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ABSTRACT 

Predicting effluent wastewater characteristics in advance can aid plant 
operators in making informed decisions to tackle environmental risks related to 
the treatment process and receiving water bodies. Artificial intelligence (AI)-
based modeling is a promising tool for handling wastewater composition 
variability, and its application to the modeling of the Activated Sludge System 
(ASS) for treating domestic wastewater with varied compositions in due 
consideration for the local inputs and missing real data demands more studies. 
This study aims to develop a reliable AI-based artificial neural network (ANN) 
model that accurately reflects typical ASS parameters and to predict the effluent 
quality of domestic wastewater derived from that treatment system. 

 
The study employed seven machine learning (ML) algorithms and three 

different ANN architectures to address various seasonal fluctuations, 
considering 18 parameters for the first time in this kind of study. Synthetic data 
and real samples collected from domestic areas in Chattogram city during dry 
and wet periods are used to validate the model performance. Three ANNs have 
shown strong predictive capabilities for synthetic wastewater data, with R2 
values over 0.9 and low RMSE (0.066–0.073) and MAE (0.051-0.059) for the 5-day 
Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and 
Total Suspended Solids (TSS). The standing of ANN models based on various 
architectures and their performance is ANN-III>ANN-I>ANN-II. Furthermore, 
the ANN models consistently outperformed other ML models with R2 values 
exceeding 0.9 and maintaining low RMSE (0.009–0.019) and MAE (0.007–0.011) 
in predicting BOD5, COD, and TSS for synthetic seasonal wastewater data. 
Random Forest, Gradient Boosting Regressor, and three ANNs performed well 
against real wastewater data, achieving high R2 values of 0.9 and above while 
maintaining low RMSE (0.066–0.084) and MAE (0.052-0.067) in predicting BOD5, 
COD, and TSS as model outputs. The study found that Multivariate Linear 
Regression and Extra Trees can even perform satisfactorily over other ML models 
with limited real wastewater data from the field and seasonal fluctuations.  

 
AI-based ANN-III model has proven to be an effective predictive tool in 

modeling the complex process of ASS, which exhibits sound performance across 
various conditions, including seasonal variations, consistently achieves R2 
exceeding 0.9, and maintains low RMSE (0.009–0.084) and MAE (0.007–0.067). 
This study could help wastewater professionals monitor WWTPs effectively, 
identify issues, take remedial action, and make decisions related to wastewater 
treatment, quality control, process optimization, and environmental pollution 
control and management.  
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Chapter 1: INTRODUCTION 1 

Chapter 1: INTRODUCTION 

1.1 Background 

There are many sources that generate wastewater and pollute the water. 

A significant contributor to water pollution is untreated domestic wastewater as 

hazardous pollutants such as pathogens, nutrients, organic matter, heavy metals, 

and other contaminants are found to present in an alarming concentrations in it 

(Davis & Cornwell, 2013). These pollutants may have significant impacts on the 

environment. Pathogens in domestic wastewater can potentially lead to a range 

of waterborne diseases, including cholera, typhoid, and dysentery, which can be 

particularly life-threatening, especially among children. Algae growth in aquatic 

areas can be accelerated by nutrients found in domestic wastewater. When these 

algae die, the process of decomposition depletes the oxygen level, causing fish 

and other aquatic life to perish. Organic matter and other pollutants in domestic 

wastewater significantly increase the demand for oxygen and thus in turn 

hindered availability of oxygen in natural water bodies essential for aquatic 

lives.  

The world's population has been growing rapidly, leading to a contrary 

trend of insufficient access to clean water. In the absence of domestic wastewater 

treatment, the scarcity of freshwater due to discharge of wastewater, sewage, 

industrial effluents is getting worsens, and hence, wastewater treatment & its 

performance for future uses of treated wastewater becomes essential.   

Wastewater treatment plants (WWTPs) play a vital role for ensuring public 

health and environmental protection. They filter pollutants out of wastewater 

before it is released into the environment, ensuring public health and 

maintaining water quality. WWTPs typically employ a combination of physical, 
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chemical, and biological processes to reduce contaminants from wastewater 

following discharge guidelines, as appropriate. 

Domestic wastewater treatment now has been seen an emerging issue in 

developing countries that were often overlooked earlier and hence, subsequent 

pollution is evident for open water bodies over the years to date in the absence 

of such treatment plants. Wastewater, when discharged directly into the 

environment, comprises a wide range of pollutants with significant adverse 

impacts (Friha et al., 2014). The major concern in WWTPs is to remove the 

harmful pollutants for human and aquatic lives, such as biochemical oxygen 

demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS), 

volatile suspended solids (VSS), organic and inorganic matters, total nitrogen 

(TN), total phosphorus (TP), total carbon etc. Wastewater treatment aspects 

depend on influents, treatment methods and ambient environments either 

natural or mechanical on the basis of guidelines of effluents quality. However, 

the reduction of priority pollutants concentrations is key towards performance 

evaluation. These influential parameters with significant variability depending 

upon the sources of origins showed a direct effect on the effluent quality. These 

are rather complex, so the relationships are varied from linear to nonlinear 

degrees. A variety of influent and effluent parameters have been seen in many 

types of research (Abolpour et al., 2021; Lubensky et al., 2019). Domestic 

wastewater treatment often depends on a natural approach such as treating using 

biological means, and for this natural option, there exist waste stabilization 

ponds, activated sludge systems, and trickling filter systems, where wastewater 

is treated using bacteria for reduction of BOD5 and COD contents in raw 

wastewater. An activated sludge system is one of many biological systems that 

is frequently used in sewage treatment plants due to its flexibility and controlled 

operations (Frigon et al., 2013).   
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Following on, among many other organizations, The IWA (International 

Water Association) developed the Activated Sludge Model (ASM) with the aim 

of making it easier to design and evaluate performance of biological wastewater 

treatment systems, thereby encouraging and advancing practical approaches in 

this field (Lizarralde et al., 2015). Although activated sludge system (ASS) with 

different configurations has been used widely, parameter assessment and 

calibration require expertise and significant effort, due to the complexity and 

variability in wastewater compositions. In this align, the calibration of the model 

is based on specific treatment systems with selected parameters for 

simplifications. With simplifications and scope limitations, ASM models 

reported to found problematic and clunky (Moral et al., 2008). However, in due 

course, with the development of the computing system and its advancement with 

the inclusion of artificial intelligence (AI), a new door opens up to handle 

complex problems like wastewater composition, as discussed. Following on, ASS 

has been seen to model using numerous AI based tools in past decades (Bagheri 

et al., 2015; Rustum, 2009). 

The performance of WWTPs and various wastewater treatment parameter 

values are predicted primarily using  AI based machine learning (ML) and deep 

learning (DL) models (El-Rawy et al., 2021; Safder et al., 2022). One of the primary 

goals is to understand the nature of effluent composition in advance, depending 

on the variations anticipated. This early prediction of wastewater characteristics 

can reduce the wastage from the WWTP and at the same time, can help plant 

operators or decision-making for avoiding threats not only to the treatment units 

but also to receiving water bodies. In this integration, many recent articles 

showed a growing integration between AI and wastewater treatment processes 

(Alani & Khudhair, 2019; Mannina et al., 2019; Safeer et al., 2022). AI has been 

used successfully in wastewater treatment to combat numerous contaminants 

like BOD5, COD, TN, SS, etc. These applications take into account the fluctuations 



 

Chapter 1: INTRODUCTION 4 

and variations in wastewater composition and aim to achieve a more 

comprehensive approach towards their treatment goals. Artificial Neural 

Network (ANN) is an algorithm that effectively can classify water quality by 

producing accurate results in this case (Zhao et al., 2020). 

The increased use of activated sludge system as of biological wastewater 

treatment system due to its performance over other treatment approaches, it is 

quite clear that developing countries, like Bangladesh adopt this system for 

further wastewater treatment. In addition, the significant development of AI 

based system, traditional monitoring and assessment of performance of the 

treatment plants needs to be adopted too, as it would be both cost and time 

effectiveness approach with appropriate calibration and validation.  

While a few numbers of studies are available elsewhere, a limited or no such 

study is available for Bangladesh context. Moreover, the composition of 

wastewater has seen to vary with dietary input, environment, climate and many 

other issues, that are solely localized phenomenon, and hence, adaption of 

outcomes from the previous studies elsewhere may prove false impression on 

effluent quality estimation and prediction. It clearly demands more studies 

where absent to better understand the modeling of ASS for domestic wastewater 

using machine learning tools. 

1.2 Justification of the Research 

Pathogens, nutrients, organic debris, and heavy metals are all found in 

domestic wastewater. As a result, rivers, lakes, and ground water are polluted, 

causing diseases including cholera, typhoid, and dysentery. As a result, having a 

WWTP to manage wastewater pollutants to a certain degree as per requirement 

has become necessary. The main objective of WWTPs is to remove pollutants that 

are detrimental to human and aquatic life, such as BOD5, COD, TSS, VSS, organic 
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and inorganic materials, TN, TP, and so on. These are rather complex, so 

relationships are varied from linear to nonlinear in nature.  

Domestic wastewater treatment frequently relies on a natural approach, 

such as treating sewage with bacteria culture for a reduction in BOD5 and COD 

contents in raw wastewater. Among the different biological systems, an activated 

sludge system is commonly found in sewage treatment plants. With the 

development of the computing system and its advancement with the inclusion of 

AI in it, a new door opens up to handle complex problems like wastewater 

composition. Many researchers in other countries are using AI to compute the 

outcomes. With the advancement of the technology, it is certain that the use of 

AI to train models using real data help us to predict the probable future outcomes 

from that analysing the inherited, diverse and complex intellectual behaviour of 

parameters. Due to the complexity in wastewater composition, and in absence of 

data availability, accurate prediction of effluent quality is challenging. The 

pollutants present in wastewater hardly shows the linear relationships, although 

deterministic models assumed the relationship linear. Since, AI has the capacity 

to understand intrinsic variabilities in composition and their behaviour overlong 

the mathematical relationship, it is proposed that the prediction of effluent based 

on a number of input variables would be better presented with accuracy using 

AI based models. Thus, the goal of this study is to develop a reliable AI model 

capable of generating synthetic wastewater data that accurately replicates the 

characteristics of a typical activated sludge system. This will help in assessing 

whether AI-based ANN approaches are appropriate for monitoring, identifying 

issues, and promptly taking remedial measures for newly developed or existing 

WWTPs. 
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1.3 Aims and Objectives 

The aim of this study is to model activated sludge system (ASS) to predict 

effluent derived from the domestic wastewater using artificial neural network. 

The sub objectives of this study are as follows. 

• To assess the adequacy of an artificial intelligence-based machine learning 

tools to generate synthetic data in absence of real influent and effluent data 

in local context.  

• To evaluate and model ASS to address variability in basic wastewater 

parameters using different AI based machine learning techniques.  

• To reveal the best machine learning tools towards best performance of ASS 

modeling in terms of effluent quality.  

1.4 Scope of the Study 

Domestic wastewater treatment, often overlooked earlier, is now 

recognized as an emerging issue in developing nations. Hence, subsequent 

pollution is evident for open water bodies over the years without treatment 

plants. Wastewater encompasses extensive polluting effects once disposed 

directly into the surroundings.  

The primary concern in wastewater treatment plants is removing harmful 

pollutants for human and aquatic lives. However, the reduction of priority 

pollutant concentrations is key towards performance evaluation. These 

influential parameters with significant variability depending upon the sources of 

origin directly affect the effluent quality. Since AI can understand intrinsic 

variabilities in composition and their behavior over the mathematical 

relationship, the prediction of effluent based on several input variables would be 

better presented with accuracy using AI-based models. 
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This study is focused on the performance of AI to predict the effluent 

parameters primarily BOD5, COD and TSS derived by the activated sludge 

system. The scope of this research is centered specifically:  

• Biological treatment system means activated sludge system.  

• Synthetic data refers to the data generated by AI based machine learning 

techniques with or without assistance of real data and/or derived by the 

mathematical model.  

• Real data of wastewater are obtained by collecting samples from the 

selected residential area in Chattogram city and testing during both dry 

and wet periods.  

• Hydraulic Retention Time (HRT), Sludge Retention Time (SRT), Food to 

Microorganism Ratio (F/M), Mixed Liquor Suspended Solids (MLSS) and 

similar operational parameters are within the ranges commonly found in 

literature.  

• The performance of wastewater treatment is based on BOD5, COD and TSS 

by figuring out which model best performs in predicting the effluent. 

1.5 Thesis Outline 

The study is structured into five chapters. The first chapter, 'Introduction,' 

presents the thesis and outlines the research gaps. 

A brief and selective overview of the relevant literature is presented in 

Chapter 2, ‘Literature Review’. It outlines the significance of wastewater 

treatment, its background, and the design of various wastewater treatment 

systems. Techniques for modeling activated sludge are reviewed and discussed. 

Finally, an overview of artificial intelligence modeling and control strategies is 

provided. This chapter also summarizes the previous researches in this area, 
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knowledge gains and gaps, and then to identify the opportunities to work 

further. 

The method used to carry out the present investigation is described in 

Chapter 3, ‘Methodology’. It covers the procedure for collecting samples, the 

design of experiments, and their associated protocols, as well as the sources of 

the datasets used for developing different machine learning models such as 

Decision Tree, Random Forest, Extra Trees etc. and artificial neural networks. The 

criteria used to evaluate the performance of these models are also covered in this 

chapter. 

Chapter 4, labeled as 'Results and Discussions', assesses the effectiveness of 

AI based models in designing the activated sludge process addressing BOD5, 

COD and TSS as key output variables for WWTP performance. A detailed 

comparative assessment of different models comparing other studies is also done 

to check the adequacy, appropriateness and consistency of the present study. 

The last chapter, ‘Conclusions and Recommendations’, aims to summarize 

the study's key results in conclusion and implications of this study in real field. 

Considering the limitations of the present study, a few recommendations have 

been made to enhance further research endeavors. 
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Chapter 2: LITERATURE REVIEW 

2.1 General 

The water is unique. Most life on earth comprises water, including 

microorganisms, plants, animals, humans, and even our brains. In addition, 

water is used for various tasks, including cleaning, irrigation, material 

transportation, industrial production, residential consumption, and irrigation. 

Even though the earth's surface is covered in water to a greater or lesser extent 

(more than 70%), only a minute fraction, approximately 0.5%, is suitable for 

various human activities (Gleick, 2000). This limited portion is diminishing due 

to rising needs in domestic, industrial, and agricultural sectors, leading to a 

decrease in available usable water. Wastes produced as a result of these uses are 

contaminants that further deteriorate the quality of the water supply, making it 

unusable.   

Discharging wastewater containing numerous organic elements into water 

bodies reduces dissolved oxygen levels and poses a significant risk to various 

environmental issues. If this continues, the ecosystem might eventually become 

uninhabitable for higher life forms like fish. Additionally, industrial components 

may have contributed to the presence of harmful compounds (Spellman & 

Drinan, 2003; Tchobanoglous et al., 2003). Therefore, wastewater must be 

adequately treated before discharge to preserve life and safeguard the 

environment. Particularly, biological wastewater treatment aids in lowering the 

organic composition of the wastewater, reducing its effects on dissolved oxygen 

in the receiving water body. The following are additional advantages of 

biological wastewater treatment systems (Tchobanoglous et al., 2003):    

• prevention of disease and troublesome conditions;      
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• preventing contaminating potable water sources;    

• keeping water clean for bathing, recreation, and fish survival;    

• ensuring the overall preservation of soil, water, and air quality for future 

utilization;    

• reducing the concentration of ammonia, thereby decreasing its harmful 

impact on aquatic life like fish; 

• preventing complications from excessive nitrogen compounds, such as 

cancer, methemoglobinemia in infants, and increased chlorine needs for 

disinfection 

Activated sludge biological treatment systems are the most used form of 

biological wastewater treatment (Spellman & Drinan, 2003). Further details 

regarding the history of treating wastewater in general, specifically focusing on 

the activated sludge system (ASS), are outlined in subsequent sections. The 

chapter concludes by addressing the latest modeling advancements in the ASS 

process.   

2.2 Brief History of Wastewater Treatment 

Treating wastewater has a long history, going back to when early 

civilizations realized how important it was to control and manage sewage and 

other types of wastewater to prevent environmental contamination and 

safeguard public health. Here is a synopsis of significant historical advancements 

in wastewater treatment:  

Ancient civilizations (3000 BCE–500 CE) originated some of the first known 

wastewater treatment methods. The Indus Valley Civilization in present-day 

Pakistan had advanced sanitation systems, including well-designed drainage 

systems and sewage disposal methods. Similarly, the ancient Romans 
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constructed elaborate aqueducts, sewers, and public toilets, demonstrating an 

early understanding of managing wastewater.  

In the case of the Medieval and Renaissance Periods (500 - 1600 CE), 

wastewater treatment practices were limited, and urban areas often suffered 

from poor sanitation. In some cases, wastewater was channeled into rivers or 

other bodies of water without proper treatment. However, some European cities 

began to develop rudimentary wastewater treatment methods, such as settling 

tanks and land applications.  

As a result of the industrial revolution's enormous urbanization and 

industrialization throughout the 18th and 19th centuries, water bodies were 

increasingly polluted. As concerns about public health and the environment 

grew, cities began constructing more organized sewer systems to transport 

wastewater away from populated areas. During this period, the primary focus 

was transporting wastewater rather than treating it.    

In the late 19th and Early 20th Centuries, advances in scientific understanding 

of disease transmission and waterborne illnesses, notably the work of researchers 

like John Snow and Louis Pasteur, highlighted the importance of proper 

wastewater treatment (Spellman & Drinan, 2003). Cities started implementing 

basic treatment processes such as sedimentation and aeration to reduce the 

pollution in wastewater before discharge.  

The mid-20th Century saw significant advancements in wastewater 

treatment technology. The activated sludge process, which involves the microbial 

breakdown of organic matter in wastewater, was developed and became a widely 

used treatment method. Additionally, the construction of secondary treatment 

plants began to increase.   
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From the late 20th Century to the Present, further improvements and 

refinements in wastewater treatment processes continued, including developing 

tertiary treatment methods to remove nutrients and additional pollutants. 

