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Abstract 

 

 

In the modern world, supply chains completely rely on data to function properly under 

risk and uncertainty. Supply chain risk optimization is a process that involves 

identifying, assessing, and managing potential risks within a supply chain network to 

minimize disruptions. A machine learning analytics model of supply chain risk 

optimization uses data analytics and machine learning algorithms to understand and 

assess supply chain risks. Out of many types of risks involved in the supply chain, late 

delivery risk is the most common, and a lot of attention has been paid by researchers 

in this regard. The work presented in this thesis utilizes the DataCo Supply Chain 

dataset. Out of many risks, late delivery and fraud detection are considered in this 

research work to optimize the risks associated with the supply chain. In total, 15 

different machine learning classification algorithms along with two hybrid algorithms 

are implemented and compared. The better performing hybridized classification 

algorithm is created in this paper combining the Multi-Layer Perceptron Classifier, 

Random Forest, and Extra Trees Classifier is put to the test. The hybrid algorithm 

outperforms all the algorithms and shows an accuracy of 99.45% and 99.15% for late 

delivery status prediction and fraud detection respectively. In the later part of the 

thesis, Deep Reinforcement Learning algorithms have been implemented for supply 

chain pricing policy optimization. The unique factor is that real-time data from an 

online marketplace in Bangladesh is used in this regard. Deep Q Network and State-

Action-Reward-State-Action algorithm have been used, performance-wise  Deep Q 

Network algorithm performed better and it achieved 19% more profit than constant 

price optimization. The overall work done in this thesis provides a solid foundation of 

integrated supply chain optimization by which supply chain managers can act 

proactively and can get benefit. 
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বিমূর্ত 

 

 

আধুনিক নিশ্বে, সাপ্লাই চেইিগুনি ঝুুঁ নক এিং অনিশ্চয়তার মশ্বধে ভািভাশ্বি োিাশ্বিার 

জিে সমূ্পর্ ণরূশ্বে চেটার উের নিভণর কশ্বর। সাপ্লাই চেইি নরস্ক অনিমাইশ্বজশাি হি 

এমি একটট প্রক্রিয়া যাশ্বত নিঘ্ন কমাশ্বিার জিে সাপ্লাই চেইি চিটওয়াশ্বকণর মশ্বধে সম্ভািে 

ঝুুঁ নক নেনিত করা, মূিোয়ি করা এিং েনরোিিা করা হয়। সাপ্লাই চেইি নরস্ক 

অনিমাইশ্বজশাশ্বির একটট চমনশি িানি ণং অোিানিটটক্স মশ্বেি সাপ্লাই চেইি ঝুুঁ নক 

িুঝশ্বত ও মূিোয়ি করশ্বত চেটা অোিানিটটক্স এিং চমনশি িানি ণং অোিগনরদম িেিহার 

কশ্বর। সাপ্লাই চেইি জন়িত অশ্বিক ধরশ্বির ঝুুঁ নকর মশ্বধে, নিিশ্বে চেনিভানর ঝুুঁ নক 

সিশ্বেশ্বয় সাধারর্, এিং এই নিষশ্বয় গশ্বিষকরা অশ্বিক মশ্বিাশ্বযাগ নদশ্বয়শ্বেি। এই নিনসশ্বস 

উেস্থানেত কাজ চেটাশ্বকা সাপ্লাই চেইি চেটাশ্বসট িেিহার কশ্বর করা হশ্বয়শ্বে। অশ্বিক 

ঝুুঁ নকর মশ্বধে, চদরী চেনিভানর এিং জানিয়ানত সিাক্তকরর্ এই গশ্বিষর্া কাশ্বজ নিশ্বিেিা 

করা হয় সাপ্লাই চেইি সাশ্বি সম্পনকণত ঝুুঁ নকগুনিশ্বক অনিমাইজ করার জিে। চমাট, 

দুটট হাইনিে অোিগনরদশ্বমর সাশ্বি ১৫টট নভন্ন চমনশি িানি ণং ক্লানসনিশ্বকশি 

অোিগনরদম প্রশ্বয়াগ করা হয় এিং তুিিা করা হয়। মানি-চিয়ার োরশ্বসে্রি 

ক্লানসিায়ার, রান্ডম িশ্বরস্ট এিং এক্সরা টরস ক্লানসিায়াশ্বরর সমন্বশ্বয় এই চেোশ্বর 

একটট চসরা োরিনম ণং অোিগনরদম হাইনিোইজে ক্লানসনিশ্বকশি অোিগনরদম ততনর 

করা হশ্বয়শ্বে। হাইনিে অোিগনরদম সমস্ত অোিগনরদমশ্বক োন়িশ্বয় যায় এিং চদরী 

চেনিভানরর অিস্থার েূি ণাভাস এিং জানিয়ানত সিাক্তকরশ্বর্র জিে যিািশ্বম ৯৯.৪৫%  

এিং ৯৯.১৫% সটিকতা চদখায়৷ নিনসশ্বসর েরিতী অংশ্বশ, সাপ্লাই চেইি প্রাইনসং েনিনস 

অনিমাইশ্বজশাশ্বির জিে নেে নরইিশ্বিাস ণশ্বমন্ট িানি ণং অোিগনরদম প্রশ্বয়াগ করা 

হশ্বয়শ্বে। অিিে িোক্টর হি চয িাংিাশ্বদশ্বশর একটট অিিাইি মাশ্বকণটশ্বপ্লস চিশ্বক 

নরশ্বয়ি-টাইম চেটা এই নিষশ্বয় িেিহার করা হয়। নেে নকউ চিটওয়াকণ এিং চস্টট-

অোকশি-নরওয়ােণ-চস্টট-অোকশি অোিগনরদম িেিহার করা হশ্বয়শ্বে, োরিরমোন্স 

অিুসাশ্বর নেে নকউ চিটওয়াকণ অোিগনরদম ভাি োরিম ণ কশ্বরশ্বে এিং এটট ধ্রুিক 

মূিে অনিমাইশ্বজশাশ্বির তুিিায় ১৯% চিনশ মুিািা অজণি কশ্বরশ্বে । এই নিনসশ্বস 

সম্পানদত সামনিক কাজ সমনন্বত সাপ্লাই চেইি অনিমাইশ্বজশাশ্বির একটট শক্ত নভনি 

প্রদাি কশ্বর যার দ্বারা সাপ্লাই চেইি মোশ্বিজাররা সক্রিয়ভাশ্বি কাজ করশ্বত োশ্বর এিং 

সুনিধা চেশ্বত োশ্বর। 
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Chapter 01 

Introduction 

 

1.1 Background and motivation 

 

In today's world, when it comes to effectively regulating their supply chains, 

organizations confront many obstacles. Factors such as globalization, complex 

logistics networks, demand variability, and uncertain market conditions have 

necessitated the development of advanced techniques to optimize supply chain 

operations. This research delves into the world of machine learning algorithms and 

their application in optimizing supply chain processes. 

 

Supply chain management is the coordination and integration of various processes 

involved in the production, sourcing and distribution of goods and services [1]. A well-

optimized supply chain minimizes costs, improves customer service, enhances 

operational efficiency, and ultimately contributes to the overall success of a company. 

However, achieving these objectives is no easy task, given the complexities and 

uncertainties involved. Traditional supply chain optimization approaches heavily rely 

on mathematical models and operations research techniques [2]. While these methods 

have proven effective, they struggle to manage the intricate and unpredictable structure 

of present supply chains. Herein lies the application of machine learning algorithms, 

offering new possibilities for enhanced decision-making and improved optimization 

outcomes [3]. 

 

As a branch of artificial intelligence, machine learning makes use of algorithms to 

evaluate and understand vast amounts of data, spot trends, forecast future events, or 

initiate action without explicit programming. In light of improvements in computing. 

capacity and the abundance of extensive datasets, machine learning algorithms have 

achieved significant popularity and proven their effectiveness across various domains. 

Supervised learning, such as linear regression, decision trees, and support vector 
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machines, can be used to model and predict demand, monitor inventory levels, and 

plan supply chain operations [4]. Unsupervised learning algorithms, such as 

dimensionality reduction techniques and clustering, allow the detection of hidden 

patterns and groupings within supply chain data. Reinforcement learning algorithms 

offer a way to optimize sequential decision-making processes by allowing an agent to 

acquire knowledge through trial and error [5]. 

 

Furthermore, the integration and coordination of demand planning, production, 

distribution, and purchasing constitute the supply chain. Making judgments at the 

strategic, tactical, and operational levels is necessary for all the action plans. Moreover, 

optimization models are being created to run these supply chain operations smoothly. 

Supply chain management (SCM) is hindered by an imbalance in knowledge and 

uncertainty. SCM decision-making relies on immutable criteria, which are now often 

impacted by information barriers [6]. However, with more data available than ever 

before, it is inefficient or impossible to analyze this data using conventional 

techniques, leading to the emergence of new techniques and applications. Machine 

learning (ML), which shades light on the creation and use of self-learning algorithms, 

is one of these approaches that can be used in analyzing supply chains [7], [8]. 

 

Additionally, society is entering a period known as  "fourth industrial revolution" [9], 

characterized through the advancement of information technology, robotics, 

communication systems, and artificial intelligence (AI). AI has got the unique feature 

that machines acquire intelligence when making judgments rather than relying on the 

human brain. One of these methods is machine learning (ML), which is concerned with 

the creation and use of computer algorithms that "learn" from experience [10]. In 

several decision-making fields, such as cancer diagnosis and prognosis [11], drug 

discovery [12], and genetics and genomics [13], the literature showed that computers 

could provide more accurate findings and analysis than humans. As the need to make 

decisions under uncertainty is an important issue in supply chains [14], ML can be 

extensively used. For SCM, ML represents a true asset as ML is better than traditional 

approaches in describing non-linear relationships because its training model can 

illustrate how the result varies with the input with accuracy. 
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Supply chain optimization is the process of maximizing the efficiency and 

effectiveness of a manufacturing process and its distribution system. [15]. 

Optimization of a supply chain refers to the practice of modifying its operations to 

provide optimal efficiency. Supply chain optimization happens in three phases: the 

design phase, the planning phase, and the execution phase [16]. The three phases of 

optimization are now described below in Figure 1.1. 

 

 

Figure 1.1: Phases of supply chain optimization 

 In the design phase, pricing policy optimization, supplier selection, and other related 

works are done. In the planning phase, the production plan, risk identification, and 

inventory planning are conducted. Finally, in the execution phase, all the strategies are 

implemented using the optimal strategy, and feedback is obtained for planning the next 

stage. 

 

 

Design

Planning

Execution
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1.2 Thesis objectives 

The main objectives of this thesis are as follows, 

• To analyze the performance of various machine learning algorithms in supply 

chain risk optimization. 

• To develop a hybrid model and compare it against traditional machine learning 

algorithms.  

• To implement deep reinforcement learning algorithm in real-world supply chain 

pricing policy optimization. 

 

1.3 Context of supply chain risk optimization 

 

In this research, supply chain risk optimization is done by predicting late delivery risk 

and detecting fraud transactions. Late delivery prediction in the supply chain involves 

using data analytics and predictive modeling techniques to forecast the likelihood of a 

shipment being delivered late [17]. A variety of data points, including order quantities, 

lead times, transit times, carrier performance, and transportation schedules, may be 

taken into account by predictive models. Prediction accuracy can be increased over 

time by using machine learning algorithms to continuously examine and learn from 

new data. Utilizing machine learning approaches for supply chain fraud detection is 

crucial to minimizing financial losses and maintaining transaction integrity [18]. 

Machine learning algorithms are capable of analyzing massive volumes of data while 

identifying patterns and anomalies that may point to fraud. 

