of any specific parame-

ters in the collisionless plasmas under suitable plasma assumptions.

The main objective of the proposed research work is as follows:

i) To develop or considered the previously proposed models under some plasma as-

sumptions in the unmagnetized collisionless multi-component plasmas.

ii) To implement the mathematical techniques for deriving the nonlinear evolution equa-

tions from the considered models.

iii) To investigate the nonlinear propagation of ion acoustic wave phenomena by the

analytical solutions of nonlinear evolution equations.
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1.11 OUTLINES OF THE THESIS

The thesis is categorized into the following six chapters:

Chapter 1 introduce fundamental concepts and the presence of three-component un-

magnetized relativistic plasma in astrophysical, space, and laboratory settings. The prob-

lem of statements and velocity distribution functions are also discussed.

Chapter 2 describes the theoretical description of plasma phenomena, concept of fluid de-

scription, reductive perturbation method and soliton formation.

In Chapter 3, the relativistic plasma environment is proposed by the mixture of relativistic

ion fluids and nonthermal distributed electrons as well as positrons to study the nonlinear

IAS propagation with the consideration of Lorentz relativistic factor more than three terms

described by KdVE.

Chapter 4 deals with the nonlinear IAS propagation around the critical values in relativistic

plasmas described by mKdVE.

Chapter 5 examines the nonlinear IAS propagation around the super-critical values in rela-

tivistic plasmas described by KdVE involving quartic nonlinearity.

Finally, the concluding remarks and future direction are presented in Chapter 6.
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Chapter 2: FLUID MODEL EQUATIONS AND
METHODOLOGY

2.1 THEORETICAL DESCRIPTION OF PLASMA PHENOMENA

In the theoretical study of plasma phenomena, there are four main approaches, each offer-

ing different approximations tailored to specific conditions. One notable method, particle

orbit theory, focuses on analyzing the movement of individual charged particles within de-

fined electric and magnetic fields. While not strictly plasma theory, it provides valuable

insights into the dynamics of charged particles under external influences. This approach

has proven particularly effective in predicting behavior in extremely low-density plasmas,

such as those found in the Van Allen radiation belts, the solar corona, cosmic rays, high-

energy accelerators, and cathode ray tubes.

Given that plasmas consist of countless interacting particles, a statistical approach is

crucial for developing a macroscopic description of plasma phenomena. This involves

characterizing the system using a distribution function for the particles. Kinetic theory

plays a significant role here, where the evolution of the distribution function in phase space

is governed by kinetic equations like the Vlasov equation. This framework considers inter-

actions among particles through smeared-out internal electromagnetic fields and typically

neglects short-range correlations (close collisions).

In scenarios where plasma particles experience frequent collisions, leading each species

to maintain a local equilibrium distribution function, a fluid-like description becomes appli-

cable. This approach, known as two-fluid theory (or many-fluid theory for more species),

treats the plasma as a mixture of interpenetrating fluids. It employs hydrodynamic equa-

tions, in addition to electrodynamic equations, to express conservation laws for mass, mo-

mentum, and energy for each particle species locally.

An alternative approach treats the entire plasma as a single conducting fluid, utiliz-

ing lumped macroscopic variables and corresponding hydrodynamic conservation equa-
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tions. This framework is referred to as one-fluid theory and finds simplified application in

studying very low-frequency phenomena in highly conductive fluids under magnetic fields,

known as the magnetohydrodynamic approximation.

2.2 FLUID DESCRIPTION OF PLASMA

Describing plasmas using a single-particle approach becomes exceedingly complex. Es-

sentially, a more statistical method is needed because it’s impractical to track each particle

individually. Fortunately, in many cases, this level of detail isn’t necessary. Surprisingly,

most observed plasma phenomena in real experiments can be adequately explained using

a simplified fluid model. In this model, individual particle identities are ignored, and only

the collective motion of fluid elements is considered. It’s important to note that in plasmas,

these fluid elements carry electrical charges, which distinguishes plasma fluid dynamics

from traditional fluid dynamics.

2.3 BASIC OF FLUID DESCRIPTION

There is a fundamental difference between hydrodynamics and plasma fluid models. In

hydrodynamics, molecules within a liquid are strongly coupled and undergo frequent col-

lisions with their neighbors. This strong coupling allows fluid elements, comprising many

molecules moving together, to follow streamlines defined by the flow pattern. Conse-

quently, the diffusion of molecules within these fluid elements tends to occur relatively

slowly.

In contrast, in an ideal plasma, electrons and ions do not experience frequent collisions

with their nearest neighbors due to the rarity of Coulomb collisions. Instead, they pre-

dominantly respond to the average electric and magnetic fields generated by the collective

behavior of many particles. This allows us to partition the plasma into small cells, but

unlike in hydrodynamics, particles do not remain within their cells for extended periods.

Electrons and ions typically exit a cell of size l after a transit time Tt ≡ l/vth, where vth is

the thermal velocity, while particles from neighboring cells enter this volume. These cells

serve as a metaphorical "bank account" where we track gains and losses of total particles,
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momentum, or heat content.

This approach offers a hydrodynamic-like description of plasma dynamics, although its

analogy to real liquids has certain limitations. Depending on the circumstances, one can

adopt a description where cells are fixed in a stationary frame of reference, or alternatively,

transform to a moving frame of reference that tracks the mean flow velocity of the plasma.

This flexibility enables the modeling approach to be adapted to various plasma phenomena

and conditions.

2.3.1 CONTINUITY EQUATION

If the average velocity and number density of h species of a plasma system are vh and nh,

respectively, then the total mass density of the plasma fluid [2, 7] is defined as

ρ = nhmh, (2.1)

and the average velocity of h species The continuity equation, rooted in the principle of

mass conservation, states that the total number of particles (N) within a defined volume

(V ) remains constant unless there is a net flux of particles perpendicular to the surface (S)

that encloses the volume. According to this principle, the equation is derived as:

∂nh

∂ t
+∇.(nhvh) = 0, (2.2)

In this equation, (nh) represents the number density of particles, and (vh) denotes their

thermal velocity. This equation is widely recognized in plasma physics as the continuity

equation. It’s important to note that the first term in Eq. (2.2) describes how the concentra-

tion of particles changes over time within the volume, while the second term indicates the

divergence of the particle flux out of the volume.

2.3.2 MOMENTUM CONSERVATION EQUATION

In plasmas, the behavior of particles is influenced by several forces, with three main forces

playing a significant role: the Lorentz force, the pressure gradient force, and collision
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effects. The Lorentz force governs how charged particles respond to electric and magnetic

fields. It is given by:

F⃗L = q
(

E⃗ + v⃗× B⃗
)
, (2.3)

In gas, the pressure P can be expressed as P = nkBT , where n, kB and T are the density,

Boltzmann constant and temperature. This represents the force per unit area arising from

the thermal motions of particles in the gas. The surrounding fluid exerts this force on an

element within the gas. The pressure gradient force is given as F⃗p =−∇p/n by the gradient

of pressure. The pressure gradient force arises from spatial variations in plasma pressure.

It acts to accelerate particles from regions of higher pressure to regions of lower pressure,

contributing to plasma flow and dynamics. Collision effects, on the other hand, involve

interactions between particles due to collisions. These collisions can transfer momentum,

heat, and can lead to plasma instabilities and changes in plasma properties over time. Hence

one can immediately generalize the momentum equation for the plasma species in collision-

less plasmas as

mn
{

∂ v⃗
∂ t

+
(⃗

v · ∇⃗
)

v⃗
}
= qn

(
E⃗ + v⃗× B⃗

)
− ∇⃗p. (2.4)

For the relativistic collisionless unmagnetized plasmas, the above equation can be written

as

mn
{

∂ γ⃗v
∂ t

+
(⃗

v · ∇⃗
)
(γ v⃗)

}
= qnE⃗ − ∇⃗p, (2.5)

where γ =
(
1− v⃗2/c2)−1/2 and c is the speed of light.

2.3.3 POISSON’S EQUATION

The electric field E⃗ can be written in terms of electric potential ψ

E⃗ =−∇⃗ψ. (2.6)

Maxwell’s equations, however, constitute a fundamental set of equations that delineate

the characteristics of electric and magnetic fields. They form the foundation of classical

electromagnetism and are essential in understanding various phenomena such as electro-
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magnetic waves, radiation, and the interaction of fields with matter. By combing Gauss’s

Law for Electricity equation ∇⃗ · E⃗ = ρ

ε0
and Eq. (2.6), following equation is obtained

∇
2
ψ =−ρ/ε0 (2.7)

Eq. (2.7) is known as the Poisson’s equation. ρ is the overall charge densities of the

particles and ε0 denotes the absolute permittivity of vacuum.