Modern wastewater treatment plants often employ a combination of physical, 

chemical, and biological processes to effectively treat before releasing wastewater 

into water bodies or reusing it for non-potable purposes. 

In recent decades, there has been an increasing emphasis on sustainable 

wastewater management and water reuse, focusing on sustainability and reuse 

(Rustum, 2009). Resources from wastewater have been recovered through efforts, 

including recovering cleaned water for irrigation, industrial operations, and even 

potable water supplies, as well as energy recovery from biogas created during 

treatment.  

Throughout history, the need to manage and treat wastewater has been 

driven by concerns about public health, environmental protection, and the 

responsible use of water resources. Advances in technology, scientific 

understanding, and regulatory frameworks have contributed to developing more 

effective and environmentally friendly wastewater treatment methods. 

2.3 Types of Wastewater Treatment System 

Before being released back into the environment or reused, wastewater 

treatment is a technique used to eliminate impurities and pollutants from water. 

To achieve adequate purification, it often takes many steps. Preliminary, 

primary, secondary, and tertiary treatments are the four main phases of 

wastewater treatment. An explanation of each is given below. 

2.3.1 Preliminary Treatment  

Preliminary treatment is the first stage of the wastewater treatment process. 

Its primary goal is to remove large objects, debris, and coarse materials from the 
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incoming wastewater that usually cause maintenance or operational problems in 

primary and secondary wastewater treatments and to protect downstream 

equipment and operations (Spellman & Drinan, 2003; Tchobanoglous et al., 2003). 

It is also known as pre-treatment in conventional treatment systems. Preliminary 

treatment typically involves the following processes:  

• Screening: Wastewater flows through screens that have various sizes of 

openings. These screens trap large objects such as sticks, leaves, plastics, 

and other debris. The screened wastewater then continues to the 

subsequent treatment stage.  

• Grit Removal: After screening, the wastewater may pass through a grit 

chamber where heavier, inorganic materials like sand, gravel, and small 

rocks settle due to their greater density. These materials are removed to 

prevent abrasion and damage to downstream equipment.  

• Oil and Grease Removal: Some wastewater streams may contain oils and 

greases, particularly those from industrial processes or food service 

establishments. These can be skimmed off the surface of the wastewater in 

specialized tanks or clarifiers.  

• Pre-aeration (Optional): In some cases, aeration may be provided at the 

preliminary treatment stage to introduce oxygen into the wastewater. This 

can help reduce odors, promote biological activities, and aid in breaking 

certain organic matter.  

• Flow Equalization (Optional): Flow equalization involves controlling and 

regulating the flow rate and variability of the incoming wastewater. This 

helps to prevent hydraulic overload on downstream treatment processes 

and can enhance their efficiency.  
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Overall, preliminary treatment is crucial because it prevents large debris 

and heavy materials from interfering with the subsequent treatment processes, 

such as primary and secondary treatment. These solids could clog pipes, pumps, 

and other equipment without effective preliminary treatment, leading to 

operational problems and reduced treatment efficiency.  

It's important to note that the specific preliminary treatment processes and 

equipment used can vary based on the characteristics of the incoming 

wastewater, the treatment facility's design, and regulatory requirements. 

Additionally, not all wastewater treatment plants may include every aspect 

mentioned above; the level of preliminary treatment can vary from plant to 

plant.  

2.3.2 Primary Treatment 

Primary treatment involves physically removing suspended solids and 

organic matter from the wastewater. This stage focuses on settling and separating 

heavier solids not removed during preliminary treatment. It includes all the units 

of the preliminary treatment system, as shown in Fig. 2.1, and the Primary 

Sedimentation Tank (PST), also known as the primary clarifier (Mara, 2004). The 

primary treatment process typically involves the following steps:  

• Screening: Large particles like sticks, leaves, plastic, and other debris are 

removed from the wastewater by passing it through screens. This step 

helps prevent damage to downstream equipment and ensures smoother 

processing.  

• Grit Removal: Following the initial screening process, the wastewater is 

directed to a grit chamber, where substances with greater weight, such as 

sand, gravel, and other small, dense particles, settle out.  
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• Sedimentation: In sedimentation tanks or clarifiers, the wastewater is 

allowed to sit undisturbed for a certain period. Due to gravity, larger solid 

particles and suspended materials fall to the tank's bottom during this 

period, forming a sludge layer. The clearer water at the top is then 

discharged for further treatment.  

• Floatation: In some cases, flotation units are used to encourage the 

separation of oils and grease from the wastewater. Air is introduced into 

the wastewater, causing small oil droplets and grease particles to rise to 

the surface, where they can be skimmed off.  

The grit chamber separates most dense suspended solids (SS) during the 

primary treatment phase, whereas the screen chamber efficiently removes most 

large floating materials. PST thus contributes significantly to the reduction of 

roughly 60–70% of fine settleable SS, which includes approximately 30–32% of 

organic SS (Mara, 2004). However, this system does not remove the colloidal and 

dissolved organic content of wastewater. 

There needs to be more than primary treatment to meet strict environmental 

standards, especially in areas with high population density or industrial 

activities. After primary treatment, the wastewater may undergo secondary 

treatment processes (biological treatment) and tertiary treatment (chemical 

treatment and advanced filtration) to further purify the water before discharge 

or reuse. It's important to note that the required treatment level can vary based 

on local regulations, the influent wastewater quality, and the treated water's 

ultimate goal (e.g., discharge into a water body or reuse for non-potable 

purposes). 
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Fig. 2.1 Schematic diagram of wastewater treatment system (Rustum, 2009) 

2.3.3 Secondary Treatment 

Organic matter that is suspended and dissolved in the wastewater is taken 

out by a biological process known as secondary treatment. It involves using 

microorganisms to break down the remaining organic materials and convert 

them into stable substances like carbon dioxide, water, and more microorganisms 

(Davis & Cornwell, 2013). 

Following primary treatment, wastewater undergoes secondary treatment 

to eliminate colloidal and soluble organic substances. Typically, biological 

processes are employed to remove the remaining colloidal and soluble organic 

content, as depicted in Fig. 2.1. The primary objectives of biological wastewater 

treatment include the coagulation and removal of both organic and inorganic 

non-settleable colloidal particles that persist after primary treatment. 

Additionally, this process aims to stabilize the dissolved organic matter, 

commonly measured as carbonaceous BOD5, which remains in the primary 

treatment effluent. The treatment system typically involves either a suspended 

or attached growth (fixed film) process. 
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2.3.3.1 Attached Growth Process  

A wastewater treatment method utilizing attached growth biological 

systems typically involves a reactor with a medium that facilitates biomass 

growth. This medium can either be inert material or biological sludge. In the case 

of inert media, the specific surface area and void space play crucial roles in 

enhancing biomass growth. Additionally, the system includes a secondary 

clarifier designed to separate excess suspended solids from the effluent. Based on 

the type of media used, the significant attached growth systems usually 

employed for domestic wastewater treatment include Trickling filters and 

Rotating biological contactors (Garg, 2014). 

2.3.3.1.1 Trickling Filters  

A trickling filter (TF) represents one of the earliest attached growth 

wastewater treatment systems. Typically, it features a circular tank containing a 

bed of coarse materials like large rocks, stones, ceramic pieces, or slag serving as 

filter media. The application of wastewater onto the support media is usually 

achieved through rotating distribution arms. Before the treated effluent is finally 

disposed of, the biomass solids that were washed away are separated in a 

secondary clarifier. Recirculation of effluent is commonly practiced, especially in 

high-rate trickling filters. The main advantages of recycling the filter effluent are 

as follows:  

✓ It improves the flow distribution over the media, reducing the problem of 

clogging and filter flies.  

✓ It helps in seeding the microorganisms, particularly in the case of 

industrial wastewater.  

✓ It dilutes the incoming strong wastes and thereby decreases the organic 

loading to the filter.  
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✓ It maintains an average flow rate during low flow periods.  

✓ It increases the contact efficiency of wastewater with media and biomass, 

thereby improving treatment efficiency.  

✓ It raises the influent's dissolved oxygen content.   

As the wastewater trickles through the filter media, microorganisms grow 

on the surface of the media or packing material in the form of a layer known as 

bio-film or slime layer (Karia & Christian, 2013). When wastewater passes over 

this stationary microbial film, contact between the substances (food) and 

microorganisms is established, and the substrate is decomposed or degraded 

aerobically by the attached biomass. Anaerobic conditions emerge close to the 

surface of the media, causing microorganisms to lose their attachment to the 

media. Consequently, the slime layer detaches and is carried away from the filter 

by the flow. This detachment process is referred to as sloughing. 

TFs have been categorized as follows based on organic or hydraulic 

loadings:  

• Low rate or standard rate TF: This type of TF is most dependable to obtain 

an effluent of consistent quality when the strength of influent wastewater 

varies. Usually, filter effluent is not recycled, and organic loading ranges 

from 0.08 to 0.30 BOD5/d-m3 of tank volume (volume of filter bed) (Karia 

& Christian, 2013). 

• High rate TF: This type of TF is designed to take higher organic loadings 

with the recirculation of filter effluent and to prevent the filter's flooding 

or 'ponding'. Typically, excluding recirculation, organic loading ranges 

from 0.5 to 1.0 BOD5/d-m3 of tank volume (volume of filter bed) (Karia & 

Christian, 2013).  
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• Intermediate rate TF: Functionally, such filters are similar to high rate 

trickling filters and can be designed as single-stage or two-stage systems.  

• Super rate TF: This type of TF normally uses plastic media with a large 

specific area to treat wastewater with high organic contents. The organic 

loading ranges from 1 to 2 kg BOD5/m3-d (Karia & Christian, 2013). 

Additionally, TFs have been categorized as follows based on the number 

of units utilized in the series:   

• Single-stage trickling filter: The system typically utilizes a single filter, 

and if multiple filters are necessary, they will be arranged in parallel. 

Recirculation of effluent flow is generally not employed. 

• Two-stage trickling filter: This setup comprises two consecutive filters 

with effluent recirculation from each stage, and sometimes an 

intermediate clarifier is incorporated between the filters. The design of the 

system can involve either using equal volumes for both filters or assuming 

equal efficiencies for the two filters. This system is normally used for 

treating high strength wastewater or when removing nitrogenous organic 

matter is desired. 

2.3.3.1.2 Rotating Biological Contactors  

For domestic and industrial wastewater, a Rotating Biological Contactor 

(RBC) is a relatively simple and reliable biological treatment technology typically 

used for secondary treatment (Courtens et al., 2011). It is an attached growth 

technique in which the media, which typically take the shape of flat discs fixed 

on shafts and work similarly to trickling filters, are used. The flow of wastewater 

is perpendicular to the shaft, and the surface of wastewater is kept up to a level 

such that about 40% of the total surface area of discs is always submerged. The 

assembly of the discs and shaft rotates in the tank filled with wastewater. This 
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shaft assembly with discs and equipment to rotate them is called one module. In 

field, many such modules may be required to treat wastewater and may be 

arranged in series or parallel. 

The surfaces of revolving discs come into contact with the organic matter 

and microorganisms in wastewater and the atmosphere on alternate occasions as 

the shaft spins (Ivanciu et al., 2019). As the discs rotate, the microbes stick to 

them, transferring oxygen from the surrounding air into the wastewater to keep 

the system aerobic. In due course, the organic content of wastewater is consumed 

on the disc surface, and the microorganisms attached to the discs eventually 

develop into a biological film on the surfaces. An anaerobic environment 

eventually forms closer to the disc surface as the bio-film thickens, and the 

incoming wastewater flow washes off the thickened bio-film (Ivanciu et al., 2019). 

2.3.3.2 Suspended Growth Process 

When the microorganisms are maintained as suspension in the reactor by 

an appropriate mixing method, the process is known as suspended growth 

process, e.g., activated sludge process, waste stabilization pond etc. 

2.3.3.2.1 Activated Sludge System  

The most versatile biological process available to designers to treat almost 

all types of wastewater is the activated sludge system (ASS). This aerobic 

biological technique breaks down and stabilizes soluble and particulate organic 

matter in wastewater by using active microorganisms in a suspended condition 

within a reactor. The suspended biomass, called activated sludge, is quantified 

by Mixed Liquor Volatile Suspended Solids (MLVSS). The oxidation of organic 

matter and the development of new cells are the two fundamental functions of 

the process. A continuous oxygen supply facilitates the breakdown of organic 

materials and microbial growth. The mixture then goes to secondary clarifiers, 
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where the microbial flocs gather to settle and can be added back to the aeration 

tank to continue the process (Garg, 2014).    

The solid biomass produced in an aeration tank undergoes gravity settling 

in a clarifier to facilitate the process continuously. A large portion of the settled 

solids is typically reintroduced or recycled into the aeration tank. Any excess 

sludge is removed from the clarifier during the ongoing process for subsequent 

handling and disposal. The resulting clarified liquid is commonly discharged 

into a stream. However, this effluent can be reused or reclaimed. Therefore, ASS 

normally consists of:  

✓ An aeration tank in which microorganisms are kept in suspension by 

aerating the wastewater   

✓ A secondary clarifier in which biological flocs from the reactor are 

separated by gravity settling  

✓ A recycle system to return the portion of activated sludge from the clarifier 

bottom to the reactor  

Colloidal solids in suspension are eliminated through the physical and 

chemical adsorption on active biomass, as well as by enmeshment in the 

biological floc (Davis & Cornwell, 2013). Therefore, properly mixing wastewater 

with biomass in the reactor is essential. Soluble organic solids are removed by 

bio-sorption of matter by microorganisms and then by their biodegradation or 

decomposition and stabilization. During the biodegradation by oxidation of 

organic solids, a portion of organic matter is synthesized into new cells and 

another fraction is stabilized. A part of the synthesized cells will undergo self-

oxidation (also known as auto-oxidation or endogenous respiration) in the 

reactor during the endogenous growth phase of microorganisms. Oxygen is 

required to support both synthesis and auto-oxidation. Normally, the oxygen 
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needed is supplied through air by aerating the wastewater by surface aerators or 

diffuse aeration systems. The aeration system is so designed that it also supports 

proper mixing of the reactor content to generate the desired microbial floc in the 

reactor during the aeration (Karia & Christian, 2013; Tchobanoglous et al., 2003). 

The major sub-processes involved in the removal of colloidal and soluble 

organic matter include:  

⬧ Dissolution of oxygen into liquid/wastewater (by aeration)  

⬧ Turbulent mixing of reactor wastewater and biomass (returned activated 

sludge)  

⬧ Adsorption of organic matter (substrate) by activated sludge (biomass)  

⬧ Molecular diffusion of dissolved oxygen and soluble substrate/nutrient 

into activated biomass (biological floc)  

⬧ Basic metabolism of microorganisms (cell synthesis)  

⬧ Bio-flocculation resulting from the production of cellular polymeric 

substances during the auto-oxidation phase  

⬧ Auto-oxidation of cells (endogenous respiration)  

⬧ Release of carbon dioxide (CO2) from active cell mass  

⬧ Lysis or decomposition of dead cells  

As seen in Fig. 2.1, the conventional ASS consists of an aeration tank and a 

clarifier (Najar & Engin, 2019). The settled effluent fed to the aeration tank is 

mixed with return sludge at the inlet end of the tank. Therefore, the oxygen 

demand by the microorganism is more in the initial length of the tank. This 

demand also increases with the shock load near the inlet end. So, synthesized 
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biomass is also more near the inlet end but decreases with the length of the tank 

towards the outlet end. The microbial population and the system, therefore, 

hardly approach the relatively constant equilibrium condition similar to the 

complete mixed system.  

The complete mix activated sludge process is so designed that effluent from 

the PST is mixed throughout the entire tank instantaneously. Because of complete 

mixing, the organic loading is considered uniform throughout the aeration tank, 

and the concentration of reactor biomass is not affected by the shock loadings. 

Therefore, oxygen demand and microbial growth are also assumed to be constant 

throughout the reactor. 

2.3.3.2.2 Waste Stabilization Ponds 

Waste stabilization ponds, commonly called oxidation ponds, represent a 

straightforward biological approach for wastewater treatment, especially in cases 

where a high-quality effluent is not essential and there is ample land for 

treatment. These ponds are utilized for treating both domestic and industrial 

wastewater that can undergo biological treatment (Garg, 2014).   

Ponds are typically constructed using earthwork, featuring shallow depths 

about their large surface areas. Bunds are built around the ponds to prevent 

rainwater entry. In this setup, untreated wastewater is directly introduced to the 

ponds after removing floating materials via bar racks without primary treatment. 

Algae play a crucial role in supplying the necessary oxygen for the aerobic 

decomposition of organic solids and maintaining a symbiotic relationship with 

bacteria. This system boasts low construction costs and minimal operating 

expenses, as it requires minimal operational expertise and does not rely on 

mechanical equipment for aeration. The ponds can be designed as multi-celled 

structures, arranged in series or parallel configurations (Karia & Christian, 2013).  
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Following the screening of raw wastewater, suspended solids undergo 

gravitational settling at the pond bottom due to a long retention period. In the 

upper and intermediate layers, soluble organic matter is decomposed (oxidized) 

by microorganisms, mainly bacteria, in aerobic and facultative conditions, 

producing carbon dioxide (CO2), nitrates, orthophosphate, and water. Oxygen 

essential for this process is provided by the photosynthetic metabolism of algae 

generated in the pond. Meanwhile, anaerobic bacteria decompose settled solids 

into stable end products. In practice, the facultative waste stabilization pond is 

mostly used to treat domestic wastewater. 

When both primary and secondary treatment systems are provided, then it 

is generally known as complete treatment of wastewater, because the quality of 

final effluent of domestic wastewater obtained normally satisfies the prescribed 

limits set by the local authority or conforms to standards for disposal into the 

receiving streams.  

Creating a suitable mixed culture of microorganisms in the bioreactor, 

maintaining ideal environmental conditions, and removing extra sludge 

produced are all necessary for a biological treatment unit to function well (Garg, 

2014). High amounts of BOD5 or COD in the final effluent may arise from 

wastewater with excess organic sludge that must be removed. This organic 

sludge can lower the dissolved oxygen (DO) of the receiving water body 

when released into a stream. 