 

1.4 Context of supply chain pricing policy optimization 

 

One of the contributing factors of this research is its examination of the application of 

deep reinforcement learning (DRL) algorithms to optimize the pricing policy of a 

supply chain within an online marketplace in Bangladesh, with a particular emphasis 

on the pricing of T-shirts. Pricing is an important element in the supply chain 

management of any retail business as it directly influences consumer demand, 

inventory levels, and overall profitability. Traditional pricing strategies often rely on 

static models or heuristic approaches that may not fully capture the complexities and 
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dynamism of the market. In contrast, DRL offers a robust framework for engaging 

with the environment to discover the best pricing rules. and continuously adapting to 

new data [19]. 

 

Moreover, the unique aspect of this research is its reliance on real-time data rather than 

simulated environments or Markov Decision Processes (MDPs). This approach 

ensures that the findings are grounded in actual market conditions, enhancing the 

practical applicability of the results [20]. By leveraging real-time sales data from an 

online marketplace in Bangladesh, the study targets to provide practical advice that 

can be directly implemented to improve pricing strategies. The primary objective of 

this work is to develop and evaluate DRL-based algorithms for optimizing the pricing 

policy of a specific product—a T-shirt—in real time. The algorithms considered 

include Deep Q-Network (DQN) and State-Action-Reward-State-Action (SARSA). 

Each of these algorithms offers distinct advantages and complexities, making them 

suitable for different aspects of the pricing optimization problem [21] – [23]. By 

focusing on a single product, the study ensures a detailed and nuanced analysis of the 

pricing dynamics, while also providing a scalable framework that can be extended to 

other products in the future. The use of real-time data not only enhances the relevance 

of the study but also poses unique challenges in terms of data processing and 

algorithmic adaptation, which are addressed in the methodology. The significance of 

this research lies in its ability to bridge the gap between theoretical advancements in 

DRL and practical applications in retail pricing. While previous works have 

demonstrated the efficacy of DRL in various domains, there is a paucity of research 

that applies these techniques to real-time pricing in online marketplaces [24]. 

 

Furthermore, this study contributes to the literature by providing empirical evidence 

of the effectiveness of DRL in a real-world setting. Moreover, the focus on the 

Bangladeshi market adds a unique dimension to the research. As an emerging economy 

with a rapidly growing e-commerce sector, Bangladesh presents a fertile ground for 

innovative pricing strategies. The insights gained from this study can inform 

policymakers and business leaders in similar markets, facilitating the application of 

advanced AI techniques in the management of supply chains [25]. 
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The methodology involves the collection of real-time sales data from an online 

marketplace, preprocessing the data, and implementing the DRL algorithms to 

optimize the pricing policy. The performance of DQN and SARSA. A detailed 

description of the data sources, preprocessing techniques, and algorithmic 

implementation is provided in the subsequent sections. One of the main challenges 

dealt with in the presented study is the real-world features of the data. Traditional DRL 

applications often rely on simulated environments where the data is static or semi-

static [26]. In contrast, this study deals with continuous streams of data that require 

dynamic adaptation and real-time decision-making. The algorithms are trained and 

evaluated in a manner that reflects these real-world conditions, ensuring that the results 

are both robust and practically relevant. 

 

While a comprehensive literature review is beyond the scope of this introduction, it is 

important to situate this research within the broader context of existing studies. Early 

work by Sutton and Barto [19] laid the foundation for reinforcement learning, 

providing the theoretical underpinnings that have been built upon by subsequent 

researchers. Mnih et al. [21] introduced the DQN algorithm, demonstrating its 

potential in complex decision-making tasks. Recent studies have explored the 

application of DRL in various domains, including finance, healthcare, and robotics 

[20], [24]. However, there is limited research on its application to real-world pricing 

in supply chains. This research aims to fulfill this gap by providing empirical evidence 

from a real-world online marketplace. 

 

Overall, this research makes several key contributions like by using real-time data, the 

study provides empirical validation of DRL algorithms in a real-world setting, 

demonstrating their practical applicability and the comparative analysis of DQN and 

SARSA that provides details regarding both the benefits and drawbacks of every 

algorithm. This research focuses on the Bangladeshi market providing valuable 

insights that can inform pricing strategies in similar emerging economies. The results 

section of this research presents the findings, which are then discussed in the context 

of existing literature. 
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1.5  Hybrid model 

 

In this research, a robust hybrid Model is developed combining Multilayer Perceptron 

(MLP), Random Forest, and Extra Trees Classifier to tackle a challenging 

classification task. One other hybrid model is also developed which didn’t generate 

better results. The MLP, a type of artificial neural network, captures complex, non-

linear patterns within the data through its deep, fully connected layers. Meanwhile, the 

Random Forest and Extra Trees Classifiers, both ensemble learning methods, enhance 

the model's performance by aggregating the predictions of multiple decision trees to 

reduce overfitting and improve generalization. In the approach presented here, the 

MLP first processes the input data, leveraging its powerful feature extraction 

capabilities. The output from the MLP, along with the original input features, is then 

fed into the Random Forest and Extra Trees Classifiers. The final predictions are 

obtained by aggregating the results of these classifiers, ensuring a comprehensive 

analysis of the data. This hybrid approach excels due to its ability to harness the 

strengths of both neural networks and ensemble methods. The MLP provides a 

sophisticated understanding of intricate data patterns, while the Random Forest and 

Extra Trees Classifiers add robustness and stability to the predictions. This 

combination results in superior performance, evidenced by high accuracy, precision, 

recall, and F1-score metrics, indicating the model's strong predictive power and 

reliability. The synergy between these diverse algorithms makes sure that the hybrid 

model captures wide variety of data characteristics, leading to exceptional 

classification results. 

 

1.6 Conclusion 

In conclusion, the optimization of pricing policy using DRL offers a noteworthy 

advancement in supply chain management space. By utilizing real-world data and 

cutting-edge algorithms, this study aims to provide actionable insights that can 

enhance the profitability and competitiveness of online marketplaces. The unique 

focus on a single product within the Bangladeshi market adds a practical dimension to 

the research, ensuring that the findings are both relevant and impactful. The work in 
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this paper aims to do a comparative analysis of various machine learning models to 

better predict late delivery and fraud transactions, which ultimately results in the 

optimization of supply chain risks. One hybridized ML algorithm was also 

implemented in the later part, which produced good results. Supply chain managers 

can act proactively with this information and raise overall supply chain performance 

by taking care of possible problems before they arise. 

The organization of this thesis is structured in a total of five chapters. The next chapter 

illustrates all the previous studies and literature regarding supply chain risk 

optimization and pricing policy optimization. Chapter 3 explains the detailed 

methodology of how the work is done. Chapter 4 represents all the results obtained 

from implementing various machine learning algorithms and also the hybrid model 

implementation. Also, the results of DRL algorithms are discussed in detail. The last 

chapter of this thesis throws light on the conclusion of the work and future 

implementations and research directions. 
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Chapter 02 

Literature Review 

 

2.1 Introduction 

The initial phase of this research endeavor involves a comprehensive analysis of 

studies about the optimization of supply chain pricing policies utilizing Deep 

Reinforcement Learning and supply chain risk optimization using ML. This 

preliminary investigation aims to offer a thorough understanding of the methodologies 

employed by previous researchers. Thus, the identified limitations and gaps in 

previous research will play a vital role in shaping the objectives fulfillment and 

methodologies of this thesis. 

 

2.2 Previous study regarding ML 

 

This section presents all the previous literature regarding supply chain risk 

optimization using various machine learning algorithms. First, some previous studies 

regarding supply chain optimization are presented and then the endeavor is given 

particularly on risk optimization in the supply chain. 

 

 Kalaitzi et al. [27] analyzed the implementation of machine learning in supply chain 

optimization, emphasizing the significant impact of ML techniques on improving 

supply chain efficiency and performance. This study highlights the importance of 

adaptive strategies that incorporate resource-efficient practices and stakeholder 

collaboration to manage natural resource scarcity. The authors employed a mixed-

method approach, integrating quantitative data analysis with qualitative case studies. 

Data was collected through surveys and interviews with supply chain managers from 

various industries. One limitation is the potential bias in self-reported data, which 

might affect the generalizability of the findings. Additionally, the study is context-

specific and may not fully capture the diverse strategies applicable across different 

regions and industries. 
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Building on the discussion of various machine learning algorithms, Wong et al. [28] 

explored the versatility of these algorithms when tackling multiple aspects of supply 

chain operation, including supervised, unsupervised, and reinforcement learning. 

Their comprehensive literature review analyzes numerous studies that applied ML 

techniques to supply chain problems. A major limitation noted is the complexity and 

computational demands of implementing advanced ML algorithms, which may require 

significant investment in technology and expertise. Despite these challenges, the study 

concludes that ML offers substantial potential for improving supply chain efficiency 

and performance. 

 

Following the exploration of different ML algorithms, Yang et al. [29] has presented 

an AI-based model that focuses on financial risk prevention in supply chains. Utilizing 

data mining and machine learning techniques, the model helps enterprises make 

informed decisions by analyzing existing financial indices. The chaotic grasshopper 

optimization algorithm (CGOA) and Slime Mould Algorithm (SMA) enhance the 

Support Vector Machine (SVM) classification process. Empirical results demonstrate 

the model's efficiency in predicting financial risks, aiding in the proactive management 

of supply chain operations. The proposed approach leverages machine learning to 

transform traditional supply chains into intelligent, adaptive systems capable of 

mitigating financial risks. Moreover, Nguyen and Nghiem [30] focus on predicting 

supply chain risks using Bayesian networks. The proposed risk framework helps 

control and monitor supply chain processes, particularly in risk identification. The 

Bayesian network's optimization capabilities allow it to handle large datasets 

effectively, aiding in risk assessment, monitoring, and mitigation. The significance of 

machine learning algorithms is emphasized by this study in enhancing supply chain 

robustness and resilience, ensuring continuity and profitability in supply chain 

operations. 

 

Sani et al. [31] developed a hybrid Bayesian-optimized Light Gradient-Boosting 

Machine (LightGBM) model to predict backorder risks in supply chains. The 

methodology integrates diverse machine learning algorithms, providing computational 
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efficiency and high accuracy. Findings show the model’s superiority in forecasting 

risks compared to traditional methods. The study emphasizes the model's potential to 

address disruptions and demand volatility. A limitation is the need for high-quality 

data to ensure model accuracy. 

 

Vignesh et al. [32] combined quantum computing and machine learning for supply 

chain optimization. The hybrid framework leverages quantum annealers and classical 

machine learning techniques. The methodology includes rigorous experimentation on 

real-world scenarios, demonstrating significant efficiency gains and enhanced solution 

quality. Findings indicate that quantum machine learning can substantially reduce 

costs and improve sustainability. A limitation is the current infancy of quantum 

computing, which may restrict widespread adoption. 

 

A multi-agent reinforcement learning (MaRL) technique was presented by Zhang et 

al. [33] for enhancing the efficiency of supply chains and traceability in inventory 

management. The methodology involves leveraging MaRL and topological 

information of supply chain networks. Simulation-based evaluations demonstrate 

superior performance compared to alternative optimization methods. Findings 

highlight the method's effectiveness in ensuring information security and cost 

reduction. A noted limitation is the complexity of implementing multi-agent systems 

in real-world supply chains. 

 

Schroeder and Lodemann [34] carried out a systematic literature review analyzing the 

integration of ML in supply chain risk management (SCRM). This study identifies the 

early detection of production, transport, and supply risks as key areas where machine 

learning adds value. It suggests that integrating new data sources, such as social media 

and weather data, can significantly enhance SCRM. The paper proposes four research 

propositions to motivate further exploration of machine learning applications in supply 

chain risk management. In another study, Aljohani [35] proposed a strategy combining 

machine learning and predictive analytics to enhance supply chain agility and real-

time risk mitigation. Traditional SCM often relies on post-event analysis, but this 

research advocates for a proactive approach using predictive models to foresee 
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disruptions. Machine learning models trained on historical and contextual data enable 

organizations to recognize risks as they emerge and implement preventive measures. 