2.4 REDUCTIVE PERTURBATION TECHNIQUE

The reductive perturbation technique (RPT) involves expanding dependent quantities (such

as densities, velocities, potentials, etc.) around their equilibrium positions using a small

parameter ε . This parameter determines the strength of the perturbation and is crucial

for balancing nonlinear and dispersive effects. The expansion is performed in terms of

powers of ε in stretched coordinates, aligning with the transformation to the wave frame

of reference. Higher powers of ε indicate slower variation of physical quantities compared

to those with lower powers. Many physical systems are described by complex equations

of motion involving multiple dependent variables. To simplify such systems, Washimi

and Taniuti proposed a systematic procedure [20] to reduce general nonlinear evolution

equations into more manageable forms. This reduction assumes small wave amplitudes,

allowing the original hyperbolic system to be transformed into simpler nonlinear equations

like the KdVE, Burgers equation, or the nonlinear Schrödinger equation. The RPT relies

on practical experience rather than strict mathematical rules for choosing relevant scales.

Normalization of all variables in the problem to make them dimensionless is advisable

before applying the reductive perturbation method. This simplifies the analysis by reducing

the number of constants that need to be considered during calculations. In the next step, one

can expand all the perturb quantities in terms of ε . Some expansion of perturb quantities,
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like density n, velocity v and electrostatic potential φ are given below.

n = n0 + εn1 + ε2n2 + ε3n3 + ....

v = εv1 + ε2v2 + ......

φ = εφ1 + ε2φ2 + .......

. (2.8)

In the context of weakly dispersive waves and the theory of solitons, in the first approxi-

mation, the wave moves with a phase velocity that is independent of wave number k. This

velocity remains constant in a frame of reference moving with the wave. Within this frame,

the wave’s evolution is primarily governed by weak dispersion and weak nonlinearity. Over

longer timescales, particularly in the case of solitons, there is a delicate balance between

dispersion and nonlinearity. This balance ensures that the wave retains its shape and travels

without significant distortion over considerable distances. This physical concept is effec-

tively captured by transforming to coordinates [40]

ξ = ε
r(x−λ t);τ = ε

3rt. (2.9)

where λ is the phase velocity and r is any real number. With the suitable choice of r

and implement the expansion of physical variables to the model equations, one can derive

various types of physical equations to study the soliton propagation in the plasmas.

2.5 FORMATION OF SOLITON

Solitons arise from the delicate equilibrium between a medium’s nonlinearity and disper-

sion. Typically, in dispersive media, linear waves propagate over long distances, but disper-

sion causes them to spread due to the phase velocity becoming dependent on wave number

k. In nonlinear media, as wave amplitudes increase, nonlinear effects become significant.

These effects primarily steepen the leading edge of waves, often resulting in wave breaking.

Figure 2.1a illustrates how dispersion spreads an initial waveform, while Figure 2.1b shows

nonlinear effects causing waveform steepening. Figure 2.1c demonstrates how the interplay

of dispersion and nonlinearity leads to the formation of solitons, stable wave structures.
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Plasma generally behaves nonlinearly, and although most plasma waves exhibit disper-

sion, not all show soliton solutions. Ion acoustic waves in plasma, specifically ion acoustic

solitons, exhibit soliton behavior and serve as a typical example. These solitons are com-

monly described by the KdVE, originally formulated by D. J. Korteweg and G. de Vries in

1895 [82].

2.5.1 KDVE

The KdVE represents as a pivotal nonlinear partial differential equation with wide-ranging

applicability across various physical systems. Its extensive examination and application

span different fields including mathematics, physics, and engineering. In particular, within

plasma dynamics, the KdVE is as useful in explaining the behavior of nonlinear waves

in several plasma environments. Researchers have broadened the scope of the KdVE by

adding phenomena exceeding its traditional formulation. In addition, the RPT has been

utilised for deriving the KdVE and its adapted iterations across varied plasma spaces,

thereby enriching knowledge of wave dynamics within these types of conditions.

Various studies have explored different transformations and solutions related to the KdVE,

including the Sharma-Tasso-Olver equation and higher order KdVE, showcasing the ver-

satility and applicability of the KdV framework in diverse contexts [83–85]. The KdVE

has been generalized to include mixed dispersion and shoaling terms, broadening its range

of applications to describe phenomena in deep waters [86]. Soliton solutions and peakon

solutions for KdV-like equations have been investigated, demonstrating the rich mathemat-

ical structure and solvable properties of equations related to the KdVE [87]. The KdVE

serves as a cornerstone in the study of nonlinear wave phenomena, with its extensions and

applications contributing to a deeper understanding of wave dynamics in various physical

systems.

Nonlinearity and dispersion are two of the most important properties of plasma. The

nonlinear dispersion equation developed by Korteweg and de Vries in various physical

situations, including problems relevant to plasma physics, can be written in its simplest
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Figure 2.1: a) Linear dispersive wave: when the phase velocity becomes k dependent, the
wave disperses, b) Nonlinear wave: with the increase in amplitude the wave steepens and
has a tendency to break and c) Soliton..
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form [88],
∂φ

∂τ
+Pφ

∂φ

∂ξ
+Q

∂ 3φ

∂ξ 3 = 0 (2.10)

Here, ξ and τ represent independent variables, and P and Q stands for real, nonzero con-

stants. Equation (2.10) reveals the presence of nonlinearity via the term φ
∂φ

∂ξ
, while disper-

sion is depicted by ∂ 3φ

∂ξ 3 .

Historically, the KdVE was initially introduced by Boussinesq in 1877 and later redis-

covered by Korteweg and de Vries in 1895 [89], who identified the simplest one-soliton

solution. Significant progress in understanding the equation and its solutions came from

Zabusky and Kruskal’s [90] computer simulations in 1965 and the development of the in-

verse scattering transform in 1967. The KdVE can be solved using the inverse scattering

method [91], which was developed by Gardner, Greene, Kruskal, and Miura [92]. Kruskal

and Zabusky [90, 92] derived this equation (2.24) for one dimensional acoustic waves in

anharmonic crystals. Also, Washimi and Taniuti [93] showed that it describes weakly non-

linear one dimensional acoustic waves traveling near the ion sound speed in plasma physics.

Given its various applications, generalizations of the KdVE are necessary. Rescaling the

equation (2.10) with ε → ξ Q
1
3 and φ → φ

PQ− 1
3

to give coefficients of unity in front of each

term, i.e.
∂φ

∂τ
+φ

∂φ

∂ξ
+

∂ 3φ

∂ξ 3 = 0 (2.11)

The steady-state solution of the standard KdV equation (2.11) is typically obtained in the

literature by transforming the variables ξ and τ into a new coordinate η = (ξ −Vpt), where

Vp is a constant. Integrating equation (2.11) one can obtain

φ(η) = 3V sech2
[
(ξ −Vpt)

2

]
(2.12)

In equation (2.12), the amplitude, width, and speed of the solitary wave are proportional

to V
− 1

2
p , and Vp, respectively. Computer simulations [90, 94, 95] of equation (2.12) reveal

that solitary wave solutions (solitons) given by equation (2.26) are essential for the sys-

tem’s time evolution, interacting nonlinearly and maintaining their identity. The KdVE
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serves as a cornerstone in the study of nonlinear wave phenomena, with its extensions and

applications contributing to a deeper understanding of wave dynamics in various physical

systems.

2.5.2 MKDVE

A mKdVE, characterized by a cubic nonlinearity term instead of a quadratic one, can be

derived by considering the next higher order of ε along with the lower orders used in

the derivation of the KdVE. However, different stretched coordinates, ξ = ε(x−Vpt) and

τ = ε3t, are used to derive the mKdV equation. This change does not affect the linear

order, which remains the same, but introduces the cubic term in the next order. Following

a similar elimination process, we obtain the mKdVE as follows:

δφ

δτ
+Aφ

2 δφ

δξ
+B

δ 3φ

δξ 3 = 0. (2.13)

The solution of the above mKdV equation (2.13) can be written as

φ =

√
6Vp

A
sech

{
η

W

}
Here Vp is the velocity of nonlinear structure, A is nonlinearity coefficient, B is dispersion

coefficient and the width W is given as W =
Vp
B .
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Chapter 3: ION ACOUSTIC SOLITON IN AN
UNMAGNETIZED RELATIVISTIC PLASMA

3.1 INTRODUCTION

In recent decades, the study of wave propagation in multi-component plasmas has become

a significant focus in plasma physics research. Extensive investigations [96–103] have

explored the characteristics of nonlinear waves using various plasma models. Nonlinear

phenomena are crucial in forming distinct coherent structures. These structures are of both

theoretical and experimental interest. For instance, in laser-plasma interactions, nonlinear

electrostatic [101] or electromagnetic waves [102], collisionless solitons [104], and phase

space holes involving ions and electrons [103] have been observed. Solitary waves, which

maintain their shape and size over time in a frame moving at the group velocity of the wave,

are primarily sustained by a balance between nonlinearity and dispersion, with minimal

dissipation. Solitons, a type of nonlinear solitary wave, retain their structure even after

interacting with another soliton, owing to the delicate balance between nonlinearity and

dispersion. They offer insights into wave-plasma interactions and have been extensively

studied both theoretically and experimentally for decades, albeit with limited research in

relativistic plasmas.