2.3.4 Tertiary Treatment 

Tertiary treatment, the final step in wastewater treatment, is the process of 

further improving the effluent's quality before it is released into the environment 

or used once again. If the treated water is going to be used in irrigation, industrial 

activities, or even for drinking water production, this step is crucial. Different 
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advanced methods can be used in tertiary treatment, including Filtration, 

Disinfection, and Nutrient Removal etc. 

• Filtration: Wastewater is passed through sand, activated carbon, or other 

media to remove remaining suspended solids and fine particles. 

• Disinfection: Pathogens like bacteria, viruses, and protozoa are destroyed 

or deactivated using disinfection methods such as chlorination, ultraviolet 

(UV) irradiation, or ozonation (Garg, 2014). 

• Nutrient Removal: Phosphorus and nitrogen compounds are removed to 

prevent excessive nutrient enrichment (eutrophication) in receiving water 

bodies.  

In summary, wastewater treatment involves a series of stages to remove 

contaminants and pollutants from wastewater. Each treatment stage addresses 

specific types of pollutants and plays a crucial role in producing clean and 

environmentally safe effluent. Overall, combining these treatment processes 

helps ensure that wastewater is treated to a level that meets environmental 

standards and minimizes its impact on receiving water bodies and ecosystems. 

2.4 Modeling History of Biological Wastewater Treatment System 

With the development of our knowledge of microbiology, chemistry, and 

engineering, biological treatment modeling for wastewater treatment has a long 

history. Here is a synopsis of how biological treatment modeling has evolved 

historically.  

The idea of utilizing microorganisms to treat wastewater dates back to the 

late 19th century, when researchers observed that the action of bacteria and other 

microorganisms was engaged in natural processes like stream self-purification. 

The activated sludge process, a key biological wastewater treatment method, was 

developed by Edward Ardern and William Lockett in England in 1714. This 
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process uses aeration and microbial activity to break down organic matter in 

wastewater (Rustum, 2009). 

Researchers in the mid-20th century (1950s–1970s) began developing 

mathematical models to describe the kinetics of biological reactions in 

wastewater treatment. Researchers like C.P. Grady, G.P. Shida, and A.W. Parker 

made notable contributions.  

The development of the ASM (Activated Sludge Model) series in the 1980s 

by the International Water Association (IWA) marked a significant advancement 

in biological treatment modeling. These models provided a framework for 

simulating the behavior of activated sludge systems (Rustum, 2009; 

Tchobanoglous et al., 2003).  

In the 1990s and 2000s, modeling efforts expanded to include more complex 

processes and interactions, such as biological phosphorus removal and 

denitrification. These models allowed for a more comprehensive understanding 

of wastewater treatment systems.  

With the advancement of robust computers and software (2000s-Present), 

modeling tools became more accessible and sophisticated. Computational fluid 

dynamics (CFD) and process modeling software are used for more accurate 

simulations of biological treatment processes. At the same time, biological 

treatment models have been integrated into control systems for wastewater 

treatment plants (2000s-Present). This allows for real-time monitoring and 

optimization of treatment processes, improving efficiency and reducing 

operational costs.  

Integrating artificial intelligence (AI) and machine learning algorithms to 

optimize and forecast system performance is anticipated to be a part of current 

and future developments in biological treatment modeling. Additionally, there 
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is a rising emphasis on environmentally friendly and energy-efficient treatment 

methods (Rustum, 2009).  

Biological treatment modeling has played an important role in designing, 

operating, and optimizing wastewater treatment plants. As our understanding 

of microbiology and technology continues to advance, modeling approaches will 

evolve to meet environmental sustainability challenges and regulatory 

compliance in wastewater treatment.  

In summary, the history of biological treatment modeling for wastewater 

treatment has evolved from simple conceptual models to complex, computer-

based simulations that help design and operate wastewater treatment plants 

efficiently while meeting stringent environmental regulations. Ongoing research 

and development continue to refine and expand these modeling approaches to 

address new challenges in wastewater treatment. 

2.4.1 Modeling History of Trickling Filter System 

The design of trickling filters in wastewater treatment has evolved with the 

development of various mathematical and empirical models. These models have 

helped engineers and researchers optimize the design and operation of trickling 

filter systems.  

Nitrifying bacteria may be kept alive under high hydraulic loadings using 

trickling filters, which provide a support medium for biofilm formation. The first 

continuous flow bioprocess used by sanitary engineers to treat wastewater was 

biofilms grown on support media nearly a century ago. Ammonia and dissolved 

oxygen permeate into the biofilm as the wastewater passes over the biological 

slime in a nitrifying trickling filter, where the bacteria use them for metabolism. 

Mass transportation and bioconversion are key operations. Modern trickling 
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filters frequently use plastic support media, which can perform better but is 

significantly more expensive than filters made of rock (Siegrist & Gujer, 1987).  

The key physicochemical and biological processes must be accurately 

described mathematically to design trustworthy trickling filters and evaluate 

nitrification efficacy. A reliable forecast of the anticipated bioconversion (for a 

filter with a specific packing material) is required regarding the critical 

operational variables, namely the hydraulic and nutrient loadings and the 

recirculation rate (where recirculation is utilized). Design engineers have had 

varying degrees of success using comparatively straightforward empirical design 

equations to simulate trickling filter performance for more than 30 years. 

It is essential to address the findings of other studies because they all relate 

to BOD5 elimination (Eckenfelder & Barnhart, 1963; Howell & Atkinson, 1976; 

Vayenas & Lyberatos, 1994). In other words, these empirical and semi-empirical 

equations are only applicable to the specific processes whose parameters have 

been established. Additionally, these equations are unable to predict the profiles 

of biofilm thickness and nutrient contents along the filter depth, nor can they 

describe how the biofilm separates from the support material. These profiles are 

required to determine how well a particular filter depth is utilized. More 

comprehensive models have been formulated in several studies (Alleman et al., 

1984; Vaughan & Holder, 1984). These mathematical models are fairly 

sophisticated and time-consuming, and the values of the model parameters are 

highly unpredictable. Furthermore, the model equations lack an analytical 

solution, necessitating finite difference numerical techniques. A study was found 

to create a simple design concept for nitrifying trickling filters. A simplified 

empirical expression is used to enable easy integration of the overall material 

balance (Siegrist & Gujer, 1987). 
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The design of trickling filters has increasingly emphasized biofilm models 

from the 1980s to the present. These models contain variables including biofilm 

thickness, mass transfer, substrate consumption, and microbial population 

dynamics and consider the creation and evolution of biofilms on the filter media 

(Wik, 2003). Once more, analyzing flow patterns and wastewater distribution 

inside the filter bed is a key component of hydraulic models from the 1980s to the 

present. Using CFD (computational fluid dynamics) models, the hydraulic 

behavior of trickling filters has been predicted, and their design has been 

improved (Séguret et al., 2000). 

Models have been incorporated into the control and optimization of 

trickling filter plants due to developments in automation and control systems 

(from the 2000s to the present). These models provide real-time monitoring and 

operational parameter alterations to increase treatment effectiveness 

(Tchobanoglous et al., 2003). With improvements in modeling methods, 

computational tools, and a rising focus on sustainability and environmental 

performance, the field is still developing. 

2.4.2 Modeling History of Waste Stabilization Pond System 

Waste stabilization ponds (WSPs), also known as lagoons, have been used 

for wastewater treatment for decades. The design of these ponds has evolved 

over time, and various models have been developed to aid in designing and 

optimizing WSP systems. Although WSPs have been a research topic for the past 

three decades and are very easy to develop and maintain, many processes are 

still not fully understood. This is due to WSPs' high level of internal complexity, 

in which each pond's hydraulic behavior and the various interactions between a 

large number of biochemical processes significantly impact how well the 

treatment works (Davis & Cornwell, 2013; Iturmendi et al., 2012).   
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Empirical guidelines and generalizations largely influenced the design of 

waste stabilization ponds in the early to mid-20th century. Instead of being 

dependent on mathematical models, these recommendations were developed 

using experience and field observations. In order to estimate the necessary pond 

volume based on the desired level of wastewater treatment, simple Hydraulic 

Retention Time (HRT) based models were developed at this time.  

According to Moreno (1990), the hydraulic conditions of ponds have a 

considerable impact on the performance of waste stabilization ponds (WSP). The 

ponds are occasionally supposed to behave as either plug flow or fully mixed 

systems for design purposes. However, ponds typically have hydraulic 

conditions that fall between these two extremes, known as dispersed (non-ideal) 

flow. Dead zones and short-circuiting are other deviations from ideal conditions. 

Furthermore, according to Tchobanoglous et al. (2003), ponds seldom reach their 

theoretical retention time, primarily due to fluctuating flow rates and sludge 

build up that reduce a pond's active volume. Therefore, it is clear that a critical 

component of forecasting the performance of the pond is understanding and 

modeling hydraulics. Many models have been developed that solely take into 

account biological processes or only hydrodynamics (Iturmendi et al., 2012; Sah 

et al., 2012; Wood et al., 1998). Models that are solely concerned with water 

quality typically presumptively use plug flow or entirely mixed hydraulic 

conditions. Some models exclude other components and concentrate on oxygen 

dynamics or sedimentation processes. This is so because most of these models 

were created only to enhance understanding of the processes. 

Several models have been developed that concentrate on various aspects of 

how HRAPs (high-rate algal ponds) function. For instance, some models focuse 

on sunlight disinfection in HRAPs. In contrast, the model by Buhr and Miller 

(1983) describes the crucial interaction between photosynthetic 

algae/cyanobacteria and heterotrophic bacteria. These models serve the same 
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objective as WSP models, increasing the understanding of the system. 

Inadequate models that can accurately predict the effluent quality are also a 

problem for HRAPs.  

In addition to hydraulics, biological processes, and environmental 

considerations, modeling of AFLs (aerated facultative lagoons) necessitates 

additional attention to mixing and DO fluctuation caused by the aerators. Many 

scientists have attempted to concentrate on this mixing element, including 

(Stropky et al., 2007). These models, like WSPs or HRAPs, are created to 

understand the system's operations; as a result, they are either centered on one 

element or the other. These models have aided in further understanding the 

processes in these systems.   

However, no model currently can accurately anticipate how the pond will 

behave given various water quality criteria. A model like this could help 

designers during the building process and also aid them in determining how 

engineering modifications affect the system's performance. It is important to note 

that the design and modeling of WSPs can vary greatly depending on factors 

including climate, regional regulations, and particular treatment goals. 

Researchers and practitioners are developing and refining models to improve the 

efficiency of waste stabilization pond systems for wastewater treatment. 

2.4.3 Modeling History of Activated Sludge System 

Modeling the activated sludge process is vital to execute effective control 

actions for enhanced process performance. The fundamental reason why models 

are helpful is because they allow researchers to examine the impacts of changing 

the operating factors much faster than they could through experiments. Because 

of this, it is possible to explore a wide range of alternative designs and operating 

approaches without physically testing each scenario (Andrews, 2012; Barnett & 

Andrews, 1992; Orhon et al., 2005). It is feasible to promptly respond to any 
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process alterations by employing simulations of models alongside possible 

corrective actions. This approach allows for the development of an operational 

strategy that enables the plant to adapt to new operating conditions efficiently, 

enhancing its stability, improving effluent quality, and concurrently reducing 

operational expenses. As a result, getting the best process designs at the lowest 

possible cost is possible while still meeting the required effluent quality criteria 

(Orhon et al., 2005; Rivas et al., 2008). 

Modeling the wastewater treatment process is time-varying. It is made up 

of numerous sub processes with robust dynamics at different scales. Sludge 

dynamics (MLSS) and temperature are two factors that change slowly across 

timescales of days, weeks, and occasionally even months. The most notable 

change in the process comes from the variation of flow rate and pollutant 

concentrations. Some alterations, like dissolved oxygen (DO), occur even more 

quickly. Making decisions on what should be considered as inputs and outputs is 

challenging due to the high dimensionality. The biological cultures, recirculation, 

and control activities having non-linear properties all play an important role in 

the complex cause-and-effect relationship (Fu & Poch, 1995; Spellman & Drinan, 

2003). 

There are few trustworthy online measurement tools available for a 

biological process. For instance, quantifying certain process variables in real-

time, like BOD5, can be challenging. Furthermore, numerous sensors lack 

reliability due to their tendency for noise, slow responsiveness and frequent 

maintenance requirements (Harremoës et al., 1993; Olsson et al., 2005; Takeguchi 

et al., 1981). Consequently, the majority of data logs contain erroneous or 

incomplete values (Rustum & Adeloye, 2007a, 2007b). Most wastewater 

treatment facilities do not regularly monitor many aspects that affect the process. 

Largely unpredictable factors including the impact of poisonous industrial 

products and mechanical malfunctions are difficult to model mathematically 



 

Chapter 2: LITERATURE REVIEW 33 

(Schuetze et al., 2002). Each wastewater treatment facility is unique. The amount 

and circumstances vary, and the industrial waste inputs nature changes 

depending on the location. Therefore, it is important to take into account the 

unique characteristics and conditions of any wastewater treatment facility that 

will be modeled mathematically. ASS, in particular, have shown advancements 

in modeling wastewater treatment processes, notwithstanding everything 

mentioned above.  In the past 40 years, there has been a lot of interest in the 

mathematical modeling of the processes taking place inside the ASS (Schuetze et 

al., 2002). 

There are two main aspects to consider when classifying activated sludge 

models: firstly, fundamental modeling involves identifying the specific area 

(primary clarifier, aeration reactor, secondary clarifier etc.) of the plant to model, 

and secondly, empirical modeling involves determining the modeling approach 

to be employed. Fundamental models are those that are derived using 

mechanistic equations. Empirical models, in contrast, are data-driven but do not 

consider the system's physical considerations. Statistical techniques are used to 

fit the model coefficients to the input-output map to identify empirical models 

from system input-output data. The modeling attempts made to simulate the 

activated sludge wastewater treatment facility using various modeling 

methodologies are described in the following subsections. 

2.4.3.1 Fundamental Models of Activated Sludge System 

Considerable attention has been given to developing models for primary 

clarifiers (PST) due to their significant impact on subsequent units and sludge 

treatment (Lessard & Beck, 1993). Simpler models, like the steady-state approach, 

are often used to depict the dynamic behavior of primary clarification because 

they are deemed less sensitive (Otterpohl & Freund, 1992). The majority of 

primary clarifier models solely simulate the behavior of suspended solids (SS) 
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and do not consider any biological interactions within the reactor. A few studies 

consider certain biological events occasionally occurring in the primary clarifier 

(Lessard & Beck, 1988). 

Modeling primary clarifiers accurately faces challenges due to the intricate 

dynamics of sedimentation processes. These challenges arise from factors such as 

fluctuating influent characteristics, diverse particle sizes and velocities, intricate 

flow patterns with density currents within the tank, scouring phenomena, and 

the impact of temperature. However, the majority of proposed models rely on 

variables that are not assessed during actual treatment work operations (Lessard 

& Beck, 1993; Otterpohl & Freund, 1992; Paraskevas et al., 1999). 

Deterministic mathematical models use kinetic parameters, coefficients, 

and differential equations to explain the process. Changes in influent wastewater 

flow rate, composition, and concentration are all taken into consideration by 

these models. As a prominent deterministic model, the Activated Sludge Model 

Number 1 (ASM1) encompasses various variables and processes such as different 

organic matter fractions, biomass, nitrogen components, particulates, and 

alkalinity (Henze et al., 1987). The transformation of Portugal's Parada 

conventional WWTP into a biologically nitrogen-removing facility using ASM1 

was investigated. Using the parameter settings suggested by the developers of 

ASM1, very high correlations between observed data and simulation results were 

attained. They assessed the wastewater treatment plant's capability for biological 

nitrogen removal through computer simulations. Their findings suggested that 

the plant could generate excellent effluent quality with the first tank dedicated to 

denitrification and the second and third tanks allocated for BOD5 removal and 

nitrification, along with a recirculation flow ratio of 1.5 and a sludge age of 15 

days. 
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Further development in modeling activated sludge WWTPs resulted in the 

creation of ASM2, ASM2D, and ASM3 models. ASM2 provided detailed 

biological kinetics and understanding of nitrification, denitrification, and 

biological phosphorus removal. ASM2D extended the ASM1 and ASM2 to 

include a model for biological phosphorus removal alongside simultaneous 

nitrification-denitrification in ASS. ASM3 is capable of predicting oxygen 

consumption, sludge production, as well as nitrification and denitrification 

processes within ASS (Gujer et al., 1995, 1999). 

However, the complexity of models like ASM1 and others necessitates the 

assessment of numerous variables and substantial data on microorganism 

growth and decay. These factors are often not routinely evaluated by significant 

WWTPs, thus diminishing their priority to designers and operators (Lessard & 

Beck, 1993; Weijers & Vanrolleghem, 1997). A model of a WWTP system must 

also include a certain amount of assumptions and simplifications in which some 

relate to the mathematical model, and the remaining are associated with the 

physical system itself to be realistically usable (Jeppsson, 2012). When used in 

full-scale wastewater treatment plants, the majority of these models 

have an incorrect calculation of the return sludge concentration and inaccurate 

analysis of the sludge concentration profile near the effluent weirs. Since these 

models depend on particular site parameters, applying them to another site 

would necessitate significant calibration work (Lessard & Beck, 1993). 

Deterministic models are favored for their ability to forecast beyond the 

scope of the available operating data but with limitations. These models are 

typically developed using controlled laboratory data, making them suitable for 

treatment plant design but potentially unsuitable for day-to-day operations 

(Lessard & Beck, 1993; Rustum & Adeloye, 2007a). Mechanistic models require 

calibration and might be challenging to adjust for any changes in the physical 

system because these models were created based on specific physical systems. 
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They rely on numerous parameters and coefficients, limiting their accuracy and 

applicability. Furthermore, many of these variables and indicators are often 

excluded from regular plant performance monitoring. Consequently, empirical 

models are increasingly preferred for modeling activated sludge WWTPs. 