The combination of predictive analytics into real-time monitoring improves risk 

visibility and response times, ensuring operational continuity. A limitation is the need 

for continuous model optimization to maintain accuracy in dynamic environments.

  

In another study, Li et al. [36] employed four distinct classifiers and the ML feature 

selection algorithm to determine the key influencing elements of 12,330 customers’ 

online purchase intention data. Their findings provide valuable insights into consumer 

behavior and the factors that drive online purchasing decisions, which can be used to 

optimize supply chain strategies. 

 

Reshehchi et al. [37] aimed to present a data-driven model that uses an analysis of 

network features to estimate the credit risks within a supply chain financing network. 

Their research unequivocally shows that considering the actor’s network 

characteristics within prediction models can greatly improve the model’s 

predictability, offering a new perspective on risk management in supply chain finance.  

 

Additionally, by using the MATLAB platform, Han et al. [38] has build a supply chain 

risk management model based on the principle of  neural networks and conduct model 

simulations. Their work demonstrates the potential of neural networks to provide 

robust risk management solutions and highlights the importance of simulation tools in 

developing and testing these models.Constante Nicolalde et al. [39] work with 

machine learning approaches, notably Random Forest and R part algorithms, used in 

forecasting smart supply chain fraud. This approach is useful for risk assessment, 

determining if a transaction is fraudulent or normal, and reducing potential risks. The 

dataset utilized in their study includes approximately 180k transactions from supply 

chains that DataCo Global used over a three-year period, demonstrating the scalability 

and effectiveness of ML techniques in fraud detection. 

Lastly, Lahcen Tamym et al [40] also utilized two datasets for his research about good 

and activity monitoring in supply chain. One of the datasets was DataCo supply chain 

dataset and it is used for fraud detection. They also incorporated some predictive 
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analytics. The implemented algorithms are ANN, Support Vector Machine, Decision 

Tree and lastly logistic regression. 

 

The supply chain risk optimization that has been done in this paper on the DataCO 

supply chain dataset has produced good results by implementing a hybrid machine 

learning algorithm which will be discussed later in the paper. 

 

2.3 Previous study regarding DRL 

 

Many researchers are doing their work regarding the implementation of DRL in supply 

chain optimization, especially pricing policy optimization. Reza Refaei Afshar et al. 

[41] introduced an automated deep reinforcement learning (DRL) pipeline designed to 

optimize dynamic pricing strategies. The framework simplifies the application of DRL 

for non-experts by automating three key design steps: Markov decision process 

modeling, algorithm selection, and hyperparameter optimization. The hyperparameter 

optimization stage uses a unique method that blends Bayesian optimization and genetic 

algorithm techniques to improve refinement. The proposed DRL pipeline considerably 

outperforms benchmark approaches for pricing policy optimization, as proved by 

reserve price optimization in online advertising, resulting in increased revenue 

generation in a real-time bidding scenario simulation. The limitation of the work is the 

reliance on simulation environments, which constrains real-world validation and 

necessitates further research to confirm applicability across diverse domains. 

 

Saeed Abdol Hosseini et al. [42] presented a novel approach integrating reinforcement 

learning with agent-based modeling and simulation-optimization techniques for joint 

pricing and inventory management in competitive markets. The methodology on 

optimizing (R, Q) policies in the context of non-zero lead times and lost sales. The 

algorithm can manage price and inventory while taking into account a wide range of 

client preferences, as seen by the results, which indicate how successful it is at 

increasing profit creation when compared to traditional approaches. The study's 

dependency on simulated environments requires validation in real-world settings, 

while its computational complexity may constrain scalability in larger applications. 
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To find demand response within electricity markets, Jun Song et al. [43] presented a 

novel nonparametric constrained policy optimization approach. The methodology 

focuses on improving policy stability and optimality by eliminating limiting 

assumptions about policy representation and using an on-policy actor-critic algorithm. 

The results gathered from a pair of disaster recovery case studies exhibit exceptional 

efficiency in load shifting and pricing policy optimization, all while preserving system 

stability. The method addresses important power system stability issues while 

guaranteeing strong pricing strategies in DR applications. Nonetheless, there are still 

a number of important research gaps, including the need for more validation in a 

variety of demand response scenarios as well as concerns about computing efficiency 

and practical implementation. 

 

Similar to the DQN algorithm presented in this paper, Inderpreet Singh [44] employed 

a Deep Q-Network (DQN) approach to dynamic pricing within the hospitality sector, 

specifically targeting hotel room pricing. In order to simulate demand distributions and 

optimize pricing strategies for maximum daily profits and lowest room vacancy, it uses 

a Random Forest model using real-world hotel booking data. The outcomes show a 

significant 15-20% increase in earnings and notable drop in the quantity of vacant 

rooms compared to traditional techniques. Nevertheless, the research's focus is 

restricted to one aspect of the hospitality sector, highlighting the necessity for more 

study in a variety of fields in order to properly confirm and generalize its conclusions. 

 

David Chiumera et al. [45] introduced Proximal Policy Optimization (PPO) as a deep 

reinforcement learning (RL) framework for time series forecasting in quantitative 

finance. In order to improve important parameters like learning rates and discount 

factors, the study modifies an RL environment with an emphasis on price prediction 

and strategy building. PPO has strong performance across several datasets, sometimes 

outperforming conventional buy-and-hold strategies in terms of market price 

prediction and conditional flexibility. However, the majority of the study concentrates 

on the histories of specific stock markets, suggesting that further studies into multi-
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asset portfolios and a wider range of financial instruments are necessary to confirm its 

wider applicability and resilience across financial markets. 

 

Yajun Hu et al. [46] introduced a distributed dynamic pricing strategy for e-retailers 

utilizing the Dueling Deep Q-Network (DQN) algorithm, framed within a presale 

environment modeled as a Markov decision process (MDP). The goal of the study is 

to optimize price decisions by taking customer behavior and inventory backlog into 

account. Dueling DQN algorithm's strong profit maximizing skills and flexibility to 

different presale models emphasize its effectiveness in dynamic pricing strategies 

designed for e-commerce scenarios. To evaluate the study's practical application, real-

world validation is essential, as indicated by its dependence on simulated 

surroundings. A subsequent study endeavors to improve pricing systems' security and 

transparency in e-commerce platforms by investigating the incorporation of 

blockchain technology.  

 

Jian Liu et al. [47] presented an innovative framework for dynamic pricing on e-

commerce platforms, leveraging deep reinforcement learning (DRL). The dynamic 

pricing problem is expressed as a Markov Decision Process (MDP), with states 

represented by various business data sets. It uses a novel reward function, which is the 

difference in revenue conversion rates, instead of traditional revenue-based rewards. 

The cold start problem in MDPs is also addressed by pretraining and evaluating 

carefully selected historical data. This work's limitations include separate training and 

pricing for each product and using only product-related features as the 

environment state. 

 

Mattew Huber et al. [48] introduced a novel approach to neural network architecture 

optimization using reinforcement learning, focusing on learning policies within an 

abstract embedding space for network optimization. The methodology has shown early 

success in optimizing topologies for common classification issues, and its goal is to 

gradually enhance network performance across a range of workloads. When this 

method is used to transfer learning scenarios, it adapts networks to new tasks 

effectively and without requiring a significant amount of retraining. The study can only 
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be applied so broadly since it relies on assessment from a single categorization 

problem. To prove its scalability and resilience in real-world scenarios, future studies 

should investigate how well it works with other neural network topologies and 

workloads. 

 

 DRL can also be applied effectively in inventory and logistics management scenarios. 

Toshiyuki Demizu et al. [49] have done his work on a model-based deep reinforcement 

learning approach for inventory management of new smartphone products, aiming to 

optimize stock levels and minimize lost opportunities and defective inventory. The 

approach solves data scarcity issues common to new product launches by fusing online 

planning with offline model learning. When compared to conventional approaches, 

evaluation based on actual sales data shows improved profitability, efficiency, and 

customer satisfaction. Its generalizability will need to be determined through more 

testing in a variety of product categories and retail environments. Furthermore, the use 

of historical data for model training presents challenges in rapidly changing market 

environments, indicating potential directions for future study to improve flexibility and 

the capacity to make decisions in real-time. 

 

DELLMM, a deep reinforcement learning-based logistics management model is 

introduced by Li Yang et al. [50] which is enhanced with blockchain technology, 

aimed at optimizing distribution and resource balance in dynamic transport networks. 

The approach aims to increase trust and transparency in logistics operations by 

incorporating blockchain. The outcomes of the experiment demonstrate notable 

advancements in important parameters such as sustainability, trust enhancement, 

operability, efficiency, and latency reduction. However, the report admits the need for 

more research into blockchain technology integration and underlines the importance 

of real-world validation to determine its usability and scalability in a variety of 

logistical contexts. 

 

Guoquan Wu et al. [51] introduced a distributional reinforcement learning approach 

tailored for optimizing inventory management in multi-echelon supply chains. The 

approach integrates risk-sensitive formulations to improve policy optimization and 
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places a strong emphasis on striking a balance between exploration and exploitation to 

reduce the danger of less-than-ideal results. In particular, the experimental findings 

show considerable gains in reducing low-probability, and high-severity events, as well 

as overall performance as compared to standard benchmarks. This research 

demonstrates how distributional reinforcement learning may be used to increase 

supply networks' resilience and effectiveness in operation.. To confirm its application 

to various supply chain architectures and market dynamics, more study is necessary. 

Furthermore, the algorithm's computational complexity presents difficulties for 

scalability in large-scale applications. 

 

Deep Reinforcement Learning-based Ordering Mechanism (DRLOM) designed for 

optimizing inventory is designed by Devan S. Kurian et al. [52] for optimizing 

inventory ordering in multi-echelon linear supply chains. The approach formulates and 

solves the ordering management issue as an agent-based reinforcement learning model 

via proximal policy optimization. Experiments show that DRLOM outperforms 

evolutionary computing techniques and conventional ordering heuristics in terms of 

minimizing overall inventory costs in a variety of issue scenarios. The study 

emphasizes how deep reinforcement learning may improve supply chain efficiency by 

managing inventories more effectively. Nevertheless, a present research deficit is 

highlighted by the requirement for validation in more intricate and dynamic supply 

chain contexts. Moreover, the evaluation's dependence on particular case studies limits 

the findings' wider relevance and generalizability to various supply chain contexts. 

 

Qian Zhou et al. [53] designed a joint pricing and inventory management system that 

incorporates deep reinforcement learning (DRL) to account for reference price effects 

on consumer behavior. The model is based on an infinite-horizon Markov Decision 

Process (MDP) and employs the Double Deep Q-Network (TN-DDQN) algorithm to 

optimize pricing and ordering decisions. The method seeks to optimize overall 

discounted revenues for merchants by taking into account factors such as market 

volatility and customer sensitivity to price fluctuations. The study finds that ignoring 

the current price's impact on future demand and customer's memory of past prices can 
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harm profits. The model requires significant computing power and may need 

adjustments for practical use due to potential oversimplifications. 

 

Rui Wang et al. [54] introduced a deep reinforcement learning (DRL) model to tackle 

the joint pricing and inventory control problem for perishables with a positive lead 

time. The model aims to maximize predicted profits over a finite horizon by utilizing 

the Double Deep Q-Network (TN-DDQN) algorithm to identify near-optimal ordering 

and pricing strategies. It takes into consideration both lost-sales and backlog situations, 

in which consumer demand is influenced by the current price and follows a Poisson 

pattern. The study finds that dynamic pricing techniques beat fixed pricing strategies 

because they alter prices depending on inventory levels and item shelf life. The model 

only addresses a single agent's pricing and inventory control, neglecting the 

interactions and impact of multiple agents in supply chains. 