Relativistic effects significantly alter soliton behavior in plasmas where electron or ion

velocities approach the speed of light. Such plasmas are encountered in scenarios like

high power laser-plasma interactions and in space environments, including Earth’s mag-

netosphere and the solar atmosphere. Despite the prevalence of plasmas with different

temperatures and masses in space, research on IASs and other nonlinear structures re-

mains sparse [105]. Theoretical frameworks often utilize variations of equations like the

Korteweg-de Vries equation (KdVE), modified KdV (mKdVE), or nonlinear Schrödinger

equations to study solitary wave behavior in plasmas. Experimental observations comple-

ment these theoretical studies in diverse plasma conditions, including multi-species and
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dusty plasmas in space. Given the varied plasma conditions and relativistic velocities in

astrophysical and space environments, there is a pressing need to investigate IASs in these

systems. However, fundamental aspects of IA waves in relativistic plasmas, along with

their nonlinear evolution equations, have already been explored in Refs. [33,106–118]. Pre-

vious studies [33,106–118] have extensively investigated the propagation characteristics of

IASs in UMRPs by expanding the LRF up to two or three terms. However, to minimize

truncation errors, it is necessary to consider expanding the LRF beyond three terms. This

is crucial because many astrophysical plasmas occur on large spatial scales. Therefore, fur-

ther research is warranted to explore the previously proposed theoretical model equations

for UMRPs.

Thus, this chapter addresses the influences of the plasma parameters on the propagation

characteristics of nonlinear IASs by deriving KDVE from the considered plasma environ-

ments along with the consideration of expansion of LRF more than three terms.

3.2 THEORETICAL MODEL EQUATIONS

A collisionless UMRP, consisting of inertialess nonthermal electrons as well as positrons

and inertial relativistic warm ions is considered. Due to the inertialess electrons and

positrons, one can assume Cairns velocity distribution to determine the density functions

of such charged particles. As a result, one can study the contribution of restoring force that

provided the thermal pressure of electrons and positrons via the charge neutrality condi-

tion. Based on the Cairns velocity distribution, the following concentrations of electrons

and positrons are defined in Refs. [38, 119–121]:

Ne = Ne0

[
1− 4αe

1+3αe

(
eφ

Te

)
+

4αe

1+3αe

(
eφ

Te

)2
]

exp
(

eφ

Te

)
,

Np = Np0

[
1+

4αp

1+3αp

(
eφ

Tp

)
+

4αp

1+3αp

(
eφ

Tp

)2
]

exp
(
−eφ

Tp

)
, (3.1)

where Ne(Np) stands for electrons (positrons) density, Ne0(Np0) stands for the unperturbed

electron (positron) concentration, Te(Tp) indicates the electron (positron) temperature, φ
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denotes the electrostatic potential, e is the charge of electron and αe,p >−1/3 calculates the

population of nonthermal electrons and positrons, respectively. However, one can derive

the ion continuity and momentum conservation equations due to the inertia of relativis-

tic ions. As a result, one can use the following normalized fluid equations to study the

nonlinear dynamics of IAWs around the CVs of any specific plasma parameter:

∂Ni

∂ t
+

∂ (NiUi)

∂x
= 0, (3.2)

∂ (γUi)

∂ t
+Ui

∂ (γUi)

∂x
+

3δie

(1− p)2 Ni
∂Ni

∂x
=−∂φ

∂x
, (3.3)

∂ 2φ

∂x2 =
(
1−βeφ +βeφ

2)eφ − p
(
1+βpσφ +βpσ

2
φ

2)e−σφ −Ni, (3.4)

where the phase velocity is assumed to have much lower values than the electron and

positron thermal velocities but much higher values than the ion thermal velocity, βe =

4αe/(1+ 3αe) and βp = 4αp/(1+ 3αp). In the above equations, Ni, Ui and φ are the

normalized ion number density, ion fluid velocity and electrostatic potential normalized

by Ni → Ni/Ne0, Ui → Ui/Cs, and φ → eφ/kBTe, where Cs =
√

(kBTe/mi), mi, e, and kB

indicate the ion acoustic speed, ion mass, electronic charge and Boltzmann constant, re-

spectively. The space (x) and time (t) involved in the above equations are normalized by

λDe =
√

kBTe/(4πNe0e2) and ω
−1
pi =

√
mi/(4πNe0e2), respectively. γ = 1/

√
1−U2

i /c2

is the Lorentz relativistic factor (LRF). Additionally, the involving other parameters in the

above equations are determined as p = Np0/Ne0, δie = Ti/Te (Ti is the ion temperature) and

σ = Te/Tp.
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3.3 FORMATION OF KDVE AND STATIONARY SOLITON SOLU-

TION

For deriving the KdVE by simplifying Eqs. (3.2) to (3.4), one can use the scaling of

dependent unknown variables via the new stretched coordinates [110] as

ξ = ε
1
2 (x−Vpt) , τ = ε

3
2 t,0 < ε < 1, (3.5)

where Vp is the linear phase velocity of the perturbation mode normalized by Cs and ε

measures the weakness of the dissipation. Using Eq. (3.5) into Eqs. (3.2) -(3.4), one can

convert to the Eqs. (3.2) -(3.4) in the new forms involving the new stretched coordinates as

ε
3/2 ∂Ni

∂τ
−
√

εVp
∂Ni

∂ξ
+
√

ε
∂ (NiUi)

∂ξ
= 0, (3.6)

ε
3/2 ∂γUi

∂τ
−
√

ε
∂γUi

∂ξ
+Ui

√
ε

∂γUi

∂ξ
+
√

εNi
3δie

1− p
∂Ni

∂ξ
=−

√
ε

∂φ

∂ξ
, (3.7)

ε
∂ 2φ

∂ξ 2 =
(
1−βeφ +βeφ

2)eφ − p
(
1+βpσφ +βpσ

2
φ

2)e−σφ −Ni. (3.8)

Then, one can use the following expansions of perturbed quantities Ni, Ui, and φ , which

are involved in the power series of ε [110]:

Ni = (1− p)+
∞

∑
j=1

ε
jN( j)

i ,Ui =Ui0 +
∞

∑
j=1

ε
jU ( j)

i , φ =
∞

∑
j=1

ε
j
φ
( j). (3.9)

As a result, one can derive the different set of partial differential equations (PDEs) by taking

several order of ε . The lowest order of ε PDE yields,

−(Vp −Ui0)
∂N(1)

i
∂ξ

+(1− p)
∂U (1)

i
∂ξ

= 0, (3.10)

−(Vp −Ui0)γ1
∂U (1)

i
∂ξ

+
3δie

1− p
∂N(1)

i
∂ξ

=−∂φ (1)

∂ξ
, (3.11)
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−C1φ
(1)+N(1)

i = 0, (3.12)

where

γ1 =
∞

∑
m=0

(−1)m (−1
2

)
Γ
(
−1

2

)
m!
(
−1

2 −m
)

Γ
(
−1

2 −m
) (2m+1)β

2r
ic ,

βic =
Ui0

c
,

C1 = [(1−βe)+ pσ(1−βp)].

From Eq. (3.10)-(3.12), the first order perturbed quantities for Ni and Ui can be defined as

N(1)
i =

(1− p)
k

φ
(1) =C1φ

(1), U (1)
i =

(Vp −Ui0)

k
φ
(1), (3.13)

where k = [(V p −Ui0)
2
γ1 −3δ ie]. Also, Vp can be expressed as

Vp =Ui0 +

{
3δ ie

γ1
+

(1− p)
γ1[(1−βe)+ pσ(1−βp)]

}1/2

. (3.14)

Again, the next order of ε PDEs are obtained as follows:

−(Vp −Ui0)
∂Ni

(2)

∂ξ
+(1− p)

∂Ui
(2)

∂ξ
+

∂

∂ξ

(
Ni

(1)Ui
(1)
)
+

∂N(1)
i

∂τ
= 0, (3.15)

−γ1 (Vp −Ui0)
∂Ui

(2)

∂ξ
+

3δie

(1− p)
∂Ni

(2)

∂ξ
+
{

γ1 − γ2 (Vp −Ui0)
}

Ui
(1)∂Ui

(1)

∂ξ

+
3δie

(1− p)2 Ni
(1)∂Ni

(1)

∂ξ
+ γ1

∂U (1)
i

∂τ
=−∂φ (2)

∂ξ
, (3.16)

∂ 2φ (1)

∂ξ 2 =C1φ
(2)+C2

{
φ
(1)
}2

−Ni
(2), (3.17)
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where C2 =
(
1− pσ2)/2 and

γ2 =
∞

∑
m=1

(2m+1)!
(2m−1)!