2.4.3.2 Empirical Models of Activated Sludge System 

WWTPs require advanced control systems capable of achieving improved 

and adaptable performance due to their complex nature. These systems need to 

exhibit strong dynamical performance and resilience, effectively managing 

intricate, uncertain, and highly non-linear process connections. However, due to 

limitations in mechanistic models, researchers are exploring new techniques to 

handle these challenges. One such technique is the use of intelligent models like 

neural networks, fuzzy logic, data mining, etc. that handle uncertainty and 

system complexity in a manner analogous to human reasoning without the 

challenges associated with deterministic non-linear mathematics. 

Stochastic modeling is a methodology that studies sequential observations 

generated over time. This approach has been implemented to predict the 

efficiency of treatment processes, demonstrating successful outcomes in various 

investigations. In the study conducted by Capodaglio (1994), both univariate and 

multivariate process models were employed to predict water flow and SS levels, 

based on rainfall measurements. An study incorporated stochastic models into a 

prototype real-time control setup for forecasting flow and employing these 

predictions for automated online regulation of an ASS in Denmark (Kristensen et 

al., 2004). The input data was precipitation, measured at the WWTP, while flow 

data from the final pumping station preceding the treatment facility served as the 

output. Expert systems (ES) models, which have been used for controlling 

WWTPs since the 1980s, are implemented using expert knowledge and 

databases. However, they may not apply to every system due to the challenge of 
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collecting expert knowledge. On the other hand, fuzzy logic models make a 

balance between uncertain human expressions and rigid expert systems as they 

do not require complex mathematical relationships and are conceptually easy to 

understand. Additionally, they can handle imprecise data, enabling the modeling 

of intricate non-linear functions. However, adjusting the parameters of fuzzy 

membership functions is difficult and time-intensive, and determining the 

required quantity of fuzzy rules poses a significant challenge. 

2.5 Modeling of Activated Sludge System using AI Technique 

Wastewater treatment plants (WWTPs) are complex, nonlinear, and highly 

changeable systems characterized by flow rate, pollutant load, chemical 

composition, and hydraulic conditions. These complexities and uncertainties 

make it more challenging to simulate WWTP processes (Borzooei et al., 2019; 

Rout et al., 2021). Mechanistic models that simulate WWTP processes have been 

used to forecast the behavior of several variables (Buaisha et al., 2020; Fenu et al., 

2010; Nopens et al., 2009). Mechanistic models, however, have 

several shortcomings because they require a great deal of simplicities and 

assumptions in order to be tractable and quantifiable as well.  

Additionally, combining mechanistic models that mimic processes in many 

units proves challenging due to variances in the methods employed to create 

state variables. Poor generalization capabilities, high costs, and insufficient 

handling of the time-varying and highly nonlinear behaviors of processes 

affected by various known and unknown factors are additional issues that 

mechanistic models have (Liu et al., 2021; Shi et al., 2018). Many of these 

limitations are eliminated by artificial intelligence-based models, which do not 

rely on pre-designed processes based on fundamental principles but instead only 

on finding correlations between output and input data that enable predictions 

and/or facilitate decisions (Müller & Guido, 2016). 
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AI (Artificial Intelligence) is a powerful tool in wastewater treatment plants 

(WWTPs) that enhances efficiency, reduces costs, and improves system 

performance. It allows real-time monitoring of parameters like water quality, 

flow rates, and equipment performance and can process vast amounts of data to 

optimize treatment processes. AI-powered predictive maintenance helps identify 

equipment failures and maintenance needs before they occur, reducing 

downtime and extending equipment lifespan. WWTPs are energy-intensive 

facilities, and AI algorithms can optimize energy usage by adjusting equipment 

operation based on real-time demand and conditions. AI can analyze complex 

data patterns and recommend process adjustments to optimize treatment 

efficiency, leading to improved pollutant removal rates and reduced chemical 

usage. AI can detect abnormal conditions and potential system failures early, 

preventing pollution events and ensuring regulatory compliance. It can also 

analyze historical data to identify trends and patterns for making better decisions 

and improving treatment processes continuously. AI enables remote monitoring 

and control, reducing the need for on-site personnel and improving operational 

flexibility. It can adapt real-time treatment processes to handle changing influent 

characteristics due to weather, industrial discharges, or population growth. 

2.5.1 Modeling of Activated Sludge System using Machine Learning 

It is challenging to simulate WWTP processes because of thecomplexities 

and uncertainties associated with WWTPs (Borzooei et al., 2019; Rout et al., 2021). 

The behavior of certain variables has been predicted using mechanistic models, 

such as Activated Sludge Models (ASMs), which have been used extensively to 

simulate WWTP processes (Buaisha et al., 2020; Fenu et al., 2010; Nopens et al., 

2009). Mechanistic models have several drawbacks because they require many 

assumptions and simplifications to be tractable and computable. ASMs, for 

instance, are only appropriate subject to a range of temperatures, pH levels, and 

alkalinities (Gujer et al., 1995, 1999; Hauduc et al., 2011; Henze et al., 1987). 
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Additionally, linking different mechanistic models that replicate processes in 

multiple units is challenging because of differences in the techniques employed 

to calculate state variables. For instance, TSS is calculated and incorporated 

differently in ASMs and second clarifier models (Tchobanoglous et al., 2003).  

Table 2.1. Summary of the outcomes of other studies using ML 

Input  Output  Methods  Model Performance  Reference  

pH, 

temperature, 

TP, flow, 

Cond., 

Turbidity 

COD Random 
Forest 

R2 = 0.91 
 

(Cheng et al., 
2023) 

F/M, SVI, T,  

Cond., pH, 

COD,  

BOD5, N, P, Q, 

Qr, Qw  

Eff. 
COD,  
N, P  

Ensemble 
Parallel 
Hybrid 

(bagging, 3x 
MLP)  

Training RMSE  
COD= 224.38  

N= 0.36  
P= 0.10  

Testing RMSE  
COD= 127.71  

N= 0.23  
P= 0.15  

(Keskitalo & 
Leiviskä, 2015) 

BOD5, TSS, 

VSS, influent 

flow rate, pH, 

temperature, 

F/M, SRT, 

WAS, and 

RAS  

BOD5 
and 
TSS  

RVFL-MRFO  BOD5   
R2 = 0.97  

RMSE = 1.147 and   
TSS  

R2  = 0.97  
RMSE = 1.1927   

(Elmaadawy et 
al., 2021) 

TSS, TDS, 

COD, BOD5  

TSS, 
TDS, 
COD, 
BOD5  

Support 
Vector 

Regression 
(SVR) and 
Regression 
Trees (RT)  

(RMSE) (mg/L)  
TSS= 1049, TDS=1549, 

COD= 1172, BOD5= 
104  
(R2 )  

TSS = 0.97, TDS= 
0.851, COD= 0.893, 

BOD5= 0.871  

(Granata et al., 
2017) 

Other inherent problems with mechanistic models include poor 

generalization performance, high costs, and insufficient ability to effectively 

manage the dynamic and complex behaviors of processes influenced by both 

known and unknown factors (Liu et al., 2021; Shi et al., 2021; Verma et al., 2017). 
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Machine Learning (ML) models are free from many of these restrictions, because 

they only depend on identifying correlations between output and input data that 

allow predictions and/or facilitate decisions (Müller & Guido, 2016; Nadiri et al., 

2018). A review of the findings from earlier studies that used machine learning 

in the context of activated sludge systems is shown in Table 2.1. 

The fact that ML models simulate actual reaction/process conditions rather 

than pre-designed processes based on fundamental principles is a key benefit. 

They are so strong and comprehensive, which is important because many 

mechanisms involved in wastewater treatment are still not fully understood 

(Erdirencelebi & Yalpir, 2011; Lee et al., 2002; Nadiri et al., 2018; Wang et al., 

2021). To replace mechanistic modeling of WWTPs, ML modeling is therefore 

frequently utilized (Liu et al., 2021; Shi et al., 2021; Verma et al., 2017).  

2.5.2 Modeling of Activated Sludge System using Deep Learning 

It is possible to use ANNs to forecast how well WWTPs will perform. ANNs 

were developed to replicate the water treatment process because of their excellent 

prediction accuracy (Alver & Kazan, 2020; Manu & Thalla, 2017; Newhart et al., 

2019). The reliability of the historical data is essential for ANN modeling. The 

performance of ANN models may be compromised by poor historical data 

quality. However, ANN modeling only needs a little amount of data to produce 

reliable prediction outcomes.  

The prediction of odors from wastewater treatment plants (WWTP) was 

conducted by Kang et al. (2020) using artificial neural networks (ANN). They 

explored both conventional and alternative process structures, successfully 

predicting odor characteristics based on functional groups using ANNs. 

Compared with other methods, the ANN-based model demonstrated better 

accuracy and error rates in odor characteristic prediction. The study's findings 

highlight the potential of ANN in odor prediction. This research contributes to 
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advancing gas sensing technologies, particularly in environmental monitoring 

and quality control applications. 

Ten months performance of Touggourt WWTP was predicted in terms of 

effluent COD using a Feed Forward Neural Network (FFNN) for different 

architectures, learning algorithms, and activation functions (Bekkari & Zeddouri, 

2018). The best learning algorithms among Levenberg–Marquardt (LM), Quasi–

Newton back-propagation (BFG), Resilient back-propagation (RP), and 

Conjugate gradient back-propagation (CGF), LM depicted lower errors and 

higher correlation coefficients. They obtained the best result for Tansig as the 

hidden layer activation function (HLAF) and Purelin as the output layer 

activation function (OLAF) as model architecture. The best architecture for the 

ANN-FFNN was (6-50-1). The highest Correlation Coefficient (R-value) was 

obtained in terms of validation. 

Data from the raw wastewater treatment plant (WWTP) were classified into 

four categories using a clustering analysis method in a study (Zhao et al., 2016). 

The study aimed to predict key parameters like TP, BOD5, COD, SS, and NH3-N 

in the treated effluent using various input parameters. The researchers used a 

Back Propagation Neural Network (BPNN) as an artificial neural network (ANN) 

component for training to address seasonal fluctuations in wastewater 

composition. Through experimentation, they determined that the optimal 

configuration for the ANN involved 16 neurons. This comprehensive approach 

offers valuable insights into water quality prediction and highlights the 

significance of considering seasonal variability in wastewater treatment 

processes.  

Sharghi et al. (2019) proposed a comprehensive approach to predict effluent 

BOD5 using various clustering techniques. The study described three distinct 

clustering methods, with the first model employing an unsupervised technique 
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called Self-Organizing Map (SOM). Through their investigation, the researchers 

compared the performance of three ANN models, and interestingly, the 

unsupervised SOM technique yielded the most promising results. Using 

clustering techniques to identify influential input variables showcases the 

potential for enhancing the accuracy and effectiveness of BOD5 prediction in 

wastewater treatment plants. This research contributes valuable insights into the 

field of effluent quality monitoring and highlights the significance of combining 

clustering methods with artificial neural networks for improved wastewater 

management.  

Three different approaches were used in a study to predict COD. The first 

approach utilized Principal Components Analysis (PCA), the second employed 

Mutual Information (MI), and the third approach involved six artificial neural 

network (ANN) models using various influent input parameters, including COD, 

BOD5, pH, conductivity, TN, TO, and TSS (Elkiran & Abba, 2017). This study 

sheds light on the effectiveness of ANN modeling for COD prediction, 

contributing valuable insights to the field of wastewater treatment plant effluent 

forecasting. The research aims to assess the efficiency of Artificial Neural 

Networks (ANNs) in predicting COD for the Nicosia wastewater treatment plant. 

Sensitivity analysis is used as a feature selection method. The best-performing 

model, ANN I, achieved an R-square value of 0.7034 and an RMSE of 0.0108 with 

a structure of 8-8-1 and 203 epochs.   

Furthermore, it has been found that the model performance is better with 

an increased number of input parameters (Hassen & Asmare, 2019). They have 

built five networks consisting of three SISO (Single input, single output), two 

MIMO (Multiple input, multiple output), and one MISO (Multiple input, single 

output). In order to get a predicted pH value, the best-obtained architecture was 

1-41-1 for the input parameter, COD, where the MSE value of the training data 

was 0.054, testing was 0.057, and the R-values were 0.805 for training and 0.747 
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for testing. The model also worked for SISO to find the value of TN with the 

architecture (1-68-1), and the obtained MSE result for training data was 0.024 and 

testing data was 0.131, and the R-value for SISO was 0.937 for training and 0.779 

for testing. Overall, for COD, SISO worked fine, with the highest R-value and 

lowest MSE value.  

Keskitalo and Leiviskä (2015) propose a parallel hybrid modeling approach 

to enhance the Activated Sludge Model (ASM) prediction for a pulp water 

treatment plant. The study employs cross-validation ensemble methods and 

bagging, with the latter proving the most effective among the applied methods. 

The research showcases the potential of ANN ensembles in improving modeling 

accuracy for wastewater treatment processes and offers valuable insights for 

optimizing treatment plant performance. 

A framework for plant operation monitoring is provided by the use of 

neural network models simulating wastewater treatment plants (Mjalli et al., 

2007). The reduction of operating expenses and assessment of the environmental 

stability are the results of this monitoring system. They collected data throughout 

a year by taking measurements every five days. It was determined that the inputs 

to their model were the secondary treatment effluent (STE) outputs. The entire 

collection of data was divided in the proportions of 4:1:2 as training, validation, 

and testing data sets, respectively. It should be mentioned that Mjalli et al. (2007) 

made use of a MATLAB-created Feedforward Neural Network (FFNN). In all 

single-input networks, the first three levels of the network architecture are 

composed of the input, hidden, and output layers. The three layers (input, 

hidden, and output) comprise all single-input networks' network architecture. 

The network arrangement of multi-input networks consists of four layers (two 

hidden layers). With the COD as the input variable, the 1-40-1 network structure 

was the best (R2 = 0.987, MSE = 0.021). The MSE between the network prediction 

and actual values served as the basis for the training output function. Nasr et al. 
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(2012) used an ANN to predict how well Alexandria's wastewater treatment 

facilities would function. Over the course of a year, the plant's performance was 

examined in terms of BOD5, COD and TSS. Four groups were created from the 

collected data, each representing three months of the year. Backpropagation was 

used to create and train the feedforward network. The predicted and measured 

values correlate strongly (R2 = 0.903). 

Machine learning tool was used to forecast the total nitrogen concentration 

in the effluent of a WWTP in Ulsan, Korea, using a feedforward ANN and 

support vector machine (SVM) (Guo et al., 2015). Total nitrogen, phosphorus, and 

TSS from the influent flow were the models' inputs. The results showed that both 

models were successful at producing predictions according to the coefficient of 

determination (R2), Nash-Sutcliffe efficiency (NSE), and relative efficiency (drel) 

criteria (R2 = 0.55, NSE = 0.56, and drel = 0.8). The ANN model with three layers—

input, hidden, and output—was more successful at correlating the input values 

to the T-N concentrations, even though the SVM model had a greater prediction 

efficiency.  

In order to estimate the effluent quality index (EQI) for wastewater 

treatment plants in Tehran, Nezhad et al. (2015) used the MATLAB ANN toolkit. 

Three hidden layers of a feedforward back-propagated neural network were 

created. The model took BOD5, TDS, TSS, FC, PO4, NH4, and pH as inputs. The 

findings showed that the 8-7-1 network structure was the most effective one for 

EQI prediction (R = 0.96 and MSE = 0.1). Additionally, Elkiran and Abba (2017) 

used a feed-forward neural network (FFNN) to estimate the COD of the effluent 

from wastewater treatment plants. An important measure for evaluating the 

effectiveness of WWTPs is the COD of the effluent. In order to forecast the 

effluent's COD, BOD5, pH, T-P, T-N, TSS, and conductivity at WWTP inlets, an 

FFNN was used. Though many structures and input combinations were taken 

into account, the FFNN model with an 8-8-1 network structure and all four input 
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parameters produced the best results and the highest accuracy in effluent COD 

prediction (R2 = 0.7 and RMSE = 0.0108).  

A foundation for plant operation monitoring is provided by the simulation 

of wastewater facilities using neural network models (Mjalli et al., 2007). This 

monitoring system makes it possible to reduce operating expenses and assess the 

level of environmental stability. Furthermore, earlier publications did not 

disclose the process utilized to choose the ANN configuration. As a result, this 

study offers a straightforward method for determining the ideal ANN design for 

predicting WWTP plant performance. The five-day biological oxygen demand 

BOD5 can also be predicted using a number of regression models and artificial 

neural networks (Baki et al., 2019a; Kasem et al., 2018; Najafzadeh & Ghaemi, 

2019). 

The lengthy laboratory processes needed to measure the BOD5 

concentration, which take around five days, highlight the significance of BOD5 

modeling. The relationship between the parameters of wastewater and BOD5 

served as the basis for developing a regression model, which demonstrated great 

accuracy (R2 up to 0.797) (Baki et al., 2019a). Another study was found to create a 

software sensor employing a feedforward ANN and dissolved oxygen level to 

monitor the BOD5 concentration in the Sefid-rud River in Iran (Kasem et al., 2018). 

The performance of the created ANN was satisfactory, and a high R2 value (up to 

0.89) was produced. A BOD5 soft sensor was created in WWTPs using deep 

neural networks and genetic algorithms (Qiu et al., 2016). On the BSM1 

simulation platform, the developed sensor was evaluated in three weather 

scenarios, including dry, wet, and stormy circumstances. The results showed that 

the sensor performed well in these scenarios. Table 2.2 summarizes the findings 

from past research that applied deep learning to ASS. 
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Table 2.2. Summary of the outcomes of other studies using DL 

Input  Output  Methods  Model 

Performance  

Reference  

Influent pH, T, SS, 

KN, influent BOD5, 

influent COD.  