 

Dawei Qiu et al. [55] introduced a novel deep reinforcement learning (DRL) method, 

prioritized deep deterministic policy gradient (PDDPG), for optimizing pricing 

strategies in electric vehicle (EV) charging. It addresses the challenge of discrete 

charging levels by using multi-dimensional continuous state and action spaces, 

showing superior performance over traditional methods. The approach solves the 

challenge in multi-dimensional continuous state and action spaces by fusing the ideas 

of DDPG with a prioritized experience replay technique. PDDPG offers improved 

solution optimality and lower processing needs by capturing the discrete character of 

EV charging, in contrast to previous techniques. Case studies demonstrate that PDDPG 

achieves higher profit and computational efficiency compared to state-of-the-art 

reinforcement learning techniques such as Q-learning and deep Q networks (DQN). A 

limitation of this study is that it does not yet incorporate the realistic variability of EV 

traveling patterns and wholesale prices, which is proposed as future work. 

 

Pei-Yung Chou et al. [56] presented a Deep Deterministic Policy Gradient (DDPG) 

algorithm applied to the user association and video quality selection problem in Mobile 

Edge Computing (MEC) for live video streaming. The methodology addresses this 

challenge by formulating it as a non-linear integer programming problem, leveraging 
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Lagrangian multipliers to derive a closed-form solution. According to simulation 

results, QoE can be significantly improved, especially in situations when there are a 

lot of users and not enough wireless resources. Video quality and user association can 

be optimized better than with baseline approaches. The paper emphasizes how deep 

reinforcement learning may enhance MEC performance in real-time video streaming 

applications. However the non-linear programming problem's computational 

complexity poses challenges to scalability in real-world applications. 

Chencheng Chen et al. [57] introduced a reinforcement learning enhanced agent-based 

modeling and simulation approach (RL-ABMS) to address spatial-temporal pricing in 

ride-sourcing platforms. The study uses actor and critic neural networks to 

dynamically optimize pricing strategies using the Proximal Policy Optimization (PPO) 

method. Dynamic pricing alone improved platform profit by 1.25 times, while spatial-

temporal pricing increased it even further to 1.85 times. Improved supply-demand 

coordination was also shown by the approach's notable reduction in the number of idle 

drivers or cars. The study emphasizes how spatial-temporal pricing techniques might 

improve ride-sourcing platform’s operational efficiency and profitability. However 

because ride-sourcing systems are sophisticated and rely on simulation findings and 

they need to be rigorously validated in a variety of real-world settings. Potential 

avenues for further research include examining the impact of regulatory frameworks 

and traffic dynamics on pricing methods. 

 

Seung Lee et al. [58] introduced a novel privacy-preserving distributed deep 

reinforcement learning (DRL) framework for optimizing the energy management and 

dynamic pricing of multiple smart electric vehicle charging stations (EVCSs) 

integrated with photovoltaic systems and energy storage. The study utilizes a 

hierarchically distributed methodology in which local DRL agents find the best-selling 

pricing and charging/discharging schedules by applying the soft actor-critic method. 

The system protects data privacy by implementing federated reinforcement learning 

(FRL), which trains global and local models without exchanging sensitive operational 

data amongst EVCSs. Adaptive pricing techniques and optimal energy consumption 

under variable environmental conditions are achieved by the methodology, as 

demonstrated by numerical examples. The study's reliance on simulations and the 
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difficulty of federated learning implementation in actual EVCS setups, however, 

provide obstacles to practical adoption. 

 

Eduardo J. Salazar et al. [59] presented a reinforcement learning-based pricing and 

incentive approach for demand response (DR) in smart energy systems, integrating 

both price-based and incentive-based models to manage consumer demand efficiently. 

The model optimizes short-term and long-term price strategies, successfully balancing 

supply and demand, by utilizing real-time and time-of-use pricing schemes together 

with Q-learning with memory exchange. The study shows notable gains in demand 

displacement and load factor, underscoring the model's potential to lower power prices 

and increase grid dependability. Still, more validation in various real-world 

circumstances is required due to the dependence on simulation results. To improve the 

suggested technique and handle potential peak rebound effects, future studies should 

take into account different consumer types, elasticity variables, and nodal pricing 

effects. 

 

Alexander Kastius et al. [60] examined the application of reinforcement learning (RL) 

to dynamic pricing under competitive market conditions, employing Deep Q-

Networks (DQN) and Soft Actor Critic (SAC) algorithms. The paper acknowledges 

the complexity and dimensional problems of monopoly environments while 

highlighting the improved performance of SAC over DQN in duopoly and oligopoly 

market settings. Dynamic programming (DP) was used to verify both methods, and 

the results showed that SAC performs better in cases with more complexity. SAC's 

trouble with straightforward fixed-price plans and DQN's incapacity to manage a 

variety of scenarios are two drawbacks, nevertheless. The work emphasizes the need 

to collect large amounts of observational data, and it makes recommendations for 

future work to improve data efficiency and investigate multi-task reinforcement 

learning applications for various product sectors. 

 

Angel Fraija et al. [61] presented a Demand Response Aggregator (DRA) model that 

leverages reinforcement learning (RL) for transactive policy generation, integrating a 

convex optimization problem on the customer side to manage privacy and avoid 
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penalties through price discounts. The model assures convergence and accelerates the 

DRA convergence process through offline training, allowing for adaptive Time-of-Use 

(ToU) tariffs and near-optimal pricing strategies. The methodology is verified through 

the use of residential agents, exhibiting effectiveness in load distribution and comfort 

preservation, as well as better results than with conventional reinforcement learning 

techniques. To completely address practical implementation issues, more research is 

needed on the model for heterogeneous residential agents and real-world applications. 

 

 

2.4 Conclusion 

 

This chapter offers an in-depth comprehension of contemporary research pertaining to 

supply chain risk and pricing policy optimization, encapsulating the key findings and 

breakthroughs in the field and based on the research gap, the objectives of this thesis 

work are fixed up. 
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Chapter 03 

Methodology 

 

3.1 Introduction 

 

The first part of the methodology presents a machine-learning approach for supply 

chain risk optimization. For any machine learning model to work, one needs to follow 

certain steps for successful completion of the work. All the steps begin with the data 

collection process. In the later part, with the aim to optimize pricing strategies of a 

supply chain, differential price response models and various reinforcement learning 

techniques are introduced including DQN and SARSA. 

 

3.2  Supply chain risk optimization using machine learning 

 

In this section, the policy of risk optimization of a supply chain is discussed in detail. 

Starting from the data collection, data preprocessing, application of various popular 

machine learning algorithms is reviewed in this chapter. Moreover, two hybrid 

algorithms are and discussed. 

 

3.2.1 Data Collection  

 

The dataset used in this study is from DataCo Global Supply Chain [62], which 

includes a collection of the company's sold products, financial information (profit, 

loss, total sales, etc.), shipping information, and customer information including sales, 

demographics, and transaction information. The information spans 53 columns related 

to clothing, sports, and electronic supplies and includes information on 180,520 

customers. Areas of important registered activities in the DataCo Global dataset are 

provisioning, production, sales, and commercial distribution. It also allows the 

correlation of Structured Data with Unstructured Data for knowledge generation. 
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3.2.2 Structured data formation   

 

Machine learning algorithms can quickly and readily understand highly organized 

structured data, which is often characterized as quantitative data. Yet, unstructured 

data, which is frequently classified as qualitative data, cannot be processed and 

analyzed using conventional data tools and techniques. 

 

Structured data is typically stored in tabular formats, like databases or spreadsheets, 

where data points are organized into rows and columns. Examples include transaction 

records, inventory data, and customer details. This data is easy to enter, store, query, 

and analyze, making it highly suitable for machine learning algorithms. Techniques 

like regression analysis, classification, and clustering are often applied to structured 

data to uncover patterns, predict outcomes, and optimize processes. 

 

Unstructured data, on the other hand, includes text, images, audio, and video files that 

do not fit neatly into rows and columns. Examples are emails, social media posts, and 

multimedia content. To extract useful insights from this kind of information, more 

sophisticated processing methods like computer vision, deep learning, and natural 

language processing (NLP) are needed. Tools and techniques like tokenization, 

sentiment analysis, and neural networks are employed to handle the complexity and 

variety inherent in unstructured data. 

 

In supply chain management, the integration of structured and unstructured data can 

enhance decision-making and operational efficiency. For instance, structured 

transaction records can be combined with unstructured customer feedback from social 

media to gain a comprehensive understanding of customer satisfaction and product 

performance. The DataCO Supply Chain dataset is a comprehensive resource that 

includes both structured and unstructured data, offering a robust platform for advanced 

data analysis and machine learning applications. Here are some key features of the 

dataset. 



24 

 

Transaction Records: Over 180,000 unique order records that include details like 

order IDs, product categories, quantities ordered, customer locations, and payment 

methods. 

Customer Data: Information on more than 30,000 unique customers, enabling 

detailed segmentation and personalized marketing strategies. 

Product Information: Data on over 10,000 unique products, providing insights into 

inventory management and product popularity. 

Geographical Coverage: Data spans multiple countries, allowing for regional 

analysis and global supply chain insights. 

Fraud Indicators: Contains markers for potential fraud, aiding in the development of 

fraud detection models. 

 

By leveraging both structured data (like transaction records and customer 

demographics) and unstructured data (like tokenized clickstream logs), organizations 

can optimize their supply chain operations, improve financial performance, and 

enhance overall efficiency 

 

3.2.3 Data analysis and preprocessing  

 

The next step after the formation of structured data is to do the data preprocessing and 

after that data analysis is done. Data modelling is done in the next step. The flowchart 

and the framework of the model is now presented in the next page in Figure 3.1. 
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For the trend analysis it is needed to visualize how the product price is affecting the 

sales per customer. A dotted line plot graph typically represents a series of data points 

connected by dotted lines to show a trend or relationship between the data points. This 

type of graph is often used to display information over time or to illustrate changes in 

variables. Figure 3.2 represents that visualization through dotted line plot. 

  
  

  

  

  

  

  

  

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Figure 3.1:  Framework of model (Analytics model of supply chain risk optimization) 
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Figure 3.2: Relation between product prize and sales per customer 

 

The next stage of the work is the formation of the heatmap from the dataset. A heatmap 

represents a graphical visualization of data where the individual values contained in a 

matrix are represented as colors. In the context of machine learning, a heatmap is often 

used to visualize the correlation or relationship between different features or variables 

in a dataset. From the heatmap analysis of this dataset, all the necessary features are 

extracted. In total 22 features are considered for late delivery analysis and fraud 

detection.   

The data analysis of fraud transactions in the DataCO supply chain dataset involves a 

comprehensive examination of several key aspects. The dataset is grouped by payment 

type, including Transfer, Cash, Payment, and Debit, and the number of transactions 

for each payment type is calculated per region. This information is then visualized in 

a bar chart titled "Different Types of Payments Used in All Regions." The X-axis lists 

the order regions, and the y-axis shows number of payments, with different colors 

representing the various payment methods. This bar chart offers a comparative view 

of payment preferences across regions, highlighting which payment methods are most 

popular in specific areas. Such insights are crucial for tailoring payment processing 
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systems to regional preferences, potentially improving customer satisfaction and 

operational efficiency. Figure 3.3 represents the bar chart which indicates different 

types of payment used. 

 

Figure 3.3: Visualization of payment method used 

 

Finally, to identify regions with the highest suspected fraud transactions, the data is 

filtered to include only those transactions marked as 'SUSPECTED_FRAUD' and 

using the 'TRANSFER' payment method. The results are displayed in a pie chart titled 

"Regions with Highest Fraud," which shows the percentage distribution of suspected 

fraud cases across different regions. This pie chart helps pinpoint areas with a higher 

concentration of fraudulent activity, which is essential for targeted fraud prevention 

measures. By focusing on these regions, supply chain managers can implement more 

stringent security protocols and monitor transactions more closely, thereby reducing  

the risk of fraud. This pie chart is presented below in percentage at Figure 3.4 . 



28 

 

 

Figure 3.4:   Pie chart representing the regions with fraud 

After that, Recency, Frequency and Monetary (RFM) analysis is done for the customer 

segmentation purpose. RFM (Recency, Frequency, Monetary) analysis is a vital 

marketing tool used to assess customer value by examining their purchasing behavior. 