(−1)m (−1
2

)
Γ
(
−1

2

)
m!
(
−1

2 −m
)

Γ
(
−1

2 −m
) β 2m

ic
Ui0

.

Now, combining Eqs. (3.15) -(3.17) with the help of Eqs. (3.13), the following KdVE is

obtained:
∂φ (1)

∂τ
+Pφ

(1)∂φ (1)

∂ξ
+Q

∂ 3φ (1)

∂ξ 3 = 0, (3.18)

where

P =
1

(VP −Ui0)k

[
3δie

2γ1
− k3C2

γ1(1− p)
+

{3γ1 − γ2 (VP −Ui0)}(VP −Ui0)
2

2γ1

]

Q =
k2

2γ1 (Vp −Ui0)(1− p)

The well-established soliton solution of Eq. (3.18) is obtained by considering a reference

frame ζ = ξ −U0τ (U0 stands for the constant reference speed) and φ (1) → 0, dφ (1)

dζ
→ 0,

. . . ..as ζ →±∞ in the following form:

φ
(1) = φlsech2

{
ζ

φm

}
, (3.19)

where φl = (3U0/P) and φm =
√
(Q/U0) are the amplitudes and widths of the soliton,

respectively.

3.4 RESULTS AND DISCUSSIONS

The investigation into electrostatic IASs involves deriving the KdVE to understand their

nature. It is intriguing and crucial to identify the exact soliton wave solution for KdVE.

Since KdVE is integrable, its solution can be determined through direct integration. There-

fore, the established solution of KdVE is considered. The impact of parameters such as

p(= Np0/Ne0), δie(= Ti/Te), σ(= Te/Tp), β = βe = βp (population of nonthernal electrons

and positrons) and βic(= Ui0/c), along with the expansion of LRF more than three terms,
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on the propagation of electrostatic IASs in plasma is described using the analytical solution

of KdVE. The influence of these parameters on the amplitude and width of IASs is illus-

trated in figures 3.1-3.6, with constant values chosen for other plasma parameters. In this

analysis, numerical values of plasma parameters are selected based on relevant references

pertaining to astrophysical and space environments. Figures 3.1, 3.2, 3.3 and 3.4 illustrate

the influence of p, δie, σ and β on the 3D propagation of nonlinear electrostatic solitons

in the considered relativistic plasma, while keeping the remaining parameter constant. In

contrast, Figures 3.5, 3.6, 3.7 and 3.8 demonstrate the impact of p, δie, σ and β on the

normalized electric field E =−∇φ (1) with the choice of the remaining parameter constant.

Finally, Figures 3.9 and 3.10 illustrate 2D shaped of electrostatic soliton propagation and

the normalized electric field with the variation of time.

From Figures 3.1 to 3.4, it is evident that the plasma sustains propagation of both

compressive and rarefactive solitons. The amplitude and width of electrostatic IASs de-

crease with increasing density and temperature ratios, as well as with increasing relativistic

streaming factors. In the physical point of view, solitons are nonlinear waves that can

be compressive (where density increases) or rarefactive (where density decreases). The

observation that the plasma supports both types of solitons indicates the complex inter-

play between different physical parameters influencing wave propagation. Additionally,

the amplitude refers to the maximum disturbance caused by the soliton, while the width

corresponds to the spatial extent over which this disturbance occurs. In the context of elec-

trostatic IASs, which are governed by the balance between nonlinear and dispersive effects

in plasma, the amplitude and width of these solitons are crucial indicators of their stability

and behavior. Increasing density and temperature ratios generally lead to stronger interac-

tions within the plasma, affecting the propagation characteristics of solitons. Specifically,

as these ratios increase, the amplitude of IASs tends to decrease. This could be due to en-

hanced plasma screening effects or changes in the ion acoustic speed, influencing how the

solitons maintain their structure and energy. Moreover, when particles in the plasma ex-

hibit significant relativistic velocities (relativistic streaming), it alters the plasma dynamics
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and can affect the propagation of solitons. Increasing relativistic streaming factors typically

lead to a increase in soliton amplitude and width, indicating a more complex and potentially

less stable wave behavior in the plasma.

From Figures 3.5 to 3.8, it is evident that the plasma sustains the semi-kink shaped prop-

agation of the normalized electric field. the amplitude and width of he normalized electric

field decrease with increasing density and temperature ratios. It is observed from Figures

3.9 and 3.10 that both electrostatic potential and normalized electric field are behaves pulse

like shaped with the increase of time. It is also clearly found that the electrostatic potential

and the normalized electric field are possessed the pulse-like structures, as it is expected. It

is noted that the expansion of LRF are considered up to 20 terms in this presented studies.

Whereas, the expansion of LRF has been considered up to either two or three terms in this

previous studies. Thus, the work has been made in this chapter would be helpful to under-

stand the nonlinear propagation features of IASs in the presence of relativistic ion fluids and

nonthermal electrons as well as positrons in many astrophysical and space environments,

because many astrophysical plasmas occur on large spatial scales.

Chapter 3: ION ACOUSTIC SOLITON IN AN UNMAGNETIZED RELATIVISTIC
PLASMA

35



Figure 3.1: Electrostatic potential with regards to p and ζ with β = 0.7, δie = 0.5, σ = 1.5,
U0 = 0.0075, Ui0 = 0.3×108 and βic = 0.1. And β = 0.7, δie = 0.01, σ = 1, U0 = 0.0075,
Ui0 = 0.3×108 and βic = 0.1.
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Figure 3.2: The normalized electric field with regards to δie and ζ with β = 0.7, p = 0.3,
σ = 1, U0 = 0.0075, Ui0 = 0.3× 108 and βic = 0.1. And β = 0.7, p = 0.1, σ = 1, U0 =
0.0075, Ui0 = 0.3×108 and βic = 0.1.
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Figure 3.3: The normalized electric field with regards to βe = βp = β and ζ with p = 0.5,
δie = 0.1, σ = 1, U0 = 0.0075, Ui0 = 0.3×108 and βic = 0.1.
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Figure 3.4: The normalized electric field with regards to σ and ζ with p = 0.07 and 0.01,
δie = 0.05, β = 0.5, U0 = 0.0075, Ui0 = 0.9×108 and βic = 0.3.
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Figure 3.5: The normalized electric field with regards to p and ζ with β = 0.7, δie = 0.5,
σ = 1.5, U0 = 0.0075, Ui0 = 0.9×108 and βic = 0.3.
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Figure 3.6: The normalized electric field with regards to δie and ζ with β = 0.5, p = 0.2,
σ = 1, U0 = 0.0075, Ui0 = 0.3×108 and βic = 0.1.
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Figure 3.7: The normalized electric field with regards to βe = βp = β and ζ with p = 0.2,
δie = 0.1, σ = 1, U0 = 0.0075, Ui0 = 0.9×108 and βic = 0.3.
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Figure 3.8: The normalized electric field with regards to σ and ζ with p = 0.1, δie = 0.05,
β = 0.5, U0 = 0.0075, Ui0 = 0.9×108 and βic = 0.3.
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Figure 3.9: Variation of electrostatic potential with regards to time. The parametric values
of the parameters are considered as βic = 0.1, δie = 0.1, σ = 1, U0 = 0.0075, Ui0 = 0.3×108

and βe = βp = 0.7 and p = 0.3.
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Figure 3.10: Variation of normalized electric field with regards to time. The parametric
values of the parameters are considered as βic = 0.1, δie = 0.1, σ = 1, U0 = 0.0075, Ui0 =
0.3×108 and βe = βp = 0.7 and p = 0.3.
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3.5 CONCLUSIONS

A relativistic unmagnetized plasma composing of nonthermal electrons, nonthermal positrons

and relativistic ion fluids has been considered to report the propagation of IASs. By imple-

menting RPT, the KdVE has been derived and its solution has been provided. The study in-

vestigated how the plasma parameters affect the propagation characteristics of IASs, mod-

eled by KdVE with up to 20 terms of the LRF. It was observed that in a proposed rela-

tivistic plasma environment, both compressive and rarefactive IASs are supported in the

presence of nonthermality. The amplitudes and widths of IASs are significantly influenced

by increasing numeric values of the plasma parameters. Moreover, the relativistic stream-

ing factor notably alters the nonlinear propagation of IASs, with soliton energy showing

a slight increase (or considerable increase) as the relativistic streaming index exceeds (or

remains below) 0.1. It may be concluded that the investigations made in this article would

be helpful to understand the propagation characteristics of electrostatic IASs around CVs

not only in plasma sheath boundary layer of earth magnetosphere [122], Laser-plasma in-

teraction [72,123], quark-gluon [124], interstellar medium [33,125], etc. but also in plasma

laboratory [126].
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Chapter 4: ION ACOUSTIC SOLITON IN AN
UNMAGNETIZED RELATIVISTIC PLASMA
AROUND THE CRITICAL VALUES