Effluent 
COD  

ANN  R2 = 0.9675  
MSE = 0.0020  

(Bekkari & 
Zeddouri, 

2018) 
TP, BOD5, COD, SS, 

NH3-N, pH, 

Electricity 

Consumption, 

Coagulant, and 

Flocculant  

TP, BOD5, 
COD, SS, 
NH3-N  

Back 
Propagation 

and Adaptive 
learning rate  

Annual   
Training Error = 

0.0513  
Testing Error= 

0.051705  
Seasonal  

Training Error = 
0.066  

Testing Error= 
0.0712  

(Zhao et al., 
2016) 

MLSS, EC, TDS, 

COD  

Effluent 
BOD5  

ANN using 
SOM  

R2 = 0.74  
RMSE = 0.046   

(Sharghi et 
al., 2019)  

COD, BOD5, pH, 

Conductivity, TN, 

TP, TSS, SS  

Effluent 
COD  

ANN  R2 = 0.7034  
RMSE = 0.0108   

(Elkiran & 
Abba, 2017) 

 

2.6 Summary 

The history of activated sludge WWTP, the significance of wastewater 

treatment, and the design of ASS are all covered in this chapter. The latest 

advancements in modeling activated sludge facilities for treating wastewater are 

also addressed. All AI-based models use real data from existing wastewater 

treatment plants, and their outputs are used to modify decisions regarding 

management for such WWTPs. Due to the increasing popularity of activated 

sludge systems as biological wastewater treatment systems and their superior 

performance to other treatment methods, developing countries like Bangladesh 

will undoubtedly continue to adopt these systems for wastewater treatment. 

While a few studies are available elsewhere, Bangladesh has very few or no 

studies of this kind. Moreover, every investigation examines or considers limited 
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parameters associated with the quality and functioning of activated sludge 

systems. 

Additionally, the composition of wastewater has been observed to fluctuate 

with food habits, environment, climate, and many other factors that are only local 

context-based. As a result, adaptation of results from prior studies elsewhere may 

prove to be a false impression on effluent quality evaluation and prediction. 

Again, developing and monitoring activated sludge systems based on AI, 

particularly ANN due to its capability of capturing intrinsic variabilities, is a 

significant problem in the absence of WWTP and real data of various parameters 

regarding such WWTP. Therefore, this study aims to create a reliable AI model 

for producing synthetic data that accurately reflects the parameters of a typical 

activated sludge system. This will help assess the suitability of AI techniques for 

monitoring and assisting with the prompt identification and taking remedial 

action needed for existing or newly developed WWTPs using ANN tools.  
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Chapter 3: METHODOLOGY 

3.1 General 

The resources and procedures used to complete this thesis work are 

discussed in this chapter. Along with a brief review of the system architecture of 

various machine learning and deep learning models used in this work, the 

generation of synthetic data, pre-processing, feature selection, and dataset 

reassembly are all comprehensively explained. Collecting field samples from 

various sites in Chattogram City and conducting tests are also covered. The 

usefulness of several AI tools was evaluated, and the optimum machine learning 

tool for assessing the performance of activated sludge systems was determined 

through a series of tests. The whole operation of this study is classified into four 

categories: 1) synthetic data generation using AI based machine learning 

algorithm 2) collection of sample from domestic influent and/or water 

bodies/sources, 3) extensive laboratory analysis, and 4) model performance 

evaluation.   

3.2 Wastewater Quality Parameter 

In this study, all the values of different parameters related to wastewater 

quality and treatment facilities are either selected from the literature with 

appropriate references or following the effluent discharge parameters 

recommended in Bangladesh Environment Conservation Rules (BECR, 2023; 

Tchobanoglous et al., 2003). 

• BOD5 

BOD5, a significant parameter in stream pollution control and one of the 

regulatory standards for effluent discharge, gives an idea of any sample's 

biodegradability and the strength of the waste. Wastewater is considered weak, 
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medium, strong, and very strong if the BOD5 concentration of wastewater is 200, 

350, 500, and more than 750 mg/L, respectively (Mara, 2004). Fecal sludge (FS) 

typically has a much higher BOD5 than that of strong wastewater. If the FS is 

digested and old, then the BOD5 value is lower than the fresh and undigested FS. 

The BOD5 value ranges from 840 to 2,600 mg/L for septic tank sludge, which goes 

up to 7,600 mg/L for public toiled sludge (Koné & Strauss, 2004). In contrast, the 

highest BOD5 values (14,000 to 33,500 mg/L) are found in feces (Rose et al., 2015). 

In this study, the influent BOD5 is considered in the 150–400 mg/L range, and the 

effluent BOD5 is 0-70 mg/L (BECR, 2023; Davis & Cornwell, 2013; Tchobanoglous 

et al., 2003). 

• COD 

COD serves as a crucial design parameter for treatment plants and 

regulatory standards for effluent discharge. It is employed to assess the 

concentration of organic and inorganic contaminants in wastewater. Analyzing 

COD in the laboratory is more convenient compared to BOD5, as it typically takes 

only a few minutes to hours, depending on the method. Due to the high 

variability and concentrations of organic matter, COD is generally deemed more 

accurate than BOD5, particularly in the analysis of fecal sludge. The ratio of BOD5 

and COD indicates the biodegradability of the wastewater/effluent. 

Environmental authorities and wastewater treatment facilities monitor the COD 

variation to manage the impact of wastewater discharges on water bodies. This 

monitoring aids in the development of optimal treatment procedures to 

minimize pollution and protect the environment. For this study, the influent 

COD is considered within the range of 250-1000 mg/L (Davis & Cornwell, 2013; 

Garg, 2014; Tchobanoglous et al., 2003). 
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3.3 Wastewater Treatment Operational Parameter 

To achieve the desired level of wastewater treatment and meet regulatory 

discharge requirements, controlling and optimizing key parameters such as 

volumetric loading, MLSS, MLVSS, F/M, HRT, and SRT in the activated sludge 

system is essential. Volumetric loading, one crucial parameter in wastewater 

treatment, refers to the amount of organic or pollutant load that the activated 

sludge system can efficiently handle within a given capacity of an aeration tank 

or reactor. 

• MLSS and MLVSS 

All suspended particles in wastewater, including organic materials, inert 

particles, and microbes, are referred to as MLSS in the mixed liquid of an ASS. 

However, MLVSS focuses on the organic and biologically active portions of the 

suspended solids. Monitoring and controlling MLSS levels are essential for 

optimizing the efficiency of wastewater treatment plants by ensuring an 

adequate presence of microorganisms for effective contaminant removal. MLVSS 

is particularly crucial for assessing the health and activity of the biomass in the 

treatment process. For this investigation, as suggested in different guidelines, 

MLSS and MLVSS are considered as 1000–3000 mg/L and 800-2400 mg/L, 

respectively (Davis & Cornwell, 2013; Garg, 2014; Karia & Christian, 2013). 

• F/M Ratio 

The F/M ratio holds significant importance as it offers wastewater treatment 

operators and engineers valuable insights into and control over the biological 

processes occurring within the activated sludge system. It helps understand the 

equilibrium between the incoming organic pollutants (food) and the microbial 

population responsible for breaking down these contaminants. By adjusting the 

F/M ratio, operators can fine-tune the performance of the activated sludge system 

to achieve efficient wastewater treatment and effective removal of pollutants. 
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This study takes into account a range of 0.2-0.4 lb BOD5/day for F/M, as 

recommended by different guidelines (Davis & Cornwell, 2013; Garg, 2014; Karia 

& Christian, 2013). 

• HRT 

HRT refers to the typical amount of time wastewater stays in the tank or 

reactor used for treatment. It establishes the time necessary for the activated 

sludge's microorganisms to efficiently break down and remove pollutants and 

organic materials from wastewater. A longer HRT can improve pollution 

removal since it gives more time for microbial activity. On the other hand, a 

shorter HRT can lead to less effective treatment. Controlling and adjusting the 

HRT is crucial to ensuring that the microorganisms have enough contact time 

with the wastewater to achieve the necessary degree of pollutant removal and 

treatment effectiveness. This investigation considers an HRT range of 4-8 hours, 

aligning with various recommendations provided in different guidelines (Davis 

& Cornwell, 2013; Garg, 2014; Karia & Christian, 2013). 

• SRT 

SRT, a crucial operational parameter in activated sludge wastewater 

treatment, represents the average duration that sludge or biomass particles 

remain within the treatment system before discharge. A longer SRT generally 

leads to more efficient biological treatment of wastewater because it gives 

microorganisms like bacteria and protozoa more time to break down organic 

matter and remove contaminants from the wastewater. This results in a more 

thorough reduction of pollutants and a higher-quality treated effluent. 

Conversely, a shorter SRT can reduce treatment efficiency and potentially lower 

water quality. This is because there might not be sufficient time for 

microorganisms to degrade the organic substances in the wastewater adequately. 
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In this study, SRT is considered 5–15 days, as suggested in different guidelines 

(Davis & Cornwell, 2013; Garg, 2014; Karia & Christian, 2013). 

3.4 Synthetic Data Generation 

The performance of WWTP modeling studies in the AI-based machine 

learning process depends heavily on the availability of time series data, as these 

are the main disturbances of a WWTP. In Bangladesh, no such real time series 

data is available. Again, obtaining sufficiently long and qualitatively adequate 

time series data has become increasingly challenging and difficult concerning 

security issues. Along this line of thinking, synthetic data generation is a 

promising tool for model training. 

Dataset is the prerequisite to build, train, and test a model. However, in the 

absence of a wastewater treatment plant in Bangladesh, the prerequisite dataset 

for wastewater treatment plants is unavailable. Different wastewater parameters 

are needed to perform several tasks using Artificial Intelligence (AI), so a large 

data set with better dimensions is needed to feed the model. After rigorous 

searching and literature review, no proper dataset is available online that 

contains more samples with different parameters collected from WWTP. Though 

some datasets are available online, they have plenty of limitations, like, for 

instance, fewer wastewater parameters and fewer dependencies among 

parameters. In Bangladesh, no study exists that unveils the complex variable to 

model wastewater quality. Moreover, the existing dataset needs more complex 

terms and focuses on some basic WW parameters. Eventually, no WWTP is 

currently operating in Bangladesh either, and hence, no such database is 

available. However, in recent years, the Bangladesh government has taken the 

initiative to build WWTPs in Chattogram (The Business Standard, 2023).  
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3.4.1 Synthetic Data Generation with AI Based Model  

Using AI models, a dataset containing various wastewater parameters was 

generated to address the limitations associated with estimating effluent 

wastewater characteristics. The dataset was created based on Volumetric loading 

(VL), Hydraulic retention time (HRT), and food-to-microorganism ratio (F/M) 

dependencies. Several values within fixed boundaries were used to generate a 

dataset.    

Input parameters, including VL (Volumetric Loading), Aeration Tank 

Volume (V), F/M (Food to Microorganism Ratio), HRT (Hydraulic Retention 

Time), Design Flow Rate (Qo), Aeration Tank MLSS (X), Percentile Volatile MLSS 

(Pvol), Mixed Liquor Suspended Solids (MLSS), Recycle Activated Sludge Flow 

Rate (Qr), Sludge SS Concentration (Xw), Sludge Retention Time (SRT), Secondary 

Effluent TSS (Xe), Waste Activated Sludge Rate (Qw), Primary Effluent TSS (Xo), 

Qr/Qo Ratio (Qratio), and Primary Effluent BOD5 (So), Primary Influent COD (COD), 

and Mixed Liquid Volatile Suspended Solids (MLVSS), were provided as input 

to the model to generate output values representing Effluent BOD5 (Se), COD & 

TSS values.  

The effectiveness of biological treatment systems, such as activated sludge 

processes, varies with temperature. The activity and growth of the 

microorganisms that break down substances in wastewater treatment are directly 

impacted by temperature. Elevated temperatures typically accelerate microbial 

activity, leading to rapid biological reactions and expediting organic matter 

breakdown. Additionally, temperature influences the rate at which biomass 

(microorganisms) reproduce and grow in wastewater treatment systems. 

Elevated temperatures can promote faster biomass growth, assisting in creating 

flocs that aid in removing pollutants. Bangladesh's historical climate maintains 

an average temperature of around 26⁰C for most of the year. Because of this 
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consistency, temperature is overlooked in data generation using AI-based 

models. 

A total of 150,000 data points were generated initially. Total 3 variables 

(Volumetric loading, Hydraulic retention time, and Food to microorganism ratio) 

were considered primarily. Based on these 3 parameters, other parameters were 

calculated using the Eq. (3.1-3.9) as described below.   

• Based on Volumetric Loading: Volumetric loading is a parameter that is 

needed to design WWTPs. The volumetric loading can be calculated by 

multiplying the BOD5 with the influent inflow.    

Based on 50,000 Volumetric Loading (VL) data, other variables and their 

corresponding values were generated.    

At first, the volume of the Aeration tank is measured,   

𝑉 = 1000 ∗ 8.34 ∗ 𝑆𝑜 ∗ 𝑄𝑜𝑉𝐿  Eq. (3.1)  

where, V is the aeration tank volume, So is the primary effluent BOD5, Qo is 

the design flow rate and VL is the volumetric loading   

𝑉𝑚𝑔 = 𝑉 ∗ 7.481,000,000 Eq. (3.2)  

where Vmg  is the aeration tank volume (Million Gallon)    

Then, the Hydraulic Retention Time is measured,   

𝐻𝑅𝑇 = 24 ∗ 𝑉𝑚𝑔𝑄𝑜  Eq. (3.3)  

where HRT is the hydraulic retention time, and Qo is the design flow rate.   

Moreover, Food to Microorganism Ratio (F/M) is calculated as follows: 
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𝐹/𝑀 = 8.34 ∗ 𝑆𝑜 ∗ 𝑄𝑜8.34 ∗ %𝑉𝑜𝑙 ∗ 𝑋 ∗ 𝑉𝑚𝑔 Eq. (3.4)  

    where F/M is the Food-Microorganism ratio and So is the primary effluent 

BOD5, Qo is the design flow rate, X is the aeration tank MLSS 

• Based on HRT: 50,000 data is generated based on Hydraulic Retention 

Time.   

𝑉𝑚𝑔 = 𝐻𝑅𝑇 ∗ 𝑄𝑜24  Eq. (3.5)  

 Then, the volumetric loading is measured, 

𝑉𝐿 = 1000 ∗ 8.34 ∗ 𝑆𝑜 ∗ 𝑄𝑜𝑉  Eq. (3.6)  

Moreover, Food to Microorganism Ratio (F/M) is calculated as Eq. (3.4).   

• Based on F/M: 50,000 data is generated based on Food to Microorganism 

Ratio (F/M). 

𝑉𝑚𝑔 = 8.34 ∗ 𝑆𝑜 ∗ 𝑄𝑜8.34 ∗ %𝑉𝑜𝑙 ∗ 𝑋 ∗ (𝐹𝑀) Eq. (3.7)  

             Then, the volumetric loading is measured using Eq. (3.6). 

Furthermore, Recycle Activated Sludge Flow Rate (Qr) and Waste Activated 

Sludge Rate (Qw) are  also calculated as follows. Considering Qo = Qe, 

𝑄𝑟 = 𝑄𝑜(𝑋 − 𝑋𝑜)(𝑋𝑤 − 𝑋)  Eq. (3.8)  

𝑄𝑤 = 1𝑋𝑤 (𝑉𝑚𝑔 ∗ 𝑋𝑆𝑅𝑇 − 𝑄𝑒 ∗ 𝑋𝑒) Eq. (3.9)  
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3.4.2 Processing of Synthetic Data 

The generated dataset was analyzed and assessed following the effluent 

discharge parameters recommended in Bangladesh Environment Conservation 

Rules and other standards shown in Table 3.1 (BECR, 2023). After undergoing 

filtering processes, 94,892 datasets were retained for 18 different parameters. This 

refined dataset was utilized to construct different AI based models designed to 

emulate real data. The data, with a large number of instances, was found to be 

more effective when fed to the model. Large data has a diversity that may be 

beneficial for model training with its linear and nonlinear relationship among 

variables, which makes the training robust and able to predict more precisely. 

Table 3.1.  Details of the variables for synthetic dataset 

Variable 

Name 

Unit Range 

 

Variable 

Name 

Unit Limit 

VL lb BOD/ 
day/1000ft3

 

20-40 
 

SRT days 5-15 

F/M lb 
BOD/day/lb 

MLVSS 

0.2-0.4 
 

Qratio --- 0.25-0.75 

HRT hr 4-8  So mg/L 150-400 

Qo MGD 1.5-3.5 
 

Se mg/L 0-70 

X (MLSS) mg/L 1000-3000 
 

COD mg/L 250-1000 

MLVSS mg/L 800-2400 
 

CODe mg/L 0-180 

Qr MGD 0.4-2.5 
 

Xo mg/L 180-240 

Xw mg/L 5000-10000 
 

Xe mg/L 0-40 

 

3.4.3 Pre-processing and Normalization of the Synthetic Dataset 

Preprocessing is the step of processing the data by manipulating it like 

cleaning, removing, adding, scaling, etc. Preprocessing data before using it for 
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model training can reduce computational costs and increase the efficiency of the 

overall performance.  

Min-max scaling, also known as min-max normalization or feature scaling, 

is a data preprocessing method used in machine learning and statistics to scale 

the values of a feature (variable) to a specific range. This technique rescales the 

values of every dataset of different features to a specific range without altering 

the inherent relationships among the original data points. The primary objective 

of normalization is to standardize all features within a dataset to a comparable 

scale. This aids in enhancing the performance of machine learning algorithms by 

facilitating the interpretation of relationships, mitigating the impact of outliers, 

and preventing certain features from disproportionately influencing the 

modeling process. Normalization is referred to as the Eq. (3.10), as presented 

below. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋 − 𝑋𝑚𝑖𝑛𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 Eq. (3.10)  

Where Xscaled is the rescaled value of the original data point X, Xmin is the 

minimum value in the dataset of the feature, and Xmax is the maximum value in 

the dataset for the same feature. 

In this study, a min-max scaling approach, as outlined in Eq. (3.10), has been 

employed to normalize each parameter within a range of 0 to 1. The scaling 

values for a specific row, comprising 19 distinct parameters among 94,892 rows, 

are detailed in Table 3.2.  