This technique segments customers based on how recently they made a purchase 

(Recency), how often they make purchases (Frequency), and how much they spend 

(Monetary). Customers with a total score of 11 or 12 were classified as "Champions," 

indicating high value across all three dimensions. Those with a score of 10 were 

deemed "Loyal Customers," and a score of 9 identified "Recent Customers." Other 

segments included "Promising" (score of 8), "Customers Needing Attention" (score of 

7), "Can't Lose Them" (score of 6), "At Risk" (score of 5), and "Lost" (score less than 

5). 
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After that, customer segmentation is done and Recency, Frequency and Monetary 

(RFM) analysis is done for this purpose. The customer base is segmented into 8 

portions and 16.9% of them are promising customers, 11% of customers need more 

attention, 33.2% are recent customers. Whereas 0.6% and 10.5% of the customers are 

champions and loyal customers respectively which is shown in Figure 3.5. 

 

Figure 3.5:   Pie chart representing customer’s segmentation. 

 

After the data analysis, data modeling is done for fraud detection, prediction and late 

delivery prediction. 

 

3.2.4 Machine learning algorithms used 

 

For implementing the supply chain risk optimization, in this research a total of 14 

Machine learning algorithms are used. They are- 

1. Logistic Regression  

2. Gaussian Naive Bayes  

3. Support Vector Machines  

4. K nearest Neighbors  

5. Linear Discriminant Analysis  
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6. Random Forest Classifier  

7. Extra Trees Classifier  

8. Extreme Gradient Boosting (XGB Classifier)  

9. Decision Tree Classifier  

10. Ada Boost Classifier  

11. Histogram Gradient Boosting Classifier  

12. Light GBM Classifier  

13. Multi-Layer Perceptron (MLP) Classifier  

14. Hybrid Model (MLP + Random Forest + Extra Trees Classifier) 

Here some popular but no so efficient basic algorithms are used. Additionally, some 

ensemble algorithms are used which produced good results. But, the best result are 

produced by the hybrid algorithm developed in this research work. All the algorithms 

and their results along with their performance matrices and confusion matrix will be 

discussed in the results chapter. 

 

3.3 Supply chain pricing policy optimization using deep reinforcement learning 

The traditional price optimization process involves a demand model that captures 

various factors influencing demand, such as regular prices, discounts, marketing 

activities, seasonality, competitor prices and cross-product cannibalization. This 

research extends the traditional models by incorporating temporal dependencies and 

optimizing price schedules dynamically by reinforcement learning techniques. 

 

3.3.1 Environment design 

 

The environment models the demand and profit based on price changes. The core 

functions of the model are defined as follows: 

Price-Demand Function: Models the demand at time step t for the current price 𝑝𝑡 and 

previous price 𝑝𝑡−1 which is presented in Eqn. (3.1). 

𝒒𝒕(𝒑𝒕, 𝒑𝒕−𝟏, 𝒒𝟎, 𝒌, 𝒂, 𝒃)                                                                                                  

= 𝑚𝑎𝑥(0, 𝑞0 − 𝑘 ⋅ 𝑝𝑡 − 𝑎 ⋅ √max(0, 𝑝𝑡 − 𝑝𝑡−1)

+ 𝑏. √max (0, 𝑝𝑡−1 − 𝑝𝑡))                                                                                        (3.1)  
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Profit Function: Calculates the profit at time step t by using Eqn. (3.2). 

𝒑𝒓𝒐𝒇𝒊𝒕𝒕(𝒑𝒕, 𝒑𝒕−𝟏, 𝒒𝟎, 𝒌, 𝒂, 𝒃, 𝒖𝒏𝒊𝒕_𝒄𝒐𝒔𝒕) = 𝑞𝑡(𝑝𝑡, 𝑝𝑡−1, 𝑞0, 𝑘, 𝑎, 𝑏) ⋅ (𝑝𝑡 −

𝑢𝑛𝑖𝑡_𝑐𝑜𝑠𝑡)         (3.2) 

 

Total Profit Function: Computes the total profit over a series of time steps as in Eqn. 

(3.3). 

𝒑𝒓𝒐𝒇𝒊𝒕𝒕𝒐𝒕𝒂𝒍(𝒑,𝒖𝒏𝒊𝒕𝒄𝒐𝒔𝒕,𝒒𝟎,𝒌,𝒂,𝒃)

= ∑ 𝑝𝑟𝑜𝑓𝑖𝑡𝑡(𝑝[𝑡], 𝑝[𝑡 − 1], 𝑞0, 𝑘, 𝑎, 𝑏, 𝑢𝑛𝑖𝑡𝑐𝑜𝑠𝑡)
𝑇

𝑡=0
   (3.3) 

 

The impact of temporal dependencies on the pricing optimization process is explored 

by incorporating a price-demand function that accounts for recent price changes. Eqn. 

(3.4) is the function that acts as the optimization basis which is defined as 

𝒅(𝒑𝒕, 𝒑𝒕−𝟏) = 𝒅𝟎 − 𝒌. 𝒑𝒕 − 𝒂. 𝒔((𝒑𝒕 − 𝒑𝒕−𝟏)+ + 𝒃. 𝒔((𝒑𝒕−𝟏 − 𝒑𝒕)−                (3.4) 

where: 

𝑥+ = max(0, 𝑥) 

𝑥− = max(0, −𝑥) 

      s(x)= √𝑥 

 

3.3.2 Real-time online based marketplace data 

 

Here, in this research, no simulated environment is used. Real-time data is obtained 

from one of the leading online marketplace-based T-Shirt selling brand. “ABC” 

company is doing online-based T-shirt business for over 5 years now. Data has been 

collected by following proper procedures and the company identity is remained 

anonymous. The data which are collected are- 

T (Time Step): The parameter T represents the number of time steps in the simulation, 

defining the length of the simulation horizon. For instance, T is set to 10, the simulation 

will run for 10-time steps. At each time step, decisions are made, and outcomes are 

observed, allowing the model to evaluate the effects of these decisions over the entire 
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simulation period. In the case of ABC company, Each T represents time period of 2.5 

months. 

 

Maximum Unit Price: The unit price parameter defines the maximum possible price 

in the simulation, creating an upper limit for the price grid. This parameter is crucial 

for setting realistic boundaries within which the pricing strategy operates. In the case 

of ABC company, the maximum unit price is 300 Tk. 

 

The price step: The price step parameter specifies the step size for the price grid, 

determining its granularity. In the case of ABC company, the price step is considered 

ass 20 Tk, which means price changes occur at 20 Tk per unit at a specified time. 

 

q_0(initial demand): The parameter q_0 represents the initial demand at the start of 

the year, setting the baseline demand before any price adjustments are made. This 

baseline is critical for understanding how subsequent pricing decisions affect demand. 

In the case of ABC company, the initial demand is 1000 units. 

 

The price elasticity coefficient (k): It indicates how sensitive the demand is to 

changes in the price. This parameter helps in modeling the relationship between price 

changes and demand fluctuations, reflecting consumer behavior. In the case of ABC 

company, The price elasticity coefficient (k) is 2. 

 

Unit cost: This parameter represents the cost to produce or acquire one unit of the 

product or service. It is used to calculate profit by subtracting the cost from the selling 

price. This parameter is essential for profit calculation and for making pricing 

decisions that ensure profitability. In case of ABC company, their unit cost is around 

98-104 tk, so it’s considered to as 100 tk based on the opinion of their chief financial 

officer. For ABC company,  

Unit cost= Cost of raw materials+ Cost of making+ Transportation Cost+ 

Marketing cost                                                                                                      (3.5) 
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This marketing cost varies from time to time. But as they are a saturated kind company 

now, their present marketing cost is not that much. 

 

Shock Constant(a_q): The parameter a_q is the coefficient that affects the demand 

change due to positive price shocks, representing how much the demand decreases 

when the price increases. For ABC company, a_q is 300, a positive price shock (price 

increase) will cause the demand to decrease significantly. This coefficient helps model 

the adverse effects of price increases on demand. 

 

Shock Constant(b_q): It is the coefficient that affects the demand change due to 

negative price shocks, representing how much the demand increases when the price 

decreases. For ABC company, b_q is 100, a negative price shock (price decrease) will 

cause the demand to increase, but not as significantly as it decreases with a positive 

shock. This asymmetrical response reflects the typical market behavior where 

consumers are less responsive to price decreases compared to increases.   

 

3.3.3 Implementation of price optimization algorithms 

 

In this part of the thesis, traditional constant price optimization and greedy dynamic 

price optimization techniques are discussed and then the implementation of Deep 

reinforcement learning is presented. 

 

3.3.3.1 Constant price optimization 

 

The optimal constant price is the price that maximizes profit over the entire period. 

The profit is evaluated for a range of price levels, and the price with the highest profit 

is selected. The pseudocode is now given below- 

Pseudocode 

FOR each price in price grid: 

     Compute total profit for constant price over T time steps 

     Store profit and corresponding price 

Select price with maximum profit 
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3.3.3.2     Greedy dynamic price optimization 

Next, a greedy algorithm is employed to optimize the price schedule dynamically. 

Starting with the optimal constant price, the price is optimized iteratively for each time 

step. The pseudocode for greedy dynamic price optimization is now given below 

 

Pseudocode: 

Initialize price schedule with optimal constant price 

FOR each time step t in T: 

    FOR each price in price grid: 

         Compute total profit for the price at time t, keeping other prices constant 

Select price with maximum profit for time step t 

 

3.3.3.3     Deep reinforcement learning approaches 

 

The implementation of the two algorithms employed in this study is explained in this 

section of the paper. The description is not based on general discussion, rather it is 

kept more detailed with the execution of the algorithm in line with the problem 

description of the study. 

 

3.3.3.3.1     Deep Q Network (DQN) implementation 

 

The DQN algorithm is employed to learn the ideal pricing strategy by estimating the 

Q-function via a deep neural network. The Deep Q-Network (DQN) algorithm, 

introduced by Mnih et al. [21], integrates Q-learning and deep neural networks in order 

to address complicated reinforcement learning issues. The DQN has been particularly 

effective in environments with high-dimensional state spaces and action spaces. The 

pseudocode of a DQN algorithm is now given below- 

 

 

 

 



35 

 

Pseudocode: 

Initialize policy and target networks with random weights 

Initialize replay memory 

FOR each episode in num_episodes: 

    Initialize state 

    FOR each time step t in T: 

        Select action using epsilon-greedy policy 

        Execute action and observe reward and next state 

        Store transition in replay memory 

        Sample random batch from replay memory 

        Compute target Q-values using target network 

        Compute loss and update policy network 

        Update target network periodically 

 

3.3.3.3.2     Neural network architecture of DQN 

 

The neural network of DQN serves as the function approximator for Q-values, often 

referred to as the Q-network. Conventional Q-learning involves storing Q-values in a 

list, which is only practical in contexts with a limited state-action space. Nevertheless, 

in more complex environments with vast state-action spaces, it is impractical to 

maintain a Q-table. Therefore, DQN employs a neural network to approximate the Q-

values. 

 

The design of the implemented neural network involves mainly three layers, including 

an input layer, multiple hidden layers, and an output layer: 

 

Input Layer: The input layer takes the current state of the environment as input. The 

size of the input layer is equal to the dimensionality of the state space. For instance, if 

the state is represented as a vector of length 2*T, the input layer will have 2*T neurons. 

Hidden Layers: The network typically consists of multiple hidden layers to capture 

complex patterns in the data. In this research, a network with three hidden layers, each 

with 128 neurons is used. Each hidden layer uses the Rectified Linear Unit (ReLU) 
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activation function, which helps the network learn non-linear representations. The 

ReLU function is defined as f(x) = max(0, x), introducing non-linearity while avoiding 

the vanishing gradient problem often encountered with other activation functions like 

sigmoid or tanh. 