4.1 INTRODUCTION

Research on the electron-positron-ion (e-p-i) relativistic plasmas has become important

for analyzing nonlinear wave propagation phenomena in different plasma environments,

including astrophysical and laboratory applications. Since the relativistic effects consid-

erably impact on the wave structures and dynamics of nonlinear waves as the velocity

of massive charged particles approaches to the speed of light [33, 106–118]. Such types

of relativistic plasmas exist in various plasma environments, e.g. space plasma phenom-

ena [127], the plasma sheath boundary layer of Earth’s magnetosphere [128], the inner

region of accretion discs near black holes [27], laser-plasma interactions [72, 129], Wake-

field accelerators [130], the Van Allen radiation belts [126] and so on. However, the study

on the nonlinear physical phenomena in the laboratory is challenging due to the difficulty

in producing such type of plasmas. On the other hand, the features of nonlinear wave

propagation of such plasmas can be understood by using the mathematical tools and suit-

able plasma assumptions. For instance, the massive hot ions with energies from 0.1 to 100

MeV are often created in the atmosphere of the sun and interstellar medium [33, 125]. In

such case, ions possess relativistic speed only when the ion energy is supported with ki-

netic energy. As a result, the electron-positron plasmas along with the relativistic energy

of ion fluids are frequently occurred in many astrophysical and space environments, which

is significant for realizing the construction and kinetics of ion acoustic waves (IAWs). The

elementary features of IAWs in various e-p-i relativistic plasmas, together with the nonlin-

ear evolution equations have already been studied in Refs. [33, 106–118]. In Ref. [114],

authors have investigated the head-on collision between two IASs and propagating char-

acteristics of IASs by deriving only the coupled Korteweg-de Vries equations (KdVEs) in
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the presence of nonthermal electrons and positrons. They have shown that the considered

plasma is supported with both compressive and rarefactive electrostatic solitons. But, they

have not provided the existence of critical values (CVs) of any specific parameter. Addi-

tionally, they have not studied what happens with the electrostatic IASs propagation around

the CVs by deriving an evolution equation, that is modified KdVE (mKdVE).

To the best of our knowledge, the propagation characteristics of electrostatic solitons

have not been studied by considering the weakly relativistic plasma with the existence of

CVs of any specific parameter along with the remaining parameter constant. Thus, the work

presented in this article will focus on the following considerations and physical issues:

(i) The unmagnetized plasma environment by the mixture of relativistic ion fluids and

nonthermal distributed electrons as well as positrons.

(ii) The derivation of mKdVE with the existence of CVs of any specific parameter.

(iii) The features of nonlinear plasma wave dynamics and propagation characteristics

of IASs around CVs.

4.2 FORMATION OF MKDVE

To derive the mKdVE by simplifying Eqs. (3.2) to (3.4), one can use the scaling of depen-

dent unknown variables via the new stretched coordinates as

ξ = ε (x−Vpt) , τ = ε
3t,0 < ε < 1, (4.1)

where Vp is the linear phase velocity of the perturbation mode normalized by Cs and ε

measures the weakness of the dissipation. Using Eq. (4.1) into Eqs. (3.2) -(3.4), one can

convert to the Eqs. (3.2) -(3.4) in the new forms involving the new stretched coordinates as

ε
3 ∂Ni

∂τ
− εVp

∂Ni

∂ξ
+ ε

∂ (NiUi)

∂ξ
= 0, (4.2)

ε
3 ∂γUi

∂τ
− ε

∂γUi

∂ξ
+Uiε

∂γUi

∂ξ
+ εNi

3δie

1− p
∂Ni

∂ξ
=−ε

∂φ

∂ξ
, (4.3)
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ε
2 ∂ 2φ

∂ξ 2 =
(
1−βeφ +βeφ

2)eφ − p
(
1+βpσφ +βpσ

2
φ

2)e−σφ −Ni. (4.4)

Using the expansions of perturbed quantities Ni, Ui, and φ , which are involved in the power

series of ε [110] from Eq. (3.9) in Eq. (4.2)-(4.4) , one can derive the different set of

partial differential equations (PDEs) by taking several order of ε . The lowest order of ε

PDEs obtained from the Eq. (4.2)-(4.2) are the same as in Eq. (3.10)-(3.12). Also, the first

order perturbed quantities for Ni, Ui and the obtained phase velocity Vp are the same as in

Eq.(3.13) and Eq.(3.14). Hence, from the next order of the ε , it gives

−(Vp −Ui0)
∂Ni

(2)

∂ξ
+(1− p)

∂Ui
(2)

∂ξ
+

∂

∂ξ

(
Ni

(1)Ui
(1)
)
= 0, (4.5)

−γ1 (Vp −Ui0)
∂Ui

(2)

∂ξ
+

3δie

(1− p)
∂Ni

(2)

∂ξ
+
{

γ1 − γ2 (Vp −Ui0)
}

Ui
(1)∂Ui

(1)

∂ξ

+
3δie

(1− p)2 Ni
(1)∂Ni

(1)

∂ξ
=−∂φ (2)

∂ξ
, (4.6)

0 =C1φ
(2)+C2

{
φ
(1)
}2

−Ni
(2), (4.7)

where C2 =
(
1− pσ2)/2 and γ2 =

3β 2
ic

2 . Simplifying Eqs. (4.5) -(4.7) yield

Ni
(2) =C5

{
φ
(1)
}2

+
(1− p)

k
φ
(2),Ui

(2) =C4

{
φ
(1)
}2

+
(Vp −Ui0)

k
φ
(2), (4.8)

− [C5 −C2]

2

{
φ
(1)
}2

= 0, (4.9)

with
C4 =

(Vp−Ui0)
2k3

{(
−γ2 (Vp −Ui0)

3 + γ1 (Vp −Ui0)
2
)
+9δie

}
,

C5 = (1− p)
{

C4
(Vp−Ui0)

+ 1
k2

}
.

(4.10)

Eq. (13) yields Ac = [C5 −C2] must be zero because φ (1) ̸= 0, which is equal to the non-

linear coefficient of KdVE. It is clearly provided that one can determine the CVs of any

specific parameter (say, temperature ratio’s, density ratio’s, etc) to study the soliton propa-
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Table 4.1: List of some CVs for density ratio’s

Parametric values CVs (say pc) for density ratio’s (p = Np0/Ne0)

βe = βp = 0.7, β = 0.05, σ = 1, δ = 0.1 pc = 0.2741291620
βe = βp = 0.7, β = 0.05, σ = 2.5, δ = 0.1 pc = 0.08255322433

βe = βp = 0.5, β = 0.1, σ = 1, δ = 0.1 pc = 0.03467135200
βe = βp = 0.5, β = 0.1, σ = 1, δ = 0.01 pc = 0.07681842699

gation around CVs by setting Ac = 0. The existence of some CVs is shown in Table 4.1.

Finally, the next order of ε PDEs are derived as follows:

∂Ni
(1)

∂τ
− (Vp −Ui0)

∂Ni
(3)

∂ξ
+(1− p)

∂Ui
(3)

∂ξ
+

∂

∂ξ

(
Ni

(1)Ui
(2)+Ni

(2)Ui
(1)
)
= 0, (4.11)

γ1
∂U (1)

i
∂τ

− (Vp −Ui0)γ1
∂U (3)

i
∂ξ

+ 3δie
1−p

∂N(3)
i

∂ξ
+
{

γ1 − γ2 (Vp −Ui0)
} ∂

(
U (2)

i U (1)
i

)
∂ξ

+

γ2

{
U (1)

i

}2
∂U (1)

i
∂ξ

+ 3δie
(1−p)2

∂ (N(1)
i N(2)

i )

∂ξ
=−∂φ (3)

∂ξ

(4.12)

∂ 2φ (1)

∂ξ 2 =C1φ
(3)+2C2φ

(1)
φ
(2)+C3

{
φ
(1)
}3

−Ni
(3) , (4.13)

where C3 =
[
(1+3βe)+ pσ3 (1+3βp)

]
/6. Combining Eqs. (4.10) -(4.12) with the help

of Eqs. (3.13), (4.8) and (4.9), the following mKdVE is obtained:

∂φ (1)

∂τ
+A

{
φ
(1)
}2 ∂φ (1)

∂ξ
+B

∂ 3φ (1)

∂ξ 3 = 0, (4.14)

where

A = k
2γ1(1−p)

[
− 3C3k
(Vp−Ui0)

+ 1
k

{
3C4(1− p)(2γ1 − γ2 (Vp −Ui0))+

3C5

(Vp−Ui0)
(k+6δie)

}
+
(

γ2(1−p)
k3

)
(Vp −Ui0)

2
]

B =
k2

2γ1 (Vp −Ui0)(1− p)
.
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The well-established soliton solution of Eq. (17) is obtained by considering a reference

frame ζ = ξ −U0τ (U0 stands for the constant reference speed) and φ (1) → 0, dφ (1)

dζ
→ 0,

. . . ..as ζ →±∞ in the following form:

φ
(1) = φasech

{
ζ

φw

}
, (4.15)

where φa =
(√

6U0/A
)

and φw =
√

(B/U0) are the amplitudes and widths of the soliton,

respectively.