 

 

 

 



 

Chapter 3: METHODOLOGY 58 

Table 3.2. Scaled value after normalization 

Variable 

Name 

Actual 

Value 

Scaled 

Value 

 
Variable 

Name 

Actual 

Value 

Scaled  

Value 

VL 54 0.321 
 

SRT 14 0.048 

F/M 0.33 0.167 
 

Qratio 0.37 0.218 

HRT 5.81 0.032 
 

So 209 0.237 

Qo 1.80 0.151 
 

Se 42 0.263 

X (MLSS) 1906 0.453 
 

COD 432 0.244 

MLVSS 1144 0.261 
 

CODe 172 0.092 

Qr 2.53 0.073 
 

Xo 191 0.177 

Xw 5300 0.310 
 

Xe 38.13 0.953 

As an illustration, the SRT values, ranging from 5 to 15 days, undergo 

scaling, where the value 14 is transformed to 0.048. Similarly, for MLSS, with a 

range of 1000-3000 mg/L, the value 1906 is scaled to 0.453. Analogous procedures 

are applied to scale values for other parameters in the study. 

3.5 Model Development 

The development of machine learning and deep learning algorithms to 

forecast the BOD, COD, and TSS of wastewater treatment facilities operating in 

activated sludge systems is covered in this section. It describes the formulation 

of these methodologies, deep learning model architectures, model performance 

optimization through calibration, and accuracy evaluation through validation. It 

also emphasizes the use of artificial intelligence (AI)-generated and deterministic 

synthetic data sets for training and testing these predictive models in the context 

of pollution assessment and environmental monitoring. Python 3.11.5 was used 

to implement the models that were developed. Python is a well-known and 

flexible programming language with an easy-to-understand syntax that makes it 

straightforward for developers to create and maintain code. Because of its 

extensive ecosystem of libraries and frameworks, Python is a great choice for 
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rapid prototyping and development as it offers time and effort savings. It is 

appropriate for many applications, including web development, data science, 

machine learning, and more, because of its simplicity, adaptability, extensive 

library, and supportive community. It is an increasingly popular choice 

for beginners and experienced developers because of its clarity and readability. 

3.5.1 Machine Learning Models 

Machine Learning (ML) models rely on finding relationships between 

output and input data that enable predictions and/or simplify decisions (Müller 

& Guido, 2016). A significant advantage is that ML models imitate actual 

reaction/process conditions rather than pre-designed processes based on 

fundamental concepts. They are highly robust and thorough, which is crucial 

because many mechanisms involved in wastewater treatment are still poorly 

understood (Chan & Huang, 2003; Girgin et al., 2010; Laskov & Lippmann, 2010; 

Nadiri et al., 2018; Sharafati et al., 2020). Therefore, ML modeling is commonly 

used in WWTPs (Cao & Yang, 2020; C. Guo et al., 2020; Hu et al., 2020; Lu & Ma, 

2020; A. Verma et al., 2013; L. Wang et al., 2020) to forecast effluent wastewater 

characteristics based on data-driven decisions. 

To find out predictive results for specific wastewater characteristics, this 

study uses seven distinct algorithms from among numerous machine learning 

models, including Decision Tree, Random Forest, Extra Trees, Multivariate 

Linear Regression, K-Neighbors Regression, Gradient Boosting Regressor, and 

Adaboost Regressor, as discussed in the following sections. 

3.5.1.1 Decision Tree 

A decision tree, a supervised learning tool, acts as a tree-structured 

classifier. Internal nodes represent dataset features, branches symbolize decision 

rules, and leaf nodes indicate outcomes. This approach has been effective in 

wastewater effluent modeling with limited data (Celik et al., 2013). However, this 
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study evaluates its suitability with an increased number of input variables 

compared to prior research.  

Using the default parameter setting, a decision tree has been trained using 

the training dataset after the necessary pre-processing. The trained decision tree 

consists of a root node, a set of intermediate nodes at different tree levels, and a 

set of leaf nodes at the lowest level of the tree. There are, in total, 17 input features 

with numeric values. The root and intermediate nodes learn to make decisions 

based on the inequality of an input parameter. As illustrated in Fig. 3.1, the root 

node splits into left and right branches based on the value of CODe 

(CODe<=0.405). Similarly, the intermediate nodes are split into left and right 

branches based on the inequality of input features. It uses the Gini impurity to 

reach a decision at each node. The Gini impurity measures how well a split 

separates the data into different categories. The better split is found for the lower 

Gini impurity. Finally, each leaf node decides the output results of the target 

values of BOD5, COD, and TSS based on the average output of all the samples in 

the training dataset. 

Fig. 3.1 Decision tree structure 
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3.5.1.2 Random Forest 

Random forest, a versatile supervised machine learning algorithm, is used 

in classification and regression problems. Building upon decision trees on 

different samples, it delivers a consolidated and more accurate result, taking the 

average for regression and majority vote in the case of classification. With limited 

input parameter, this method has proven successful in wastewater discharge 

modeling (Cheng et al., 2023). In contrast to earlier research, this study assesses 

its applicability using a larger number of input variables. 

Fig. 3.2 Random forest structure 

In this study, random forest creates hundreds or even thousands of decision 

trees, each trained on a different random sample of the training data from 94,892 

data points on 18 wastewater parameters. This process is known as bootstrap 

aggregating or bagging. Each tree in the forest learns a slightly different 

collection of patterns and characteristics from the data by training on various 

subsets, as shown in Fig. 3.2. To further enhance the diversity of the trees, random 

forest introduces randomness when selecting features at each node of the tree. 
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Instead of considering all features for each split, it randomly selects a subset of 

features to evaluate. This randomness reduces the correlation between trees and 

improves the overall model's generalization ability. Once all the individual 

decision trees are trained, random forest combines their predictions through a 

process called ensemble averaging for target values of BOD5, COD, and TSS. 

3.5.1.3 Extra Trees 

Extremely Randomized Trees, often called Extra Trees, is a well-known 

ensemble machine learning technique. This approach has been effective in 

determining discharge coefficients related to the discharge characteristics of 

rectangular, sharp-crested side weirs (Hameed et al., 2021). However, a few 

studies related to wastewater effluent modeling are available but insignificant. 

This study evaluates its suitability for wastewater effluent quality modeling with 

an increased number of input variables. 

Fig. 3.3 Extra trees structure 



 

Chapter 3: METHODOLOGY 63 

Although it has many similarities with other tree-based algorithms, like 

random forest, it adds a unique twist to how individual decision trees are built 

inside the ensemble. First, for each decision tree in the ensemble, extra trees 

randomly choose portions of the training data and the features that are accessible 

from the 94,892 data points on 18 wastewater parameters considered in this 

investigation. As a result, the technique is less prone to overfitting because it does 

not take into account the complete dataset or all of the features when building a 

single tree. As seen in Fig. 3.3, Extra Trees tries to build diverse and uncorrelated 

decision trees by employing these random subsets. Second, Extra Trees 

introduces additional randomness by choosing the split thresholds randomly. 

This increases the noise in each tree's decision, improving the ensemble's overall 

performance. Like decision tree and random forest, the final prediction for a 

particular output, like BOD5, COD, and TSS, is often chosen by a majority vote 

and averaging in classification and regression tasks, respectively. 

3.5.1.4 Multivariate Linear Regression 

The link between several independent variables and a single dependent 

variable can be modeled and analyzed via the statistical technique known as 

multivariate linear regression. It is an improvement of straightforward linear 

regression to ascertain how changes in the independent variables affect the 

dependent variable. With limited input parameters, this method has proven 

successful in wastewater effluent quality modeling (Cheng et al., 2023). In 

contrast to earlier research, this study assesses its applicability using a larger 

number of input variables. 

The fundamental idea behind multivariate linear regression is to express 

the dependent variable as a weighted sum of the independent variables, with 

each independent variable assigned a coefficient that represents its impact on the 

dependent variable based on a dataset of 94,892 data points on 18 wastewater 
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parameters. The equation for multivariate linear regression can be expressed in 

Eq. (3.11) as follows: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 + 𝜀 Eq. (3.11)  

In this study, Y is the dependent variable like BOD, COD, and TSS, and the 

independent variables SRT, HRT, F/M, MLSS, MLVSS, etc. are indicated by X1, 

X2,..., Xn; the intercept is β0; the regression coefficients are β1, β2, ..., βn; and the 

error term is ε, which takes into account the dependent variable's unexplained 

variance. 

3.5.1.5 K Nearest Neighbors Regressor 

One of the most basic machine learning algorithms, K-nearest neighbor 

(KNN), is based on the supervised learning approach. This approach has shown 

efficacy in wastewater effluent modeling with few input parameters (Kim et al., 

2015). This study evaluates its applicability using a larger number of input 

wastewater parameters. 

Fig. 3.4 KNN structure 

The KNN algorithm stores a certain portion of 94,892 data points on 18 

wastewater parameters and classifies a new data point for specific effluent 

parameters like BOD5, COD, and TSS based on their similarity. It is a 

hyperparameter that can be tuned based on a specific problem. A smaller K 
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value, such as 1, means that the algorithm will consider only the single nearest 

neighbor. In comparison, a larger K value considers more neighbors of a new 

input data point in the training dataset to calculate its target value when it is 

given for prediction. Once the K-nearest neighbors are identified, the KNN 

regressor predicts the target value for the new data point by averaging the target 

values of its K neighbors (for regression problems). As illustrated in Fig. 3.4, new 

data is assigned to a particular category based on the K value. The averaging 

mechanism makes the KNN regressor sensitive to outliers, as a single neighbor 

with an extreme target value can heavily influence the prediction. It is versatile 

and easy to implement but requires careful tuning of the K parameter and may 

not be suitable for high-dimensional data or datasets with outliers. 

3.5.1.6 Gradient Boosting Regressor 

The basic principle of gradient boosting regressor is to progressively train 

several weak learners, often decision trees, and then combine their predictions to 

minimize the prediction errors. This method has demonstrated effectiveness in 

modeling wastewater effluent with limited input parameters (Zhang et al., 2023). 

This research assesses its suitability by incorporating more input parameters 

related to wastewater treatment. 

The initial weak learner, frequently a shallow decision tree, is where the 

gradient boosting regressor's mechanism starts, as seen in Fig. 3.5. This first 

model can approximate the target variables such as BOD5, COD, and TSS. The 

system then finds gaps or residuals between the actual target values and the first 

learner's predictions. These residuals represent the areas where the model's 

predictions are most inaccurate. 

In the subsequent steps, new weak learners are created, focusing on 

learning from these residuals. Each new learner is trained to minimize the errors 

that the previous learners could not capture effectively. This process continues 
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iteratively. The prediction from each new learner is added to the ensemble, and 

the residuals are updated. This step-by-step learning process boosts the model's 

performance by correcting its errors. The final prediction in a gradient boosting 

regressor is obtained by summing up the weak learners' predictions. 

Fig. 3.5 Gradient Boosting structure 

3.5.1.7 Adaboost Regressor 

The adaboost regressor is a boosting algorithm that follows the stagewise 

addition method. It utilizes multiple weak learners to form strong learners 

collectively. It emphasizes weak learners' past errors and gives more weight to 

training samples that make inaccurate predictions. This periodic process 

continues until a set number of weak learners have been trained, or a 

predetermined accuracy level is reached. This method has demonstrated 

effectiveness in modeling wastewater effluent with limited input parameters 

(Bilali et al., 2021). This research assesses its suitability by incorporating more 

input parameters related to wastewater treatment. 
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Each training data point, a certain portion of 94,892 data points on 18 

wastewater parameters, is assigned an equal weight, and a weak learner is 

trained on this weighted data, as illustrated in Fig. 3.6. The weak learner's goal is 

to minimize the error in predicting the target variable. After training the first 

weak learner, its performance is evaluated, and the algorithm identifies which 

data points were mispredicted. These misclassified data points are then given 

higher weights, effectively making them more important for the next weak 

learner. 

Fig. 3.6 Adaboost regressor structure 

In subsequent iterations, additional weak learners are trained, and they 

focus more on the previously misclassified data points. The algorithm keeps track 

of each weak learner's performance and assigns a weight to it based on its 

accuracy. Weak learners that perform well are given higher weights in the final 

ensemble, while those with lower accuracy receive lower weights. All weak 
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learners' predictions are merged and weighted according to performance for 

making predictions using the adaboost regressor. This weighted combination 

produces the final prediction values of the target variable like BOD5, COD, TSS. 

3.5.2 Deep Learning Models 

It is possible to predict how well WWTPs will perform using Artificial 

Neural Networks (ANNs). Due to ANNs' exceptional prediction accuracy, the 

water treatment process was replicated using them (Alver & Kazan, 2020; Manu 

& Thalla, 2017). These studies used various ANNs as the model structure's 

framework for data analysis and feature extraction. 

There may be obstacles to overcome during the model development such 

as the task of selecting the proper model parameters, i.e., the number of inputs 

and outputs the model must consider or the number of neurons in the hidden 

layer. Unfortunately, as this is an empirical operation, it must be carried out until 

acceptable results are produced using a trial-and-error approach. This is because 

there is little information to help the user choose a specific model. Therefore, it is 

necessary to analyze those models and assess their ability for prediction.  

Fig. 3.7 Artificial neural network structure 
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The structure and operations of the human brain are the basis for ANNs, a 

fundamental concept in the disciplines of machine learning and artificial 

intelligence. ANNs are a type of computational model that aims to replicate how 

neurons in our brains process information. They consist of interconnected nodes 

called neurons, organized into layers as seen in Fig. 3.7. This investigation 

employed three ANN structures: ANN-I, ANN-II, and ANN-III. The optimizer 

and activation functions in Table 3.3 served as the basis for these variations. 

The core element of an ANN is the artificial neuron, which takes in multiple 

inputs, assigns weights to them, processes the weighted sum, and then applies 

an activation function to produce an output. The weighted sum considers the 

relative value of each input, and the activation function provides non-linearity 

into the model, enabling ANNs to learn complex patterns and relationships in 

data.  

Three different layer types are commonly present in ANNs: the input layer, 

one or more hidden layers, and the output layer. The input layer receives the 

initial data, the hidden layers perform a series of calculations to process and 

transform it, and the output layer provides the final result or prediction. Weights 

attached to the connections between neurons are modified during training, 

enabling the network to learn and adjust to data patterns. This study used a trial-

and-error method to identify the number of hidden layers and nodes based on 

prediction performance. Detailed information regarding the analysis conducted 

with varying numbers of hidden layers and neurons can be found in Appendix 

A. 

An optimization approach, such as gradient descent, is used to update the 

weights of an ANN to minimize the gap between the network's predictions and 

the actual labels after feeding it with labeled data (input-output pairs). A loss 

function, which measures the gap between forecasts and actual values, directs 
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this process. ANNs can learn complex tasks by iteratively modifying the weights 

via gradient descent and backpropagation. 

In the mechanism of ANN, the code initiates a sequential model, a linear 

stack of layers where layers are added one by one. Different ANN architecture 

details used in this study based on the number of hidden layers as well as dense 

variations in input, hidden, and output layers are illustrated in Table A1 of 

Appendix A. Taking ANN-I as an example from Table 3.3, the first layer 

comprises a dense layer with 18 neurons for 17 input features. This model 

includes three hidden layers with progressively increasing neuron counts (32, 64, 

32). 

Table 3.3. ANN variation with optimized network architecture 

Model Name Network Architecture Optimizer Activation Function 

ANN-I 18-32-64-32-1 Adam ReLU 
ANN-II 18-64-124-64-1 SGD Sigmoid 
ANN-III 18-32-64-32-1 Adam SELU 

Each hidden layer is followed by a leaky ReLU activation function, 

incorporating specific alpha parameters (0.1 for the first two layers and 0.2 for 

the third layer) to mitigate the vanishing gradient problem. The final dense layer, 

containing 1 neuron, employs the ReLU activation function, indicating the 

model's design for regression tasks, intending to predict a single continuous 

numerical value. The model is compiled using the Adam optimizer, a widely 

used gradient descent optimization algorithm. Two callbacks are implemented: 

early stopping, which monitors validation loss and halts training if the loss 

stagnates for 2 consecutive epochs to prevent overfitting, and a model checkpoint 

to save the best model based on validation loss. Similar mechanisms are applied 

to ANN-II and ANN-III. 
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One of the key benefits of ANNs is their capability to learn independently 

and extract characteristics from raw data, making them highly versatile for 

various tasks. In order to perform at their best, ANNs may need to be carefully 

designed and tuned to address issues, including requirements for enormous 

quantities of data, overfitting, and the complexity of model structures. 

Nevertheless, ANNs continue to be an effective tool in AI and machine learning, 

enabling the development of intelligent systems capable of understanding and 

interpreting complex data. 

3.6 Field Sample Collection, Preservation and Testing 

In Bangladesh, there is no data regarding the Wastewater Treatment Plant 

(WWTP) running with the activated sludge process. From the literature review, 

it is clear that future wastewater treatment will be based on ASS; hence, data and 

information regarding essential parameters for performance evaluation are key. 

These data and parameters encompass various aspects of the treatment process 

and wastewater characteristics. These parameters collectively represent the 

condition of wastewater before treatment, the state of the WWTP during its 

operation, and the quality of wastewater after undergoing treatment. Access to 

this comprehensive dataset would undoubtedly enhance the present 

understanding of wastewater treatment processes and contribute significantly to 

improving environmental management in an integrated manner. 

3.7 Study Area 

A significant daily generation of wastewater is witnessed in Bangladesh's 

urban areas, particularly in densely populated cities where wastewater disposal 

occurs. In these areas, the opportunity exists to collect wastewater samples and 

measure the values of various parameters that represent the condition of the 

wastewater before undergoing any treatment process. 
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Fig. 3.8 Geographic locations for sampling in Chattogram 

Gaining knowledge of the features and quality of the wastewater through 

the collection of real samples is essential for understanding the environmental 

challenges urban wastewater disposal poses. Such information can serve as a 
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crucial foundation for developing effective strategies to address wastewater 

management and improve the overall environmental conditions in our city and 

country. Agrabad, Halishahar, Chandgaon, Suganda, and Khulshi have been 

chosen as study areas (as seen in Fig. 3.8) in Chittagong, where grab samples, 

including drains from residential areas, septic tanks, and pits, were collected. 