Output Layer: There are as many neurons in the output layer as there are possible 

actions in the environment. Each neuron represents the Q-value corresponding to a 

specific action given the current state. The output layer does not use an activation 

function, as the raw Q-values is needed for the action selection process. The neural 

network takes the current state as input and outputs the Q-values for all possible 

actions. In order to reduce the loss between the target Q-values derived from the 

Bellman equation and predicted Q-values, the network parameters (weights and 

biases) are modified during training. The network effectively learns to approximate 

the optimal Q-value function, guiding the agent to make the best decisions. 

Replay Memory: Replay Memory, also known as Experience Replay, is a technique 

used to store and reuse past experiences. It addresses two major issues in reinforcement 

learning: the correlation between consecutive transitions and the inefficient use of past 

experiences. 

Capacity: The replay memory has a predefined capacity, such as 10,000 transitions. 

Once the memory is full, the oldest transitions are discarded to make room for new 

ones. 

Storing transitions: Each time the agent interacts with the environment, the resulting 

transition is stored in the replay memory. This ensures a diverse set of experiences are 

available for training. 

Sampling: During training, a random batch of transitions is sampled from the replay 

memory. This random sampling helps break the correlation between consecutive 

transitions, leading to more stable and efficient learning. 

Epsilon-Greedy policy: The epsilon-greedy policy is a simple yet effective strategy 

to balance exploration and exploitation during training. Exploitation is selecting the 

most well-known action for maximum rewards, whereas exploration entails trying new 

acts to learn about their consequences. The epsilon-greedy policy controls this balance 

using the epsilon parameter (ε). 
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The epsilon-greedy policy operates as follows: 

Random action with probability ε: With probability ε, the policy selects a random 

action. This encourages exploration, allowing the agent to discover potentially better 

actions that it might not have chosen otherwise. 

Best action with probability 1-ε: The strategy chooses the action with the highest Q-

value forecasted by the Q-network with chance 1-ε. This encourages exploitation, 

allowing the agent to leverage its current knowledge to increase the rewards. 

Epsilon decay: To ensure a good balance between exploration and exploitation, the 

epsilon value is typically decayed over time. This means that the agent starts with a 

high epsilon value (encouraging exploration) and gradually reduces it to a lower value 

(encouraging exploitation) as training progresses. The decay can be implemented as 

an exponential decay, linear decay, or any other suitable schedule. 

Q-Learning update rule: The goal of the value-based reinforcement learning 

technique known as Q-learning is to become proficient in the optimal Q-value 

function, which stands for the highest possible expected accumulated reward for every 

state-action pair.. The Q-learning update rule is used to iteratively update the Q-values 

based on the agent's interactions with the environment. Bellman equation for Q 

learning, which provides a recursive relationship for the Q-values is: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾. max𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))                                       (3.6) 

Where- 

• Q(s, a) is the Q-value for state s and action a 

• 𝛼 (alpha) is the learning rate 

• r is the reward 

• γ(gamma) is the discount factor 

• s′ is the next state 

• a′ is the next action 

Current Q-value: The current Q-value Q(s,a) represents the expected return of taking 

action a in state s, based on the agent's current knowledge. This value is updated using 

the observed reward and the estimated future reward. 
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Learning rate (α): The rate of learning establishes the amount that Q-value is adjusted 

during the update. A higher learning rate results in larger adjustments, allowing the 

agent to learn more quickly but potentially causing instability. A lower learning rate 

results in smaller adjustments, leading to slower but more stable learning. 

Reward (r): The reward is the immediate return achieved after taking action a in state 

s. This value provides feedback on the immediate outcome of the action. The reward(r) 

may be positive (indicating a desirable outcome) or negative (indicating an undesirable 

outcome). 

Discount factor (γ): The discount factor measures the importance of future rewards. 

A value closer to 1 means future rewards are highly appreciated, while a value close 

to 0 means immediate rewards are preferred. The discount factor helps balance the 

consideration of short-term and long-term returns. 

Next state value: The next state value max𝑎′𝑄(𝑠′, 𝑎′) is the maximum Q-value for 

the next state s′ over all possible actions a′. This value estimates the best possible future 

return starting from the next state. The Q-learning update rule uses this estimate to 

incorporate the potential future rewards into the current Q-value. 

In the context of DQN, the Q-values are approximated using one neural network. The 

update rule for the target Q-value, yj is- 

𝒚𝒋 = 𝒓𝒋 + 𝜸𝒎𝒂𝒙𝒂′𝑸(𝒔𝒋+𝟏, 𝒂′; 𝜽−)                                                                         (3.7) 

Here's what each term represents: 

rj: The reward received after taking action aj  in state sj. 

γ: The discount factor, which determines the significance of future rewards. 

𝑚𝑎𝑥𝑎′𝑄(𝑠𝑗+1, 𝑎′; 𝜃−): The maximum predicted Q-value for the next state sj+1 over all 

possible actions a′, using the target network parameters θ-. 

The Algorithm of the DQN algorithm that is used in this research paper for supply 

chain pricing policy optimization is now given below in Algorithm 1. 
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Algorithm 1: Algorithm for Implemented DQN Algorithm 

 

Initialize replay memory D to capacity N. 

Initialize policy network Q with weights θ. 

Initialize target network Q′ with weights θ′ 

  

For episode = 1 to M: 

  Initialize state st as a zero vector of size 2T 

Initialize reward_trace and price_schedule. 

 

For t=1 to T: 

    

Select action at with probability ϵ. 

Otherwise, select 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡, 𝑎; 𝜃)  

Execute action at, observe reward rt and next state st+1 

Store transition (st, at, st+1, rt, at+1) in D. 

If (memory D contains more than batch size B): 

Sample random mini-batch of transitions (sj, aj,sj+1,rj,aj+1) from D 

Compute yj: 

yj=rj  if sj+1 is terminal. 

                Otherwise, 𝑦𝑗 = 𝑟𝑗 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠𝑗+1, 𝑎′; 𝜃−) 

Perform gradient descent step on 𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃)
2

with respect to θ. 

Set st=st+1 

Append reward rt to reward_trace. 

 

Plot average price schedules for the episodes. 

Display best profit results from the training. 
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The flow chart of the implemented DQN algorithm is now given below in Figure 3.6- 

 

 
 

Figure 3.6: Flow chart of the implemented DQN algorithm 
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3.3.3.3.2     SARSA implementation  

 

The SARSA algorithm is another reinforcement learning approach that updates the Q-

values based on the action actually taken by the agent. The general SARSA algorithm 

working process is now given in Pseudocode form below- 

 

Pseudocode: 

Initialize policy network with random weights 

Initialize replay memory 

FOR each episode in num_episodes: 

     Initialize state 

     Select initial action using epsilon-greedy policy 

     FOR each time step t in T: 

          Execute action and observe reward and next state 

          Select next action using epsilon-greedy policy 

          Store transition in replay memory 

          Sample random batch from replay memory 

          Compute target Q-values using policy network 

          Compute loss and update policy network 

 

SARSA (State-Action-Reward-State-Action) is an on-policy reinforcement learning 

algorithm. This means that it updates its Q-values based on the action actually taken 

by the agent, as opposed to Q-learning which updates based on the optimal action from 

the next state. A detailed breakdown of the SARSA policy is now give below. The 

descriptions of the factors that are quite different from DQN is stated here. 

 

Q-Values (Quality Values): In SARSA, Q-values represent the expected future 

rewards of taking a specific action in a given state, and then following the policy 

thereafter. Bellman equation for Q learning in SARSA is the same as DQN, which 

provides a recursive relationship for the Q-values is: 

𝑸(𝒔, 𝒂) ← 𝑸(𝒔, 𝒂) + 𝜶(𝒓 + 𝜸𝑸(𝒔′, 𝒂′) − 𝑸(𝒔, 𝒂))                                                 (3.8) 
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But the update rule of saras is different. The SARSA update rule modifies the Q-value 

of a state-action pair based on the observed reward and the Q-value of the next state-

action pair: 

𝒚𝒋 = 𝒓𝒋 + 𝜸𝑸(𝒔𝒋+𝟏, 𝒂𝒋+𝟏; 𝜽)                                                                  (3.9) 

where: 

rj: The reward received after taking action aj in state sj.   

γ: The discount factor. 

𝑄(𝑠𝑗+1, 𝑎𝑗+1; 𝜃)The predicted Q-value for the next state sj+1 and the next action aj+1, 

using the current network parameters θ. 

 

Policy: In SARSA, the policy used to select actions is the same as the policy being 

learned. This makes SARSA an on-policy method. The epsilon-greedy policy is 

commonly used, where the agent selects a random action with a probability of 

ϵ\epsilonϵ and the best-known action with a probability of 1−ϵ. In the SARSA 

algorithm implemented with a neural network (like DQN but for SARSA), the loss 

function is used to train the network to predict Q-values more accurately. 

 

Predicted Q-Value: The neural network takes the current state and outputs Q-values 

for all possible actions. 

 

Target Q-Value: The target Q-value is calculated using the SARSA update rule. It 

considers the immediate reward and the Q-value of the next state-action pair. 

 

The algorithm for the implemented algorithm for the specified problem specified in 

this research is now given below in algorithm 2. 
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Algorithm 2: Algorithm for Implemented SARSA Algorithm 

Initialize replay memory D to capacity N. 

Initialize policy network Q with weights θ. 

Initialize optimizer (Adam) with learning rate 0.005. 

Initialize epsilon-greedy policy with starting, ending, and decay values. 

 For episode = 1 to M: 

  Initialize state s as a zero vector of size 2T 

Initialize reward_trace and price_schedule. 

Select initial action at using policy network and epsilon-greedy policy. 

 

For t=1 to T: 

   Execute action at in the environment. 

Observe next state st+1 and reward rt 

Select next action at+1  using policy network and epsilon-greedy policy. 

Store transition (st, at, st+1, rt, at+1) in D. 

If (memory D contains more than batch size B): 

Sample random mini-batch of transitions (sj, aj,sj+1,rj,aj+1) from D 

Compute yj: 

yj=rj  if sj+1 is terminal. 

                Otherwise, 𝑦𝑗 = 𝑟𝑗 + 𝛾𝑄(𝑠𝑗+1, 𝑎𝑗+1; 𝜃) 

               Perform gradient descent step on 𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃)
2

with respect 

to θ. 

Set st=st+1 

Set at=at+1 

Append reward rt to reward_trace. 

Append action at to price_schedule. 

 

Plot total rewards for each episode with moving average and standard deviation. 

Plot average price schedules for the episodes. 

Display best profit results from the training. 

 

 



44 

 

The flowchart of implemented SARSA algorithm is now given below in Figure 3.7- 

 

 

Figure 3.7: Flowchart of implemented SARSA algorithm 
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3.4 Conclusion 

In conclusion, the careful study of different algorithms has formed a strong basis for 

supply chain optimization. By combining advanced models and precise data 

processing, important information regarding the dataset used in this research has been 

obtained. This information is vital in implementing the machine learning algorithm for 

supply chain risk optimization. For the implementation of deep reinforcement learning 

algorithms, both the DQN and SARSA algorithm have been discussed in detail. All 

the practical implementations of the pricing optimization problem that are solved have 

been discussed. This chapter gives the reader a detailed idea about how one can apply 

ML and DRL in supply chain optimization process.  
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Chapter 04 

Results 

 

 

4.1 Introduction 

This chapter presents an in-depth comparative analysis of the outcome of the 

implemented model. The performance of the applied machine learning models is first 

thoroughly compared in-depth in this section. Confusion metrics and several 

performance factors will be utilized to evaluate the model's efficacy in resolving the 

thesis's classification issue. In the later part of the chapter, the results obtained from 

the application of the deep reinforcement learning algorithm is analyzed. Both the 

results obtained by implementing DQN and SARSA are analyzed and compared. 