4.3 RESULTS AND DISCUSSIONS

In this section, the effect of p(= Np0/Ne0), δie(= Ti/Te), σ(= Te/Tp), β = βe = βp (popu-

lation of nonthernal electrons and positrons) and βic(=Ui0/c) on the propagation features

of electrostatic IASs has been analyzed by using the solution of mKdVE. In this analysis,

the parametric values of the parameters are considered based on the Refs. [33, 107–114],

which are relevant to some astrophysical and space environment [33, 122–125].

Figures 1(a), 1(b), 1(c) and 1(d) display the impact of p, δie, σ and β on the electrostatic

soliton propagation around their CVs in the considered weakly relativistic plasma with the

choice of the remaining parameter constant. Whereas, Figures 2(a), 2(b), 2(c) and 2(d)

display the impact of p, δie, σ and β on the normalized electric field E = −∇φ (1) around

their CVs with the choice of the reaming parameter constant. It is observed from Figure 1

and 2 that the electrostatic IASs propagation and their corresponding normalized electric

fields are supported around CVs if p, δie and σ are greater than their CVs pc, δc and σc and

β = βe = βp is less than its CV βc. Otherwise, the electrostatic IASs propagation and their

corresponding normalized electric fields cannot be supported due to the complex parametric

values of the nonlinear coefficient (A) of mKDVE. As a result, mKDVE is applicable to

analyze the electrostatic wave propagation in unmodulated region of space. Figures 1 and

2 also depicted that the amplitude and width of electrostatic IASs and their corresponding

normalized electric fields are increasing (decreasing) with the increase of β (p,δie and σ )

around the CVs. Additionally, the considered plasma environment is only supported with
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the compressive electrostatic potential around CVs. Such electrostatic potential produces

the bell-shaped (soliton) type structures, whereas the normalized electric field produces

the semi-kink shaped type structures in the plasma environment. Finally, Figures 3(a) and

3(b) display the electrostatic potential and the normalized electric field with the variation

of time. It is clearly found that the electrostatic potential and the normalized electric field

are possessed the pulse like structures, as it is expected. Thus, the work has been made in

this articles would be helpful to understand the nonlinear propagation features of IASs in

the presence of relativistic ion fluids and nonthermal electrons as well as positrons in many

astrophysical and space environments.
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Figure 4.1: Electrostatic potential with regards to (a) p and ζ with β = 0.5, δie = 0.1,
σ = 1, U0 = 0.0075, Ui0 = 0.3 × 108 and βic = 0.1; (b) δie and ζ with β = 0.5, p =
0.07681842699, σ = 1, U0 = 0.0075, Ui0 = 0.3×108 and βic = 0.1; (c) βe = βp = β and ζ

with p = 0.2741291620, δie = 0.1, σ = 1, U0 = 0.0075, Ui0 = 0.15×108 and βic = 0.05;
and (d) σ and ζ with p = 0.3, δie = 0.1, β = 0.1, U0 = 0.0075, Ui0 = 0.03× 108 and
βic = 0.01.
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Figure 4.2: The normalized electric field with regards to (a) p and ζ with β = 0.5, δie = 0.1,
σ = 1, U0 = 0.0075, Ui0 = 0.3 × 108 and βic = 0.1; (b) δie and ζ with β = 0.5, p =
0.07681842699, σ = 1, U0 = 0.0075, Ui0 = 0.3×108 and βic = 0.1; (c) βe = βp = β and ζ

with p = 0.2741291620, δie = 0.1, σ = 1, U0 = 0.0075, Ui0 = 0.15×108 and βic = 0.05;
and (d) σ and ζ with p = 0.3, δie = 0.1, β = 0.1, U0 = 0.0075, Ui0 = 0.03× 108 and
βic = 0.01.
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Figure 4.3: Variation of (a) electrostatic potential and (b) normalized electric field with
regards to time. The parametric values of the parameters are considered as β = 0.1, δie =
0.1, σ = 1, U0 = 0.0075, Ui0 = 0.03×108 and βic = 0.01 and p = 0.3.
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4.4 CONCLUSIONS

An unmagnetized plasma composing of nonthermal electrons, nonthermal positrons and

relativistic ion fluids has been considered to report the propagation of IASs around the CVs

for weakly relativistic regime. By implementing the reductive perturbation method, the

mKdVE has been derived with the correction of the stretching coordinates. The impacts

of plasma parameters on the properties of electrostatic IASs and their corresponding elec-

tric fields have been investigated by the soliton solutions of mKdVE. It has been found

that (i) the considered plasma environment supports the CVs and (ii) the compressive elec-

trostatic soliton propagation exists around the CVs. The electrostatic IASs are formed

bell-shaped type structures, whereas the corresponding normalized electric field is formed

semi-kink shaped type structures. It is also found that the amplitudes and widths of IASs

are increased (decreased) with the increase of relativistic streaming factor (density and tem-

perature ratio,s). It may be concluded that the investigations made in this article would be

helpful to understand the propagation characteristics of electrostatic IASs around CVs not

only in plasma sheath boundary layer of earth magnetosphere [122], Laser-plasma inter-

action [72, 123], quark-gluon [124], interstellar medium [33, 125], etc. but also in plasma

laboratory [126].
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Chapter 5: ION ACOUSTIC SOLITON IN AN
UNMAGNETIZED RELATIVISTIC PLASMA
AROUND THE SUPER-CRITICAL VALUES

5.1 INTRODUCTION

The aim of this chapter is to expand upon the IASs propagation for super-critical values

(SCVs) introduced in the chapters 3 and 4 by deriving a new evolution equation with quar-

tic nonlinearity. Key questions addressed include: (i) determining the existence of SCVs

with specific parameters in the considered model equations for UMRPs , (ii) identifying

the appropriate evolution equation for studying IASs propagation in this context, (iii) ex-

amining the nature of electrostatic IASs propagation not only around SCVs but also at

the SCVs themselves and (iv) analyzing how plasma parameters influence the existence

regions. These findings are anticipated to enhance our understanding of nonlinear electro-

static IASs propagation not only around SCVs but also at the SCVs in interplanetary and

astrophysical plasmas, as well as in laboratory settings.

5.2 FORMATION OF KDVE WITH QUARTIC NONLINEARITY

AND STATIONARY SOLITON SOLUTION

To derive the KdVE involving more higher order nonlinearity, by simplifying Eqs. (3.2)

to (3.4), one can use the scaling of dependent unknown variables via the new stretched

coordinates as

ξ = ε
3
2 (x−Vpt) , τ = ε

9
2 t,0 < ε < 1, (5.1)

where Vp is the linear phase velocity of the perturbation mode normalized by Cs and ε

measures the weakness of the dissipation. Using Eq. (5.1) into Eqs. (3.2) -(3.4), one can

convert to the Eqs. (3.2) -(3.4) in the new forms involving the new stretched coordinates as

ε
9/2 ∂Ni

∂τ
− ε

3/2Vp
∂Ni

∂ξ
+ ε

3/2 ∂ (NiUi)

∂ξ
= 0, (5.2)
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ε
9/2 ∂γUi

∂τ
− ε

3/2 ∂γUi

∂ξ
+Uiε

3/2 ∂γUi

∂ξ
+ ε

3/2Ni
3δie

1− p
∂Ni

∂ξ
=−ε

3/2 ∂φ

∂ξ
, (5.3)

ε
3 ∂ 2φ

∂ξ 2 =
(
1−βeφ +βeφ

2)eφ − p
(
1+βpσφ +βpσ

2
φ

2)e−σφ −Ni. (5.4)

Using the expansions of perturbed quantities Ni, Ui, and φ as in Eq. (3.9) in to Eq. (5.2)-

(5.4), one can derive the different set of PDEs by taking several order of ε . The lowest

order of ε PDEs obtained from the Eq. (5.2)-(5.4) are the same as in Eq. (3.10)-(3.12).