3.7.1 Sample Collection 

Understanding the dry and wet seasons is vital for wastewater treatment in 

Bangladesh as they significantly impact flow rates and pollutant concentrations 

throughout the year. Dry periods, typically occurring from November to March, 

reduce wastewater flow, potentially increasing pollutant levels and affecting 

treatment plant efficiency. Conversely, the wet season, spanning from April to 

September, brings heavy rainfall and flooding, causing a surge in wastewater 

generation. This inundation mixes rainwater with sewage, posing challenges for 

treatment plants in managing increased volumes. While the wet season dilutes 

pollutants, easing treatment in some ways, the higher flow rates stress treatment 

infrastructure.  

 Fig. 3.9 Sample collection and on-spot parameter determination 

Addressing this issue, three distinct time frames cover the collection of 

wastewater samples: two dry periods spanning December 2021 to February 2022 
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and December 2022 to February 2023, along with a wet period extending from 

May to August 2022. A total of 89 random samples were collected during the dry 

season (57 samples) and the wet (monsoon) season (32 samples) to undertake a 

thorough assessment of the condition. Health and safety protocols are ensured 

before, during, and after sampling. As illustrated in Fig. 3.9, important on-the-

spot information was gathered throughout the sampling procedure, including 

the exact location, the time of sample collection, the current ambient temperature, 

and the pH of the sample.  

In areas where temperatures change seasonally, causing colder winters and 

warmer summers, biological treatment facilities may encounter fluctuations in 

their efficiency owing to changes in microbial activity and reaction rates. 

Understanding how temperature impacts biological processes is crucial for 

effectively designing, operating, and optimizing wastewater treatment plants. 

Engineers and operators often consider temperature variations and implement 

strategies to optimize treatment performance across different temperature 

ranges. That's why actual sample temperatures are included to validate and 

assess the resilience of various models. 

3.7.2 Sample Preservation and Storage 

Following the collection of samples and recording on-site parameters, the 

samples were placed in an icebox and transported to the laboratory on the 

sampling day. Subsequently, they were stored in a refrigerator until additional 

parameter measurements were conducted. Table 3.4 summarizes the various 

preservation techniques followed in this study, and the maximum suggested 

storage duration (UPM, 2021). 
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Table 3.4. Overview on sample preservation methods 

Parameter Preservation 

Method 

Maximum 

Storage 

Duration 

Source 

BOD, 

COD 

1-5 oC, dark 
and airtight 

48 hours Methods for the Chemical Analysis 
of Water and Wastes, EPA-600/4-79-
020, USEPA, EMSL, 1979 ISO 5667-

3:2012 
TSS,  

VSS 

1-5 oC, dark 
and airtight 

7 days Methods for the Chemical Analysis 
of Water and Wastes, EPA-600/4-79-
020, USEPA, EMSL, 1979 ISO 5667-

15:2009 
 

3.7.3 Laboratory Test 

In this investigation, the concentrations of BOD5, COD, TDS, TSS, and VSS 

in the raw sample were assessed through three trials employing established 

standard methods as shown in Fig. 3.10. Table 3.5 outlines the chosen 

methodologies and specifies the apparatus utilized for parameter concentration 

determination. A rigorous Quality Assurance/Quality Control (QA/QC) program 

was implemented to ensure the accuracy and reliability of the laboratory analysis 

of water samples. 

Table 3.5. List of analysed parameters and analytical procedures 

Parameter Unit Method Apparatus 

BOD5 mg/L SM 5210B BOD Bottle 

COD mg/L SM 5220D HACH DR 6000 UV Spectrophotometer 

TSS mg/L SM 2540 D Oven 

TDS mg/L SM 2540 B-D Oven 

VSS mg/L SM 2540 D-E Muffle Furnace 
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Fig. 3.10 Wastewater sample arrangement and testing in laboratory 
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• BOD5 

Two BOD bottles containing a sample (or a diluted sample) were filled, and 

the initial measurement of dissolved oxygen (DO) was promptly conducted in 

one bottle. The other bottle was stored in darkness at 20°C, and after 5 days, the 

DO (DOf) in the sample (or diluted sample) was assessed. To determine DO, 1 

mL of manganous sulfate solution was introduced into the BOD bottle using a 

pipette immersed just beneath the water's surface. Subsequently, 1 mL of alkaline 

potassium iodide solution was added to the BOD bottle. After inserting the 

stopper, the solution was mixed by repeatedly inverting the bottle. The 

precipitates were allowed to settle halfway, followed by another round of mixing 

and settling. Next, 1 mL of concentrated H2SO4 was added, and the stopper was 

immediately inserted, followed by mixing as before. The solution was left 

undisturbed for at least 5 minutes. 100 mL of solution is transferred into an 

Erlenmeyer flask, and immediately adding 0.025N sodium thiosulfate drop by 

drop from a burette is done until the yellow color almost disappears. 

Subsequently, approximately 1 mL of starch solution is introduced, followed by 

adding thiosulfate solution until the blue color disappears. The quantity of 

thiosulfate solution utilized (excluding any reoccurrence of the blue color) is then 

recorded. 

• COD 

A 2 ml sample was taken into the COD vial, which could be either high or 

low range depending on the wastewater quality. Then, the sample was heated 

for 2 hours. Following this, the COD vial was allowed to cool for 30 minutes. 

Finally, the determination of COD was conducted using a spectrophotometer as 

seen in Fig. 3.11. 
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Fig. 3.11 Digestion of wastewater sample in COD reactor 

In biological wastewater treatment, the BOD5/COD ratio is an essential 

indicator of how easily organic matter degrades. Effective treatment system 

design and operation depend heavily on this information. A higher BOD5/COD 

ratio indicates more readily degradable organic pollutants, which increases their 

susceptibility to removal by microbial action in biological treatment techniques. 

On the other hand, a lower BOD5/COD ratio indicates a significant concentration 

of materials that are either non-biodegradable or decompose more slowly. This 

scenario may require alternative treatment approaches beyond conventional 

biological methods. 

Operators of treatment plants can optimize processes with the help of this 

ratio. It aids in selecting appropriate biological treatment systems and 

determining essential treatment parameters, including microbial activity, 

retention period, and aeration. Continuous and efficient removal of organic 

contaminants from wastewater is ensured by monitoring variations in the 

BOD5/COD ratio over time, which enables adjustments in the treatment process 

to account for changes in wastewater composition. 

Untreated domestic wastewater usually has a BOD5/COD ratio of 0.3 to 0.8. 

Ratios between 0.92 and 1 show complete biodegradability, and ratios greater 

than 0.6 indicate biological treatment acceptability. Ratios less than 0.3 suggest 
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difficulties with biological treatment, whereas ratios between 0.3 and 0.6 may 

necessitate adjustments. Samples collected during dry and rainy periods have an 

average BOD5/COD ratio of 0.48. It suggests that biological treatment is 

appropriate in the given local context. 

• TSS and TDS 

A fixed sample volume was taken in a beaker and dried in the beaker 

containing the sample at 103–105 °C for 24 hours, and the TS was measured. A 

Buchner funnel was set with a filter for TSS determination, and the vacuum 

pump was initiated. The sample was poured into the filter. After filtration, the 

filter paper kept in a crucible was dried at 103–105 °C for a minimum of 2 hours 

and weighed to obtain the TSS. The TDS was determined by subtracting TSS from 

TS. 

• VSS 

For VSS determination, the remaining material from the TSS was ignited in 

a muffle furnace at 550°C for a duration of 20 minutes. Then the crucibles were 

moved to a stainless steel tray, and after allowing them to cool, the crucible 

weights were recorded. 

3.7.4 Quality Assurance and Quality Control  

The systematic management and application of procedures to guarantee 

that the outputs constantly satisfy predetermined quality standards is known as 

quality assurance. Preventing errors, shortcomings, or deviations in processes is 

the primary objective of quality assurance (QA), which also aims to increase the 

system's overall dependability and efficiency. Standard operating procedures 

(SOPs), routine audits, and documentation to guarantee standards and 

regulations are followed are a few ways to illustrate QA operations. 
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To make sure that processes, procedures, and outcomes adhere to 

predefined standards and specifications, quality control entails monitoring and 

assessing these elements. To guarantee the accuracy and quality of the final 

outcome, quality control (QC) is concerned with finding and fixing faults or 

deviations in the processes. In wastewater management, routine sampling and 

analysis, equipment calibration, and the use of control charts to track trends and 

deviations are scenarios involving QC operations. 

Whereas quality control is outcome-oriented and concentrates on fault 

diagnosis, quality assurance is process-oriented and concentrates on defect 

prevention. Producing comprehensive analytical data that faithfully represents 

the waste stream from which samples are gathered is the major goal of 

maintaining QA/QC. In addition to providing confidence about the correctness 

of the data generated and ensuring compliance with environmental regulations, 

QA/QC methods aid in the generation and maintenance of high-quality results. 

Table 3.6. Approaches and technical specifications regarding the tools 

employed in laboratory test 

Parameters Name of the 

Instrument/ Methods 
Range Accuracy Wastewater 

Quality 

Standards 

(BDS) 

pH HI9814 (GroLine) -2 to 16 ± 2.0% 6.5-8.5 

Temp. HI9814 (GroLine) -5.0 to 105.0 °C ± 0.5% 30 0C 

TDS HI9814 (GroLine) 0 to 3000 mg/L ± 2% --- 

TSS Standard Methods (APHA, 2005) 100 mg/L 

DO HI98198 (Hanna: opdo) 0 to 50 mg/L ± 1.5% --- 

BOD5 Standard Methods (APHA, 2005) 30 mg/L 

COD Standard Methods (APHA, 2005) 125 mg/L 

Note: Sewage discharge into surface and inland water bodies 

BDS: Bangladesh Standards (BECR, 2023) 
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The entire process, from sample collection to result finalization, adhered to 

standard protocols to ensure the accuracy and reliability of the results. 

Wastewater samples were collected in non-reflectable black bottles to minimize 

any potential interference from external light sources (APHA, 2005; Clesceri, 

2012; Karia & Christian, 2013; Tchobanoglous et al., 2003). On-site testing of 

crucial parameters, such as pH, temperature, and TDS, was conducted 

immediately, recognizing the time-sensitive nature of these properties, which can 

deteriorate over time. The collected samples were placed in freezing buckets, 

maintaining a consistent temperature and preventing any substantial 

degradation in quality to preserve sample integrity during transport to the 

laboratory (APHA, 2005; Tchobanoglous et al., 2003). The water quality samples 

underwent comprehensive testing upon arrival at the laboratory, using state-of-

the-art equipment detailed in Table 3.6. These instruments exhibited a high level 

of accuracy, ranging from ±0.5% to ±2%. Before conducting the tests, it is 

noteworthy that all equipment underwent thorough calibration processes, 

ensuring their precision and reliability in measuring water quality parameters. 

The emphasis on immediate on-site testing, coupled with meticulous calibration 

practices, contributes to the overall integrity of the data generated through this 

wastewater quality assessment. 

In addition to maintaining standard testing procedures, utmost attention 

was given to laboratory safety throughout the entire testing process. Laboratory 

personnel adhered to established safety protocols to mitigate potential risks 

associated with handling wastewater samples and operating testing equipment 

(APHA, 2005; Clesceri, 2012; Spellman & Drinan, 2003). Aprons and other 

appropriate personal protective equipment were consistently worn to minimize 

direct contact with the samples and potential exposure to hazardous substances. 

Furthermore, proper ventilation and fume hood usage were observed to ensure 

a safe working environment. Emergency response protocols and safety 
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equipment, such as eyewash stations and fire extinguishers, were readily 

available and regularly inspected. 

To guarantee the repeatability of analytical procedures, duplicate analyses 

are performed on every sample for every parameter. Every batch contains blank 

samples, which are used to detect contamination during analysis. The findings of 

the blank samples are monitored to make sure they remain within acceptable 

limits. In order to identify the source of the error in the analytical method, 

troubleshooting and appropriate corrective steps are conducted if the difference 

between duplicate analyses carried out on the same sample exceeds 10 percent. 

3.8 System Architecture 

The work in this research has been separated into four categoriess, and the 

choice to do so was made to comprehensively evaluate machine learning and 

deep learning models using various methods. Table 3.6 provides a summary of 

each category's details. It should be emphasized, though, that each category still 

has the same basic idea at its core. Therefore, a typical process for each category 

is shown in Fig. 3.12, along with an overview of how the machine learning and 

deep learning models were used. 
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Fig. 3.12 Flow chart of the study 
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3.9 Model Calibration and Validation 

To thoroughly assess machine learning and deep learning models using a 

variety of approaches, the analysis has been divided into four categories, and the 

details of the input, output, and variations in the training and testing data sets 

are highlighted in Table 3.6. The training set comprised 80% of the total data for 

the category-1 synthetic dataset associated with mathematical equations and 

assumptions, while the testing set included the remaining 20%. Data from 18 

different parameters (VL, V, F/M, HRT, Qo, MLSS, MLVSS, Qr, Xw, SRT, Qratio, Qw, 

Xo, Xe, So, Se, COD and CODe) are used to assess the prediction ability of various 

models for BOD5, COD, and TSS values.  

Again, to check the capability of various models, actual samples of 89, 

including drains from residential areas, septic tanks, and pits from various sites 

in Chittagong, were collected during the dry season (57 samples) and the wet 

(monsoon) season (32 samples). 

In Category 2, aiming to evaluate how well various models, based on 18 

operational and qualitative parameters of the ASS system, could accurately 

represent any conditions, the models were initially trained using synthetic data 

generated in Category 1 for BOD5, COD, and TSS values and subsequently 

assessed using actual data for the same parameters. 

As seen in Table 3.6, for Category 3, the dataset collected during the dry 

season was divided into two portions: training and testing, with 80% and 20% of 

the data, respectively. The dataset collected during the wet period followed the 

same data-splitting process. The models were then tested by predicting the wet 

season data using the dry season data and vice versa. The data from the dry and 

wet seasons were integrated into a single dataset as the final phase of this 

category. This combined dataset was divided into two portions, with 80% 

allocated for training the models and the remaining 20% reserved for testing 
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purposes. This comprehensive approach allowed for a thorough evaluation of 

the models' ability to represent the observed data, both within and between the 

dry and wet seasons. Importantly, this analysis was carried out without utilizing 

any mathematical equations associated with the operation of ASS. 

Table 3.7. Selection of categories to address variability in ASS modeling 

Category Training  Testing  Input Output Models 

Category-1 

Synthetic 

Data (in 

association 

with 

mathematical 

equation and 

assumptions) 

Synthetic Data 

(80%) 

Synthetic 

Data (20%) 

18 

parameters 

(VL,V, 

F/M, HRT, 

Qo, X, 

MLVSS, 

Qr, Xw, 

SRT, Qw, 

Qratio, Xo, 

Xe, So, Se, 

COD, and 

CODe) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BOD5 

COD 

TSS 

 

 

ML 

• Random 

Forest 

• Decision 

Tree  

• Extra Trees  

• Multivariate 

Linear 

Regression  

• K-

Neighbors 

Regression  

• Gradient 

Boosting 

Regressor  

• Adaboost 

Regressor 

 

DL 

• ANN-I 

• ANN-II 

• ANN-III 

Category-2 Synthetic Data 

(Category-1) 

 

Real Data 

 

BOD5 

COD 

TSS 

Category-3 

(Real Data) 

Dry (80%) Dry (20%)  

 

 

 

HOUR, 

MINUTE, 

Temp., pH, 

BOD5, 

COD, TDS, 

TSS, VSS 

 

Wet (80%) Wet (20%) 

Dry (100%) Wet (100%) 

Wet (100%) Dry (100%) 

Dry + Wet 

(80%) 

Dry + Wet 

(20%) 

Category-4 

(Synthetic 

Data 

Generated 

with Real 

Data) 

Dry_Synthetic Dry_Real 

Wet_Synthetic Wet_Real 

(Dry +Wet) 

Synthetic 

(80%) 

(Dry +Wet) 

Synthetic 

(20%) 

(Dry +Wet) 

Synthetic 

(Dry+ Wet) 

Real 

The importance of time series data for enhancing the performance of AI-

based machine learning models in WWTP modeling studies cannot be 

overstated, as these data are integral for addressing significant disruptions 
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within a WWTP. In line with this rationale, synthetic datasets consisting of 1000 

samples were generated using 89 real data points for additional validation, of 

which 500 samples originated from 57 samples of dry period data and the 

remaining 500 samples developed from 32 of the wet period datasets in Category 

4. To determine the extra robustness of the proposed models, these artificial 

datasets were subjected to several assessments. The study compared actual data 

from dry periods with synthetic data generated using that same dry period data. 

Similarly, synthetic data generated from actual wet period data was compared to 

real wet period data. Afterward, the combined synthetic data was split into two 

parts, with 80% allocated for training and 20% for testing. Finally, the blended 

synthetic data was assessed in relation to a real sample of 89 datasets. 

3.10 Model Performance Visualization 

The model can be evaluated using straightforward charts, even though the 

evaluation criteria are quite helpful. The model's predictions and the actual data 

will be compared in these charts. It indicates whether data are under- or over-

fitted and show how well the model performed on both training and test data 

sets. This study uses a few standard visualization approaches, including violin 

plots of synthetic data, scatter plots of predicted and observed values, etc. 

3.11 Model Performance Evaluation Criteria 

After a model structure has been picked and the network has been trained, 

the chosen model needs to be examined. The strength of the fit between a model's 

outputs and the system that provided the same input actually determines how 

accurate a model is. For this, various validation tests must be taken into account. 

In most cases, a model's accuracy needs to be assessed for two sets of data 

samples. These data sets are the testing data set, which evaluates the network's 

capacity for generalization, and the training data set, which expresses learning 

effectiveness. The validation data set can occasionally be utilized to prevent 
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overfitting issues in the model. It is important to note that the testing data set 

should ideally not have been presented before. 

In this study, consideration has been given to the specified evaluation 

criteria. This allowed to check every model to be used practically. R2, Root Mean 

Squared Error (RMSE), and Mean Absolute Error (MAE) calculations were made 

to assess each model's BOD5, COD, and TSS prediction performance. 

• R², often referred to as the coefficient of determination in statistics, 

measures how well a regression model's independent variables consider the 

variance in the dependent variable. A higher R² indicates that a more significant 

proportion of the variance is explained, while a lower R² suggests that the model 

does not explain much of the variance, and there may be unaccounted factors 

influencing the dependent variable. R2 typically ranges from 0 to 1, with 1 being 

the model's perfect fit, which completely explains all variance. However, 

negative values are possible if the model poorly fits the data. So, higher R2 value 

means the model may effectively make predictions based on the given 

independent variables. The R2 value of each model is calculated using Eq. (3.12). 