 

4.2 Results obtained for supply chain risk optimization problem 

In this part, the results that are obtained by implementing the machine learning 

algorithms for solving supply chain risk optimization are discussed in detail. First, the 

confusion matrix of each of the algorithm implemented is discussed and how each 

result is obtained by implementing different types of algorithms is briefly explained. 

In the later part of this section, the comparative performance is analyzed in brief. 

 

4.2.1 Confusion matrix 

 

By grouping the performance of a classification model, a confusion matrix offers a 

brief synopsis by categorizing predictions into True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN). This evaluation tool helps assess 

the model's accuracy across various classes, offering insights for enhancement. 

In the data modelling phase of the work the required results are obtained. As the 

problem is a classification problem all the classification algorithms are implemented. 

Through careful screening 13 different algorithms are selected for comparison of 

results and one hybrid algorithm is also implemented. The hybridization is done with 



47 

 

the combination of Multi-Layer Perceptron (MLP) Classifier, Random Forest and 

Extra Trees classifier. 

MLP Classifier is good at capturing complex relationships in the data, while Random 

Forest and Extra Trees Classifier excel at handling different aspects of the data through 

ensemble learning and feature randomness. By combining these models and training a 

meta-model on their predictions, one can effectively leverage their collective strengths 

to make accurate and precise forecasts. This can result in better performance across 

multiple evaluation metrics such as accuracy, F1 score, and recall. Equation 4.1,4.2 

and 4.3 below indicates accuracy, recall and F1 score. 

 

The accuracy can be determined using Eqn. (4.1)  

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
      (4.1) 

 

The recall can be determined by Eqn. (4.2) 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                  (4.2) 

 

The F1 score can be determined by Eqn. (4.3) 

F1 score =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
     (4.3) 

 

4.2.1.1 Logistic Regression 

 

Logistic regression excels in binary classification by offering clear interpretability, 

simplicity for foundational analysis, and efficiency with linearly separable data [63]. 

Figure 4.1 represents the confusion matrix of logistic regression applied in the test 

dataset for predicting fraud status and late delivery status. 
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Figure 4.1: Confusion matrix of Logistic Regression model 

 

4.2.1.2   Gaussian Naive Bayes 

 

Gaussian Naive Bayes excels in straightforwardness and efficiency, handling high-

dimensional and small datasets well, with a probabilistic framework that clarifies 

feature contributions [64]. Figure 4.2 represents the confusion matrix of Gaussian 

naïve Bayes applied in the test dataset for predicting fraud status and late delivery 

status 

 

 

Figure 4.2: Confusion matrix of Gaussian Naïve Bayes model 
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4.2.1.3 Support Vector Machine 

 

Support Vector Machines (SVM) excel in handling high-dimensional data and 

reducing overfitting, with kernel functions enhancing their ability to model complex 

patterns [65]. Figure 4.3 represents the confusion matrix of support vector machine 

applied in the test dataset for predicting fraud status and late delivery status. 

 

Figure 4.3: Confusion matrix of Support Vector Machine model 

 

4.2.1.4 K-nearest Neighbors 

 

K-nearest neighbors (KNN) is simple and interpretable, adapt to different data 

distributions, and allow easy integration of new data with strong performance and 

minimal tuning [66]. The confusion matrix of K-nearest neighbors is given in Figure 

4.4. 

 

Figure 4.4: Confusion matrix of K-nearest Neighbors model 
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4.2.1.5 Linear Discriminant Analysis 

 

Linear Discriminant Analysis (LDA) reduces dimensionality while preserving class 

distinctions, enhancing efficiency and maximizing the ratio of between-class to within-

class variance for optimal separability [67]. The confusion matrix of Linear 

Discriminant Analysis is given in Figure 4.5. 

 

Figure 4.5: Confusion matrix of Linear Discriminant Analysis model 

 

4.2.1.6 Random Forest Classifier 

 

Random Forest handles high-dimensional data and reduces overfitting by averaging 

predictions from multiple trees, enhancing generalization and performing internal 

feature selection to boost predictive accuracy [68]. The confusion matrix of Random 

Forest Classifier is given in Figure 4.6. 

 

Figure 4.6: Confusion matrix of Random Forest Classifier model 
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4.2.1.7 Extra Trees Classifier 

 

Extra Trees Classifier reduces overfitting by using random feature selection and 

averaging tree predictions, enhancing robustness and offering easy implementation 

with automatic feature selection [69]. The confusion matrix of Extra Trees Classifier 

is given in Figure 4.7. 

 

Figure 4.7: Confusion matrix of Extra Trees Classifier model 

 

4.2.1.8 Extreme Gradient Boosting (XGB) Classifier 

 

XGBoost is highly efficient and accurate, featuring built-in regularization, managing 

missing values, and offering intuitive feature importance for enhanced interpretability 

[70]. The confusion matrix of Extreme Gradient Boosting Classifier is given in Figure 

4.8. 

 

Figure 4.8: Confusion matrix of Extreme Gradient Boosting Classifier model 
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4.2.1.9 Decision Tree Classifier 

 

Decision Tree Classifier is valued for its interpretability and simplicity, visually 

mapping decisions, and avoids overfitting with early stopping to ensure balanced, 

generalizable, and robust models [71]. Figure 4.9  represents the confusion matrix of 

Decision Tree Classifier applied in the test dataset for predicting fraud status and late 

delivery status. 

 

Figure 4.9: Confusion matrix of Decision Tree Classifier model 

4.2.1.10 Ada Boost Classifier 

 

AdaBoost Classifier combines weak learners into a strong model, effectively 

addressing overfitting by emphasizing difficult instances and enhancing 

interpretability through weighted voting mechanisms [72]. Figure 4.10  represents the 

confusion matrix of Ada Boost Classifier applied in the test dataset for predicting fraud 

status and late delivery status. 

 

Figure 4.10: Confusion matrix of Ada Boost Classifier model 
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4.2.1.11 Histogram Gradient Boosting Classifier 

 

Histogram Gradient Boosting Classifier handles complex datasets and reduces 

overfitting through a sequential approach, refining the model to minimize errors and 

maintain high accuracy [73]. Figure 4.11  represents the confusion matrix of Histogram 

Gradient Boosting Classifier applied in the test dataset for predicting fraud status and 

late delivery status. 

 

Figure 4.11: Confusion matrix of Histogram Gradient Boosting Classifier model 

 

4.2.1.12 Light GBM Classifier 

 

LightGBM Classifier efficiently handles large datasets with a histogram-based 

approach and leaf-wise growth, enabling faster training and lower memory usage while 

managing categorical features effectively [74]. The confusion matrix of the Light 

GBM Classifier is given in Figure 4.12. 

 

Figure 4.12: Confusion matrix of Light GBM Classifier model 
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4.2.1.13 Multi-layer Perceptron (MLP) Classifier 

 

Multi-layer Perceptron (MLP) Classifier models complex, non-linear relationships 

with its layered architecture, capturing patterns while balancing interpretability and 

predictive power in classification tasks [75]. The confusion matrix of Multi-layer 

Perceptron (MLP) is given in Figure 4.13. 

 

Figure 4.13: Confusion matrix of Multi-layer Perceptron (MLP) Classifier model 

4.2.1.14 Hybrid Model 2 

 

A hybrid model combines multiple classifiers to create a powerful ensemble, 

integrating deep learning for complex pattern recognition with robustness, leading to 

improved accuracy, reduced complexity, and minimized overfitting risks [76]. The  

better hybrid model out of the two depicted in this research uses MLP, Random Forest 

and Extra Trees Classifier algorithms. The confusion matrix of the hybrid model used 

in this research is given in Figure 4.14. 

 

Figure 4.14: Confusion matrix of Hybrid model 2 
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4.2.2 Comparative Performance Analysis 

 

In this section, a comparative analysis is presented, showcasing the recall, F1-Score, 

and accuracy metrics of the models employed throughout this thesis. 

Now the results obtained for the fraud prediction are presented in Table 4.1. 

 

Table 4.1: Fraud detection and prediction 

Model Name  Accuracy (%)  Recall (%)  F1 Score (%) 

Logistic Regression  97.857  59.076  31.076  

Gaussian Naive Bayes  87.886  15.905  27.445  

Support Vector Machines  97.824  57.60  28.633  

K nearest Neighbors  97.270  37.655  32.897  

Linear Discriminant Analysis  97.945  56.695  49.427  

Random Forest Classifier  98.635  98.156  58.038  

Extra Trees Classifier  98.541  99.214  53.531  

Extreme Gradient Boosting 

(XGB)Classifier  

98.90 90.932  70.990  

Decision Tree Classifier  98.912  75.980  76.382  

Ada Boost Classifier  97.892 58.963  36.472  

Histogram Gradient Boosting 

Classifier  

98.635  84.602  62.393  

Light GBM Classifier  98.732  88.372  65.036  

Multi-Layer Perceptron (MLP) 

Classifier  

97.719  58.064  33.381  

Hybrid Model 1 (Decision Tree + 

Random Forest + AdaBoost)  

98.92   75.03 76.78 

Hybrid Model 2(MLP + Random 

Forest + Extra Trees Classifier)  

99.151  89.93  79.286  

 

From Table 4.1, it is seen that all the parameters of the hybrid model 2 performed 

better than other algorithms. Here accuracy, recall and F1 score are provided. Recall 
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and F1 score are evaluation metrics used in machine learning, particularly in binary 

classification tasks.  

Recall, also known as sensitivity or true positive rate, measures the proportion of actual 

positive instances correctly identified by the model. It emphasizes the ability to capture 

all positive cases without false negatives. The ratio of true positives (TP) to the total 

of false negatives (FN) is used to compute it. F1 score, on the other hand, is the 

harmonic mean of precision and recall. It provides a balanced measure of model 

performance by considering both precision (ability to correctly classify positive 

instances) and recall. F1 score ranges between 0 and 1, where 1 indicates perfect 

precision and recall, while 0 indicates poor performance.  

In summary, recall focuses on minimizing false negatives, while F1 score considers a 

balance between precision and recall, which makes it a more comprehensive measure 

of model accuracy.  So, for the classification task in this paper F1 score is more 

relevant and a good result is obtained in many algorithms. The hybrid model produced 

a F1 score of 79.286% which is 45.8% more than MLP classifier and 26.2% more the 

Extra trees classifier. So, the hybridization made a good impact on the results obtained.  

For fraud detection some of the previous works on DataCo supply chain dataset is 

presented in Table 4.2 for validation. 

 

Table 4.2:  Accuracy comparison of fraud detection with previous studies 

Corresponding work Algorithm Accuracy 

Constante-Nicolalde[39] Random Forest 81.55% 

R part 76.1% 

Lahcen Tamym[40] ANN 98% 

Decision Tree 99.04% 

This research Hybrid Model 2(MLP + Random 

Forest + Extra Trees Classifier)  

99.151% 

 

 

The next stage of the work is the late delivery status predictions in the dataset which 

is presented in Table 4.3. 
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Table 4.3: Late delivery status prediction 

Model Name  Accuracy (%)   Recall (%)  F1 Score (%)  

Logistic Regression  98.869  97.979  98.979  

Gaussian Naive Bayes  57.165  56.134  71.889  

Support Vector Machines  98.869  97.979  98.979  

K nearest Neighbours  80.702  83.217  82.173  

Linear Discriminant Analysis  98.327  97.723  98.485  

Random Forest Classifier  98.428  97.213  98.582  

Extra Trees Classifier  99.101  98.388  99.127  

Extreme Gradient Boosting 

(XGB)Classifier  

99.166  98.510  99.145  

Decision Tree Classifier  99.166  99.331  99.219  

Ada Boost Classifier  97.376  98.139  97.593  

Hist Gradient Boosting Classifier  98.945  98.111  99.046  

Light GBM Classifier  98.965  98.146  99.064  

Multi-Layer Perceptron (MLP) 

Classifier  

98.863  97.979  98.973  

Hybrid Model 1(MLP + Random 

Forest + Extra Trees Classifier)  

99.151  98.03 99.03 

Hybrid Model 2 (MLP + Random 

Forest + Extra Trees Classifier)  

99.452  99.093  99.602  

 

From Table 4.3, it is also seen that in all the parameters our hybrid model 2performed 

slightly better than other algorithms. Here accuracy, recall and F1 score are really close 

for all algorithms because of the nature of the dataset. As all the results are pretty much 

close, cross validation is done for validation of the results obtained. Model used is  

LGBM Classifier for validation and results are-  

Cross-validation accuracy of fraud detection: 0.96 (+/- 0.02) 
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Cross-validation accuracy of late delivery: 0.99 (+/- 0.01) 

So, the company can optimize its decisions more effectively and minimize its risks 

from the results that are obtained from this research. 