Also, the first order perturbed quantities for Ni, Ui and the obtained phase velocity Vp are

the same as in Eq.(3.13) and Eq.(3.14). Again, from the next order of ε the obtained PDEs

yield

Ni
(2) =C5

{
φ
(1)
}2

+
(1− p)

k
φ
(2),Ui

(2) =C4

{
φ
(1)
}2

+
(Vp −Ui0)

k
φ
(2), (5.5)

− [C5 −C2]

2

{
φ
(1)
}2

= 0, (5.6)

with
C4 =

(Vp−Ui0)
2k3

{(
−γ2 (Vp −Ui0)

3 + γ1 (Vp −Ui0)
2
)
+9δie

}
,

C5 = (1− p)
{

C4
(Vp−Ui0)

+ 1
k2

}
.

(5.7)

Eq. (5.6) yields Ac = [C5 −C2] must be zero because φ (1) ̸= 0, which is similar to the

nonlinear coefficient (P) of KdVE. It is provided that one can easily determine the CVs of

any one parameter with the reaming parameter constant by setting P = 0.

Now, the next order of the ε yields,

−(Vp −Ui0)
∂Ni

(3)

∂ξ
+

∂Ni
(2)U (1)

i
∂ξ

+
∂Ni

(1)U (2)
i

∂ξ
= 0, (5.8)

−(Vp −Ui0)γ1
∂U (3)

i
∂ξ

+ 3δie
1−p

∂N(3)
i

∂ξ
+
{

γ1 − γ2 (Vp −Ui0)
} ∂

(
U (2)

i U (1)
i

)
∂ξ

+

γ2

{
U (1)

i

}2
∂U (1)

i
∂ξ

+ 3δie
(1−p)2

∂ (N(1)
i N(2)

i )

∂ξ
=−∂φ (3)

∂ξ

(5.9)

0 =C3φ
(1)3

+2C2φ
(1)

φ
(2)+C1φ

(3)−N(3)
i . (5.10)
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Simplifying Eqs. (5.7) -(5.9) yield

Ni
(3) =C7

{
φ (1)

}3
+2C5φ (1)φ (2)+ (1−p)

k φ (3),

Ui
(3) =C6

{
φ (1)

}3
+2C4φ (1)φ (2)+

(Vp−Ui0)
k φ (3),

(5.11)

− [C7 −C3]

2

{
φ
(1)
}3

= 0, (5.12)

with

C6 =
C4
k2

{
(γ1 − (Vp −Ui0)γ2)(Vp −Ui0)

2 +3δie

}
+

6δieC5(Vp−Ui0)
k2(1−p) + γ2

3k4 (Vp −Ui0)
4 ,

C7 =
(1−p)(C4+kC6)+C5(Vp−Ui0)

k(Vp−Ui0)
.

Eq. (5.11) yields Asc = [C7 −C3] must be zero because φ (1) ̸= 0, which is similar to the

nonlinear coefficient (A) of mKdVE. It is provided that one can easily determine the SCVs

of any one parameter with the reaming parameter constant by setting together with P = 0

and A = 0. Finally, the next order equations are determined in the following forms:

−(Vp −Ui0)
∂N(4)

i
∂ξ

+(1− p)∂U (4)
i

∂ξ
+

∂N(1)
i

∂τ
+

∂ (U (3)
i N(1)

i )

∂ξ
+

∂ (N(3)
i U (1)

i )

∂ξ
+

∂ (N(2)
i U (2)

i )

∂ξ
= 0,

(5.13)

−(Vp −Ui0)
∂U (4)

i
∂ξ

+ 3δie
(1−p)

∂N(4)
i

∂ξ
+ ∂φ (4)

∂ξ
+(γ1 − γ2 (Vp −Ui0))

∂ (U (1)
i U (3)

i )

∂ξ
+

(γ1 − γ2 (Vp −Ui0))U (2)
i

∂U (2)
i

∂ξ
+ γ2

{
U (1)

i

}2
∂Ui(2)

∂ξ
+

3δie
(1−p)2

∂ (N(1)
i N(3)

i )

∂ξ
+ 3δie

(1−p)2 N(2)
i

∂N(2)
i

∂ξ
+ γ1

∂U (1)
i

∂τ
= 0,

(5.14)

0 = Z4

{
φ
(1)
}4

+3C3 +2C2φ
(1)

φ
(2)+C1φ

(3)−N(3)
i . (5.15)

where Z4 =
[
(1+8βe)− pσ4 (1+8βp)

]
/24. Combining Eqs. (5.13) -(5.15) with the help

of Eqs. (3.13), (5.5) and (5.11), the following quartic KdVE is obtained:

∂φ (1)

∂τ
+R

{
φ
(1)
}3 ∂φ (1)

∂ξ
+S

∂ 3φ (1)

∂ξ 3 = 0, (5.16)
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where

R = 1
γ1

[
k

(1−p)2(Vp−Ui0)

{
(1− p)2C2

4 (γ1 − γ2 (Vp −Ui0))+2C4C5γ1(1− p)(Vp −Ui0)

−2k(1− p)Z4 +3δieC2
5
}
+ 2

(1−p)(Vp−Ui0)

{
(1− p)C6

(
−γ2 (Vp −Ui0)

2 +2γ1 (Vp −Ui0)
)
+

C7 (k+6δie)}+ 2C4γ2
k (Vp −Ui0)

]

S =
k2

2γ1 (Vp −Ui0)(1− p)
.

The well-established soliton solution of Eq. (5.16) is obtained by considering a reference

frame ζ = ξ −U0τ (U0 stands for the constant reference speed) and φ (1) → 0, dφ (1)

dζ
→ 0,

. . . ..as ζ →±∞ in the following form:

−U0φ
(1)+

R
4

{
φ
(1)
}4

+S
d2φ1

dχ2 = 0 (5.17)

Eq. (5.17) can be represent in planar dynamical system and the dynamical system (5.17) is

a Hamiltonian system with Hamiltonian function

H(φ (1),z) =
z2

2
− U0

2S

{
φ
(1)
}2

+
R

10S

{
φ
(1)
}5

. (5.18)

For any homoclinic orbit of the dynamical system (5.17) at (0,0), one can have H(φ (1),z)=

0, which gives
dφ (1)

φ (1)
√

1− R
10U0

{
φ (1)

}3
=±

√
U0

S
dχ. (5.19)

Let
√

1− R
10U0

{
φ (1)

}3
= f 2, applying this in equation (5.19) and by integrating we obtain

f = sech

(
±3

2

√
U0

S
χ

)
(5.20)
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Using f , one can obtain

φ
(1) = φmsech

2
3

{
χ

W

}
. (5.21)

Equation (5.21) represents the solitary wave solution of the quartic KdVE where φm =(
10U0

R

) 1
3 and W =

√
4S

9U0
are the amplitude and width of the soliton, respectively.

5.3 RESULTS AND DISCUSSIONS

In this section, we discuss the propagation characteristics of small-amplitude nonlinear

IASs, considering the influence of plasma parameters through an analysis of the soliton

solution of the KdVE with quartic nonlinearity. The parameter values are assumed based

on reference [40], relevant to astrophysical and space environments. It is noted that the

quartic nonlinearity in the KdVE emerges when the nonlinear coefficients of both KdVE

and mKdVE are set to zero, defining SCVs. Our study confirms the existence of these

SCVs in the plasma environment under consideration. The key findings based on these

assumptions are detailed below.

Figure 5.1 depict the appearance of SCV pSC for the density ratio p, respectively with

presence of nonthermality, alongside constant values of other parameters. This figure illus-

trates how the nonlinear coefficients P and A of the KdVE and mKdVE become zero at pSC,

allowing us to study the propagation of IASs around this point. Subsequently, Figures 5.2 to

5.5 explore the effects of p, δie, σ , and p on the nonlinear propagation of IASs in relativis-

tic plasma, considering the LRF up to 20 terms and holding other parameters constant. The

analysis reveals that the plasma supports finite-amplitude soliton structures whose ampli-

tude, and width are strongly influenced by these parameters. Figures 5.2, 5.3 and 5.5 reveal

that the amplitude and width of IASs decrease with the increasing electron-to-positron tem-

perature ratio σ , ion-to-electron temperature ratio δie, and positron-to-electron density ratio

p. However, Figure 5.4 illustrates the increase of the width and amplitude of the IASs with

increasing value of β .

Figure 5.7 shows the effect of the electric field on the propagation characteristics of

IASs decreases by the increase of ion-to-electron temperature ratio δie. Whereas, from Fig-
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ure 5.6, 5.8 and 5.9 it is found that the effect of the electric field decreases (increases) with

the increase of electron-to-positron temperature ratio σ and positron-to-electron density

ratio p (distributive parameter β ) up to numeric value 0.6 and then gains a slight increase.

Finally, Figures 5.10 and 5.11 that both electrostatic potential and normalized electric

field are behaves pulse like shaped with the increase of time. It is also clearly found that

the electrostatic potential and the normalized electric field are possessed the pulse like

structures, as it is expected. It is noted that the expansion of LRF are considered up to 20

terms in this presented studies.