 

4.3 Results obtained for supply chain pricing optimization problem 

This part of the chapter provides a comprehensive analysis of the results obtained from 

implementing and comparing the SARSA (State-Action-Reward-State-Action) and 

DQN (Deep Q-Network) reinforcement learning algorithms in a price optimization 

problem. It is required to mention that the results obtained from the traditional constant 

price optimization method is 8.7 lakhs Tk and for greedy dynamic price optimization 

it is 9.23 lakhs Tk. The goal of these experiments was to evaluate the efficiency, 

stability, and profitability of each algorithm by examining their performance in 

maximizing returns over a series of episodes. Through detailed examination of the 

data, visualizations, and outcomes, the aim is to draw meaningful insights into how 

these algorithms behave in different scenarios and under various conditions. This 

analysis will not only compare the raw performance metrics but also delve into the 

underlying dynamics that drive the observed results.  

 

4.3.1 DQN algorithm results 

 

The DQN algorithm, which uses a neural network to approximate the Q-value 

function, demonstrated significant potential in optimizing pricing strategies. The 

neural network enables the agent to estimate the expected return of different actions 

from any given state, allowing it to select actions that maximize long-term profit. The 

results from the DQN implementation showed a clear upward trend in returns, with 

the algorithm achieving some of the highest profit results observed in the experiments.  

The best profit result achieved by the DQN algorithm was 10.78 lakhs Tk, with the 

corresponding optimal pricing schedule being [280, 260, 240, 220, 180, 280, 260, 240, 

220, 160] in Tk. This pricing schedule suggests that the algorithm favored maintaining 

high price points, likely because higher prices led to higher profits under the given 

demand model. Other notable profit results included 10.75 lakhs Tk with a pricing 

schedule of [280, 260, 240, 200, 280, 260, 240, 220, 200, 160], and 10.63 lakhs Tk 
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with a schedule of [280, 260, 240, 220, 200, 280, 260, 220, 200, 160]. These results 

indicate a consistent pattern where the DQN algorithm prioritized higher price points, 

adjusting slightly based on the state and previous prices. 

Figure 4.15 below represents the output obtained by implementing DQN algorithm- 

 

 

Figure 4.15: DQN algorithm implementation 

 

The learning curve for the DQN algorithm, depicted in Figure 5.1, shows the return 

over 1000 episodes, with a smoothed average return and standard deviation. The initial 

episodes exhibited high variability in returns, reflecting the exploration phase driven 

by the epsilon-greedy policy. However, as the training progressed, the returns 

stabilized around the midpoint of the episodes, indicating that the agent was 

successfully learning to exploit profitable pricing strategies. The stabilization in 

returns towards the latter half of the episodes suggests that the DQN algorithm 

converged to a policy that consistently generated high profits. The best 5 profit results 

are now listed below in Table 4.4. 
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Table 4.4: Best profit results for DQN Algorithm 

Best profit Results (in Tk) Price Schedule (in Tk) 

10.61 lakhs [280, 260, 240, 220, 180, 280, 260, 220, 

200, 160] 

10.63 lakhs [280, 260, 240, 220, 200, 280, 260, 220, 

200, 160] 

10.74 lakhs [280, 260, 240, 200, 280, 260, 240, 220, 

200, 160] 

10.75 lakhs [280, 260, 240, 200, 280, 260, 240, 220, 

200, 160] 

10.78 lakhs [280, 260, 240, 220, 180, 280, 260, 240, 

220, 160] 

 

4.3.2 SARSA algorithm results 

 

The SARSA algorithm, an on-policy reinforcement learning method, was also 

implemented to compare its performance with DQN. Unlike DQN, which updates its 

policy based on the estimated Q-values of all possible actions, SARSA updates its 

policy based on the actual actions taken. This on-policy approach means that the 

agent's learning process is closely tied to its exploration strategy, leading to potentially 

more varied and robust exploration of the action space. 

The best profit result achieved by the SARSA algorithm was 9.98 lakhs, with the 

corresponding optimal pricing schedule being [280, 240, 220, 160, 280, 240, 180, 280, 

240, 180]. This result is slightly lower than the best result obtained by DQN, but still 

demonstrates significant profitability. Other notable profit results included 9.62 lakhs 

Tk with a pricing schedule of [280, 240, 220, 220, 200, 180, 280, 240, 180, 160], and 

9.57 lakhs Tk with a schedule of [280, 240, 220, 160, 280, 240, 180, 280, 240, 240]. 

The SARSA algorithm exhibited a broader range of pricing strategies compared to 

DQN, reflecting its more exploratory nature. 

 

Figure 4.16 below represents the output obtained by implementing DQN algorithm- 
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Figure 4.16: SARSA algorithm implementation 

 

The learning curve for the SARSA algorithm, shown in Figure 5.2, also depicts the 

return over 1000 episodes with a smoothed average return and standard deviation. The 

curve indicates an initial rise in returns, followed by fluctuations as the agent explores 

different pricing strategies. The returns stabilized towards the latter part of the 

episodes, indicating that the agent was converging to an optimal policy. However, the 

SARSA learning curve exhibited more variability throughout the episodes compared 

to DQN, highlighting the on-policy nature of SARSA which might be more sensitive 

to the specific actions taken during learning. Table 4.5 below represents the best 5 

profit results. 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

Table 4.5: Best profit results for SARSA algorithm 

Best profit Results (in Tk) Price Schedule (in Tk) 

9.33 lakhs [240, 240, 240, 200, 180, 280, 240, 220, 160, 260] 

9.38 lakhs [280, 240, 240, 240, 200, 180, 280, 240, 180, 160] 

9.57 lakhs [280, 240, 220, 160, 280, 240, 180, 280, 240, 240] 

9.62 lakhs [280, 240, 220, 220, 200, 180, 280, 240, 180, 160] 

9.98 lakhs [280, 240, 220, 160, 280, 240, 180, 280, 240, 180] 

 

Now, Table 4.6 shows the comparison of the implemented DRL algorithms  and 

traditional price optimization methods. 

 

Table 4.5: Comparison of best profit results  

 

Algorithm Name Best Profit Results (in Tk) 

Constant price optimization 8.71 lakhs 

Greedy dynamic price optimization 9.23 lakhs 

DQN 10.78 lakhs 

SARSA 9.98 lakhs 

 

So, it is clear from the table that DQN algorithm gives 7.4% more profit results than 

SARSA algorithm and 19% more profit results than constant price optimization. So, 

this can be concluded that DQN is best performing algorithm. 

 

4.4 Conclusion 

This chapter concludes with comprehensive results and a comparison of results. The 

comparison between various ML algorithms shows that the hybrid algorithm 

outperformed all other algorithms for supply chain risk optimization. For supply chain 

pricing policy optimization, from the DRL algorithms, DQN performed better than 

SARSA. So, the results clearly indicate machine learning can be effectively used in 

the process of supply chain optimization. 

 

 



63 

 

Chapter 05 

Conclusion 

 

5.1 Introduction 

 

In this thesis, we delved into the optimization of supply chain processes through the 

lens of machine learning (ML) and deep reinforcement learning (DRL) techniques. 

The comprehensive analysis encompassed a variety of approaches and methodologies 

that demonstrate the potential of these advanced computational techniques to address 

complex problems inherent in supply chain management. 

 

5.2 Summary of findings 

 

In the supply chain pricing policy optimization, DRL methods, such as Deep Q-

Network (DQN) and State-Action-Reward-State-Action (SARSA), show promise in 

optimizing dynamic pricing strategies within supply chains. By leveraging real-world 

data, these algorithms have the ability to continuously adapt to market changes, 

thereby enhancing profitability and operational efficiency. 

The practical application of DRL in the Bangladeshi online marketplace for T-shirts 

underscored its effectiveness in real-world scenarios. The focus on a single product 

allowed for a detailed analysis and demonstrated the scalability of the DRL framework 

to other products and markets. 

In the supply chain risk optimization ML techniques, including supervised and 

unsupervised learning, play a crucial role in various aspects of SCM, such as inventory 

management, risk mitigation, and demand forecasting. For instance, the hybrid 

Bayesian-optimized Light Gradient-Boosting Machine (LightGBM) model effectively 

predicts backorder risks, thereby enhancing supply chain robustness and resilience. 

The integration of quantum computing with ML presents new frontiers in SCM, 

offering significant efficiency gains and improved solution quality despite the current 

infancy of quantum computing technologies. 
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ML models such as Support Vector Machines (SVM), Bayesian networks, and neural 

networks have been successfully employed to predict and mitigate financial and 

operational risks within supply chains. These models enable proactive risk 

management, thus ensuring continuity and profitability in supply chain operations. 

The hybrid model developed in this research outperformed all traditional ML 

algorithms and all the ensemble algorithms too. The performance matrix indicates its 

validity and proof. So, this type of hybrid model is very useful and significant in the 

case of supply chain optimization. 

 

5.3 Future research directions 

 

The findings from this research pave the way for several future research directions that 

can further enhance the application of ML and DRL in supply chain management: 

Integration with Emerging Technologies: The integration of ML with emerging 

technologies such as the Internet of Things (IoT), blockchain, and edge computing 

offers promising avenues for research. These technologies can provide richer datasets 

and more robust frameworks for real-time decision-making and risk management. 

Advanced DRL Algorithm Development: Future research should focus on 

developing more sophisticated DRL algorithms that can handle a wider range of supply 

chain scenarios and products. Enhancing the scalability and adaptability of these 

algorithms will be crucial for their broader application in diverse market conditions. 

Cross-Disciplinary Approaches: Adopting cross-disciplinary approaches that 

incorporate insights from fields such as economics, behavioral science, and operations 

research can provide a more holistic understanding of supply chain dynamics. This can 

lead to the development of more comprehensive and effective optimization strategies  

Data Quality and Management: Ensuring high-quality data is critical for the 

accuracy of ML models. Future research should explore advanced data preprocessing 

techniques, robust data management systems, and methods for handling missing or 

noisy data to improve model performance. 

Ethical and Sustainable AI: The ethical implications of AI and ML in SCM, 

including issues related to data privacy, algorithmic bias, and transparency, should be 

a key area of focus. Additionally, research should investigate how these technologies 
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can contribute to sustainable supply chain practices, such as reducing carbon footprints 

and promoting circular economy principles. 

Validation in Diverse Contexts: While the current research has shown promising 

results in specific contexts, further validation is needed across different industries, 

regions, and market conditions. This will help to establish the generalizability and 

robustness of the proposed algorithms and models. 

 

5.4 Concluding remarks 

 

The intersection of ML and DRL with SCM represents a transformative shift in how 

businesses can optimize their operations, manage risks, and enhance overall efficiency. 

As the complexity of supply chains continues to grow, the adoption of these advanced 

computational techniques will become increasingly essential. The findings of this 

research underscore the significant potential of ML and DRL in addressing the 

challenges of modern supply chains and provide a foundation for future advancements 

in this critical field. 

By continuing to explore and develop these technologies, researchers and practitioners 

can contribute to more resilient, efficient, and sustainable supply chain systems that 

are better equipped to meet the demands of a rapidly evolving global marketplace. 
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