In conclusion, this study suggests that to further understand the nonlinear propagation

of IASs in relativistic plasmas, researchers should consider extending the LRF to higher-

order terms and exploring higher values of the relativistic streaming index βic. These in-

sights are crucial not only for theoretical advancements but also for practical applications

in various plasma physics contexts, including laser-plasma interactions, quark-gluon envi-

ronments, dark matter studies, solar atmospheres, and laboratory experiments.
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Figure 5.1: Super-critical Value (SCV) regards to p with β = 0.7, δie = 0.4, σ = 1, U0 =
0.0075, Ui0 = 0.3×108 and βic = 0.1.
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Figure 5.2: Electrostatic potential with regards to p and ζ with β = 0.7, δie > δSC = 0.5,
σ = 1.5, U0 = 0.0075, Ui0 = 0.9×108 and βic = 0.3.
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Figure 5.3: The Electrostatic potential with regards to δie and ζ with β = 0.5, p > pSC =
0.3, σ = 1, U0 = 0.0075, Ui0 = 1.5×108 and βic = 0.5.
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Figure 5.4: The Electrostatic potential with regards to βe = βp = β and ζ with p > pSC =
0.3, δie = 0.1, σ = 1, U0 = 0.0075, Ui0 = 1.5×108 and βic = 0.5.
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Figure 5.5: The Electrostatic potential with regards to σ and ζ with p > pSC = 0.2, δie =
0.1, β = 0.5, U0 = 0.0075, Ui0 = 0.9×108 and βic = 0.3.
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Figure 5.6: The normalized electric field with regards to p > pSC and ξ with β = 0.7,
δie = 0.1, σ = 1, U0 = 0.0075, Ui0 = 0.9×108 and βic = 0.3.
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Figure 5.7: The normalized electric field with regards to δie and ξ with β = 0.5, p > pSC =
0.3, σ = 1, U0 = 0.0075, Ui0 = 1.5×108 and βic = 0.5.
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Figure 5.8: The normalized electric field with regards to βe = βp = β and ξ with p> pSC =
0.3, δie = 0.1, σ = 1, U0 = 0.0075, Ui0 = 1.5×108 and βic = 0.5..
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Figure 5.9: The normalized electric field with regards to σ and ξ with p = 0.2, δie = 0.1,
β = 0.5, U0 = 0.0075, Ui0 = 0.9×108 and βic = 0.3.
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Figure 5.10: Variation of electrostatic potential with regards to time. The parametric values
of the parameters are considered as β = 0.3, δie = 0.1, σ = 1, U0 = 0.0075, Ui0 = 0.9×108

and βe = βp = 0.5 and p > pSC = 0.3.
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Figure 5.11: Variation of normalized electric field with regards to time. The parametric
values of the parameters are considered as β = 0.3, δie = 0.1, σ = 1, U0 = 0.0075, Ui0 =
0.9×108 and βe = βp = 0.5 and p > pSC = 0.3.
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5.4 CONCLUSIONS

The investigation of this chapter is an extension of the work made chapter 3 and 4 to

analyze the nonlinear IASs with the appearance of the SCV. In this chapter, an unmag-

netized plasma having relativistic ion fluids with nonthermal electrons and positrons has

been studied to investigate the propagation of IASs around the SCV in the strongly rela-

tivistic regime by taking the RLF up to 20 terms. To accomplish the objectives, the quartic

KdVE has been derived by applying the conventional reductive perturbation method, with

the needed adjustments to the stretching coordinates for the first time. It is found that the

considered plasma environment supports the SCVs by setting the nonlinear coefficient of

the KdV and mKdV equal to zero. The impacts of plasma parameters on the properties

of electrostatic IASs and their corresponding electric fields have been investigated by the

soliton solutions of the quartic KdVE. It is observed that in this plasma environment, the

compressive electrostatic soliton propagation exists around the SCV. The electrostatic IASs

are formed bell-shaped type structures, whereas the corresponding normalized electric field

is formed semi-kink shaped type structures. It is also found that the amplitudes and widths

of IASs increase (decrease) with the increase of relativistic streaming factor (density and

temperature ratio’s) around the SCV. It may be concluded that the investigations made in

this article would be helpful to understand the propagation characteristics of electrostatic

IASs around SCVs not only in plasma sheath boundary layer of earth magnetosphere [28],

Laser-plasma interaction [19, 29], quark-gluon [30], interstellar medium [3, 23], etc. but

also in plasma laboratory [22].
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Chapter 6: CONCLUDING REMARKS AND
FUTURE ASPECTS

This chapter summarizes the findings from preceding chapters focusing on fully ionized,

collisionless three-component unmagnetized relativistic plasma systems. Various plasma

assumptions were considered, exploring nonlinear dynamics of IAWs through nonlinear

evolution equations. The reductive perturbation method was utilized to analyze electro-

static solitary waves and solitons within these plasma contexts.

Chapter 1 introduced fundamental concepts and the presence of three-component un-

magnetized relativistic plasma in astrophysical, space, and laboratory settings. Also, Plasma

nonlinearity, wave phenomena, IAws, IASs and the statement of purpose have been dis-

cussed in the this chapter.

Chapter 2 deals with the fluid description, model equation, various types of nonlinear

evolution equation and the methodology to evaluate the Nonlinear equations.

In Chapter 3, A relativistic unmagnetized plasma composed of nonthermal electrons,

nonthermal positrons, and relativistic ion fluids was studied to report the propagation of

IASs. By applying the reductive perturbation technique (RPT), the KdV equation was de-

rived and its solution provided. The study examined how plasma parameters affect the

propagation characteristics of IASs, modeled by the KdVE with up to 20 terms of the

Lorentz relativistic factor (LRF). It was found that in the proposed relativistic plasma en-

vironment, both compressive and rarefactive IASs are supported in the presence of non-

thermality. The amplitudes and widths of IASs are significantly influenced by increasing

the values of the plasma parameters. Additionally, the relativistic streaming factor notably

alters the nonlinear propagation of IASs, with soliton energy showing a slight increase

when the relativistic streaming index exceeds 0.1 and a considerable increase when it re-

mains below 0.1. In Chapter 4, we extend the research from Chapter 3 by examining a

weakly relativistic unmagnetized plasma composed of nonthermal electrons and positrons,

and weakly relativistic ion fluid. Here, the mKdVE is derived using the RPT method, in-
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corporating coordinate adjustments in the presence of critical values (CVs). The impacts

of plasma parameters on the properties of electrostatic IASs and their corresponding elec-

tric fields have been investigated using the soliton solutions of the mKdVE. The findings

indicate that (i) the considered plasma environment supports critical values (CVs) and (ii)

compressive electrostatic soliton propagation exists around these CVs. The electrostatic

IASs form bell-shaped structures, while the corresponding normalized electric fields form

semi-kink shaped structures. Additionally, it was observed that the amplitudes and widths

of IASs increase with the rise of the relativistic streaming factor and decrease with the

increase of the density and temperature ratios.

Chapter 5 delved into highly relativistic regimes, deriving quartic KdVE to study IASs

in an unmagnetized relativistic plasma, extending the work of previous chapters by deriving

the quartic KDVE around the SCV. In this chapter, an unmagnetized plasma having rela-

tivistic ion fluids with nonthermal electrons and positrons has been studied to investigate

the propagation of IASs around the SCV in the strongly relativistic regime by taking the

RLF up to 20 terms. It is found that the considered plasma environment supports the SCVs

by setting the nonlinear coefficient of the KdV and mKdV equal to zero. The impacts of

plasma parameters on the properties of electrostatic IASs and their corresponding electric

fields have been investigated by the soliton solutions of the quartic KdVE. It is observed

that in this plasma environment, the compressive electrostatic soliton propagation exists

around the SCV. The electrostatic IASs are formed bell-shaped type structures, whereas

the corresponding normalized electric field is formed semi-kink shaped type structures. It

is also found that the amplitudes and widths of IASs increase (decrease) with the increase

of relativistic streaming factor (density and temperature ratio’s) around the SCV.

Overall, the chapters collectively underscored the significant role of ion streaming fac-

tors and other plasma parameters in shaping the dynamics of IA waves across different

relativistic regimes, offering insights applicable to various astrophysical, space, and labo-

ratory plasma environments.

Further investigation is needed to fully understand the specific influences of weakly and
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highly relativistic effects on the formation and dynamics of not only solitary but also shock

structures in plasma systems. Additionally, future research could benefit from numerical

simulations to validate theoretical findings and explore more complex plasma scenarios

beyond the limitations of analytical methods. Moreover, theoretical predictions should be

experimentally tested in laboratory plasma environments to confirm their applicability to

real-world astrophysical and space plasma phenomena.
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