𝑅2 = 1 − 𝑆𝑆𝑅𝑆𝑆𝑇 Eq. (3.12)  

Where, SSR (Sum of Squared Residuals) = the sum of the squared 

differences between the predicted values of the regression model and the actual 

values of the dependent variable, and SST (Total Sum of Squares) = the sum of 

the squared differences between the dependent variable's actual values and its 

mean. 

• RMSE is a measure of the spread or dispersion of the errors between the 

predicted and actual values. RMSE clearly indicates how well a predictive 

model's forecasts align with the actual data. Smaller RMSE values indicate better 
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model performance, while larger RMSE values signify less accurate predictions. 

The RMSE value of each model is calculated using Eq. (3.13). 

𝑅𝑀𝑆𝐸 = √(𝑓 − 𝑜)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ Eq. (3.13)  

Where, f = forecast value, and o = actual value. 

• In statistics and machine learning, MAE quantifies how far off predictions 

are from the true values on average, without considering the direction of the 

errors (i.e., whether they are overestimations or underestimations). Similar to 

RMSE, the lower the MAE, the better the model predicts. The MAE value of each 

model is calculated using Eq. (3.14). 

𝑀𝐴𝐸 = 1𝑛∑|𝑜𝑖 − 𝑓𝑖|𝑛
𝑖=1  

Eq. (3.14)  

Where, n is the total number of data points, oi represents the actual (observed) 

value for the ith data point, fi represents the predicted value for the ith data point 

and | | represents the absolute value.  
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Chapter 4: RESULTS AND DISCUSSIONS 

4.1 General 

The detailed findings have been organized for discussion with previously 

published literature in accordance with the study's aims and the approaches 

taken to accomplish those objectives. Variations and comparisons are provided 

systematically. It has been described how to model an activated sludge system 

utilizing various machine learning and deep learning tools in order to predict 

BOD5, COD, and TSS, assuming that biological treatments' would take care of the 

reduction of BOD5, COD, and TSS values in effluent, addressing the influent's 

BOD5, COD, and TSS variability, by seasonal variations in wastewater quality. 

4.2 Capability of AI Based Model to Generate Wastewater Synthetic Data 

The formulae and assumptions mentioned in Section 3.4.1 were used to 

generate almost 1,50,000 datasets of different variables of wastewater related to 

ASS. The Python module CTGANSynthesizer, which uses a conditional 

generative adversarial network (GAN)-based deep learning technique, was used 

to generate this synthetic tabular data. The generated dataset was visualized 

using Violin Plot (Fig 4.1). The violin plot is an excellent data visualization tool 

that assists in understanding and developing new insights by plotting a large 

amount of data of various variables on a single figure representing the 

distribution. Similar to a box plot, but with a rotated plot on each side that 

provides more details about the estimated density on the y-axis. A violin-like 

image is produced by mirroring and flipping the density, then filling in the 

resulting shape. The benefit of a violin plot is that it can reveal characteristics in 

the distribution that a boxplot cannot. This plots display trends and patterens of 

synthetic data of different parameters. 
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Fig. 4.1 Violin plot of the generated dataset 
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Four elements make up a violin plot. In Fig. 4.1, the distribution's median is 

indicated by a white dot with a white center in the plot's center. The distribution's 

quartile range is shown inside the plot as a narrow bar. The remaining part of the 

distribution is represented by a long, thin line extending from the bar and is 

determined by the formulas Q1-1.5 IQR for the lower range and Q3+1.5 IQR for 

the upper range. The points that stay outside of this line are regarded as outliers. 

The boundary of the violin plot reflecting the distribution of data points is 

defined by a line dividing the plot portraying the Kernel Density Estimation 

(KDE) plot. Here, using Univariate Analysis, violin plots are utilized to show the 

distribution of each variable. These plots, which often incorporate a kernel 

density plot and a mirrored histogram, show the density estimation of the 

variable's values. The density of data points at various values is represented by 

the width of the violin, with broader sections denoting more density and skinnier 

sections representing lower concentrations of data points. 

The synthetic data patterns exhibit irregularity, as seen in Fig. 4.1, which is 

expected due to the complex nature of wastewater composition. Moreover, 

certain variables are influenced by operational factors like Qw, Se, VL, and Qr. 

These values change based on influent and plant operation, so their variability is 

not surprising. Upon examining Fig. 4.1, it is apparent that the AI-generated SRT 

values, for instance, have a range of 3 to 15 and exhibit a symmetric distribution 

with a uniform density but fluctuation in the data represented in the KDE plot, 

indicating a strong resemblance to the real field. In contrast, variables like FM 

and HRT have symmetric distributions; however, the density of VL and Qo 

appears elongated and non-uniform in the KDE plot, suggesting a skewed 

distribution that aligns well with real field variations. This provides guidance for 

selecting suitable ranges of different parameters for practical considerations, 

such as 0.2 to 0.4 for FM, 4 to 8 for HRT, and so on.  
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Fig. 4.2 Box plot of the generated dataset 
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Again, box plots are an essential tool for exploratory data analysis because 

they facilitate rapid comprehension of a dataset's key properties and the ability 

of analysts, researchers, and decision-makers to draw well-informed conclusions. 

They offer an in-depth understanding of the data distribution and serve as a 

helpful supplement to other statistical metrics and graphical representations. Box 

plots provide a straightforward and easily understood way of visualizing the 

distribution of the data set illuminating central tendency, spread, and skewness 

of the data. The symmetric nature of a distribution is evident when the median 

aligns with the middle of the box and the whiskers are symmetrical. Positive 

skewness (skewed right) is observed when the median is closer to the bottom of 

the box, with shorter whiskers on the lower end. Conversely, negative skewness 

(skewed left) is indicated by a median closer to the top of the box, accompanied 

by shorter whiskers on the upper end. 

Illustrating this with a specific example, in Fig. 4.2, the boxplot for variable 

So reveals a median of 239.97 mg/L. This signifies that half of the data values are 

below 239.97, while the other half are above this value. The first quartile is 190.45 

mg/L, and the third quartile is 306.59 mg/L, resulting in an interquartile range 

(IQR) of 116.14 mg/L, covering the middle 50% of the data. The whiskers extend 

from the box to the minimum and maximum values, which are 150 mg/L and 400 

mg/L, respectively. This dataset is notable for having no outliers. Overall, the 

distribution of this dataset is right-skewed, indicating a predominant 

concentration toward higher values. This observation aligns with the patterns 

depicted in the Violin plot presented in Fig. 4.1. Furthermore, synthetic data and 

the capabilities of AI-based modeling have been assessed using various statistical 

parameters, as discussed in section 4.2.1. 
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4.2.1 Basic Statistics of Synthetic Data 

Furthermore, Table 4.1 listed the basic statistics of the variables for the 

estimation of the minimum, maximum, mean, standard deviation, coefficient of 

variation, skewness and kurtosis values for the generated dataset for insight 

pattern and association.  

A higher coefficient of variation (CV) implies a more diverse distribution, 

while a lower CV suggests a more consistent distribution. Table 4.1 reveals a 

range of CV values from 8.2 to 57.8, highlighting substantial variability in the 

dataset concerning various wastewater parameters. The highest CV for Xe is 

57.8%, showing a significant level of variability, with the standard deviation 

being 57.8% of the mean. This suggests that the variability in this parameter is 

largely influenced by both the quantity of recycling and the quality of the effluent 

produced. On the other hand, the lower CV value of 8.2% for Xo (primary effluent 

TSS), with the standard deviation being only 8.2% of the mean, reflects a 

consistency in effluent production driven by effective plant operations to meet 

specific targets. Similar relative patterns in relation to CV are observed for other 

wastewater parameters. 

A statistical metric known as skewness evaluates the asymmetry of a 

probability distribution. It measures how much the data is moved to one side or 

skewed. Skewness aids in understanding a dataset's form and outliers. 

Depending on the model, skewness may violate model assumptions or make it 

more difficult to understand the significance of a particular independent variable 

(feature) when its values are skewed. 

Positive skewness indicates that the distribution's tail is longer on the right 

side. Extremely positive skewness is undesirable in a distribution because it 

might lead to inaccurate results. Mean > Median > Mode is the basis for positive 

skewness. The skewness is negative when the left side of the distribution's tail is 
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longer than the right side's tail. Mode > Median > Mean is a necessary condition 

for negative skewness. Another name for a "symmetric distribution" is zero 

skewness. It denotes that the data distribution is symmetrical around the mean 

and devoid of large tails at either end. Mean = Mode = Median is the condition 

for zero skewness. 

Table 4.1. Statistical description of the generated synthetic dataset 

 Parameter Unit  Min  Max  Mean  SD  CV (%) Skewness  Kurtosis  

VL lb BOD/ 
day/1000ft3 

9.1 148.8 41.1 22.5 54.7 1.54 2.3 

F/M lb 
BOD/day/lb 

MLVSS 

0.2 0.4 0.3 0.06 19.3 0.006 -1.21 

HRT hr 4 8 6 1.16 19.3 0.006 -1.2 

Qo MGD 1.5 3.5 2.15 0.54 25.2 0.96 -0.21 

X (MLSS) mg/L 1000 3000 2000 575 28.8 -0.003 -1.2 

Qr MGD 0.4 2.5 1.45 0.61 41.8 -0.004 -1.2 

Xw mg/L 5000 10000 7498 1443 19.2 -0.001 -1.12 

SRT days 3 15 9 3.5 38.8 0.006 -1.17 

Qratio --- 0.25 0.75 0.5 0.14 28.9 -0.005 -1.2 

MLVSS mg/L 700 2400 1500 436 29 0.03 -1.14 

So mg/L 150 400 252 70 27.9 0.41 -0.99 

Se mg/L 7.6 70 41 16.6 40.6 -0.023 -1.15 

COD mg/L 250 997 510 155 30.4 0.58 -0.42 

CODe mg/L 13 174 83 35.3 42.6 0.17 -0.87 

Xo mg/L 180 240 210 17.3 8.2 0.004 -1.2 

Xe mg/L 0.0005 40 20 11.6 57.8 -0.005 -1.2 

A good rule of thumb is that the data are almost symmetrical if the skewness 

is between -0.5 and 0.5. The data are slightly skewed if the skewness is between -

1 and -0.5 (negative skewed) or between 0.5 and 1 (positive skewed). The data 

are considered to be highly skewed if the skewness is less than -1 (negative 
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skewed) or higher than 1 (positive skewed). Greater skewness in the data reflects 

a wider disparity, while lower skewness indicates a more consistent distribution.  

Table 4.1 reveals that certain output parameters, such as COD, CODe, and 

Xo, exhibit positive skewness. In contrast, the output parameters Se (effluent 

BOD) and Xe demonstrate negative skewness, with values of -0.023 and -0.005, 

respectively. The remaining wastewater parameters show minimal skewness, 

except for Qo, which has a skewness value of 0.96. VL stands out with a highly 

positive skewness of 1.54, indicating a long tail on the right side of the 

distribution, signifying the presence of outliers or extreme values that pull the 

mean to the right. This is also evident in the graphical distribution with the violin 

plot in Fig. 4.1, which appears stretched or skewed towards the right, with the 

majority of data points clustered on the left. This observation also aligns with the 

coefficient of variation (CV), which is greatly affected by the amount of recycling 

as well as the effluent's quality. 

Another statistical term known as kurtosis characterizes a probability 

distribution's form. Compared to a normal distribution, it reveals information 

about its tails and peaks. While negative kurtosis suggests lighter tails and a 

flatter distribution, positive kurtosis implies heavier tails and a more peaked 

distribution. Kurtosis aids in the analysis of a dataset's properties and outliers. 

Since the kurtosis of normal distributions is 3, the excess kurtosis is computed by 

deducting the kurtosis by 3. 

Long and thick tails are characteristic of leptokurtic (Kurtosis > 3), which 

increases the possibility of outliers. Positive values of kurtosis suggest a peaked 

distribution with thick tails. Extremely positive kurtosis denotes a distribution in 

which more data points are distributed away from the mean and toward the tails. 

Since the platykurtic distribution (Kurtosis < 3) has a thin tail and is spread 

outward from the center, the majority of the data points are concentrated close to 
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the mean. The platykurtic distribution is flatter (less peaked) than the normal 

distribution. Kurtosis is close to zero when a distribution is mesokurtic (Kurtosis 

= 3), which is the same as the normal distribution. Mesokurtic has curves with 

medium-sized peaks and moderate breadth distribution.  

Kurtosis is used to assess the shape of a distribution, specifically whether it 

is more peaked or flatter than a normal distribution and if it contains more or 

fewer extreme values (outliers). As indicated in Table 4.1, VL displays a markedly 

elevated positive kurtosis (platykurtic) at 2.3. This indicates that the datasets 

associated with VL are more widely dispersed and possess flatter distributions, 

resulting in a diminished likelihood of extreme values or outliers. This suggests 

that VL occasionally features values that are exceptionally high or low, 

influenced by both the amount of recycling and the quality of the effluent 

produced. This characteristic is also apparent in the violin plot presented in Fig. 

4.1, illustrating a peaked distribution with heavy tails, thereby confirming the 

coefficient of variation (CV) and skewness values. Conversely, the distributions 

of other wastewater parameters show negative (platykurtic) kurtosis values. 

In summary, the skewness and kurtosis of data have implications for the 

planning of wastewater treatment facilities and the strategies employed to 

control processes. When dealing with data that is either positively or negatively 

skewed, operators must ensure that the plant or system can effectively handle 

occasional spikes or drops in wastewater parameter values. Additionally, when 

kurtosis is significantly positive, it serves as an indicator of outliers or extreme 

data points in the dataset, highlighting unusual events or problems within the 

wastewater system. This information can help in identifying potential issues with 

wastewater treatment facilities and allow for necessary corrective measures to be 

taken. 
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4.2.2 Correlation of Synthetic Data 

A correlation heatmap is a visual tool that illustrates the relationships 

between various parameters in wastewater samples by displaying them as a 

color-coded matrix based on their correlations. In this heatmap, each parameter 

is represented both as a row and a column, and the cells in the matrix reveal the 

strength and direction of the correlations between them. The color of each cell 

shows the degree of correlation; darker colors indicate greater correlations. 

Fig. 4.3 Heatmap showing correlation among wastewater parameters 

In Fig. 4.3, a correlation heatmap generated using Pearson's correlation 

coefficient was created from a dataset comprising 94,892 instances, each 

described by 18 parameters. A linear relationship between two variables is 

quantified by Pearson's correlation coefficient, which scales from -1 to 1, 

indicating perfect negative correlation and perfect positive correlation, 

respectively, and 0, denoting no correlation. To create this heatmap, the Python 

data visualization library Seaborn, which is built on Matplotlib, was employed. 
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The correlation coefficients were converted into a matrix, comparing each 

parameter to every other parameter. This matrix is symmetric, with diagonal 

values set to 1 (as each parameter correlates perfectly with itself). Off-diagonal 

values represent the correlations between parameters. The color of each cell 

signifies the strength and direction of the correlation. 

Typically, color scales transition from one color to another, such as a 

gradient from blue (indicating negative correlation) to red (showing positive 

correlation), with white representing no correlation. Strong positive correlations 

(closer to 1) are depicted with warm colors like dark red or orange, suggesting 

that as one parameter increases, the other tends to increase as well. Strong 

negative correlations (closer to -1) are shown with dark blue or green colors, 

suggesting that as one parameter increases, the other tends to decrease. Weak or 

no correlations (closer to 0) are represented by white or pale cells, indicating a 

lack of a meaningful relationship between the parameters. 

In this study, as observed in Fig. 4.3, the correlation coefficient values were 

found to be significantly higher than those in other studies conducted elsewhere. 

This was expected due to the variations in wastewater composition. For instance, 

a strong positive correlation (r = 0.92) was observed between COD and BOD5 in 

this synthetic data, depicted as a dark red cell in the heatmap. Similarly, a positive 

correlation (r = 0.83) was found between F/M and VL, represented by an orange 

cell. Additionally, there were medium negative correlations between Qw and SRT 

(r = -0.52) and F/M (r = -0.39), as indicated by blue cells, and a positive correlation 

between Qw and HRT (r = 0.48), represented by a light orange cell. 

Notably, the values reported here were notably higher, even though 18 

parameters were considered, in contrast to the findings from daily wastewater 

data of 312 records encompassing eight parameters (pH, BOD5, COD, TSS, TN, 

TP, Temperature, and Conductivity) at the Nicosia wastewater treatment plant 
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in North Cyprus, Turkey, for the years 2014 to 2016, where the reported 

correlation value between BOD5 and COD was only 0.1793 (Elkiran & Abba, 

2017). 

The heatmap helps identify which wastewater parameters tend to move in 

the same or opposite directions, providing insights into the complex interactions 

within the wastewater system. This information is valuable for making decisions 

related to wastewater treatment, quality control, optimizing processes, 

controlling pollution, and monitoring environmental conditions. 

Based on a thorough examination of the generated synthetic wastewater 

data in relation to the ASS system in terms of coefficient of variation, skewness, 

kurtosis, and heatmap, it can be concluded that, in the absence of real data, it is 

possible to create synthetic data that closely resembles the operations and 

attributes of the Wastewater Treatment Plant (WWTP) by considering the specific 

local conditions. 

4.3 Category 1: Synthetic Data Associated with Mathematical Equation and 

Assumptions 

The availability of time series data is essential for the performance of WWTP 

modeling studies in the AI-based machine learning process because they are 

critical disruptions in a WWTP. Such real time series data are not accessible in 

Bangladesh. After a rigorous search and analysis of the literature, it is found that 

there is no reliable online dataset containing extra instances with different 

parameter values collected from WWTP. Even though specific datasets are 

accessible online, they have many restrictions, such as, for example, fewer 

wastewater parameters and fewer parameter relationships. Again, acquiring 

sufficiently lengthy and high-quality time series data has grown more 

complicated and challenging in terms of security. Artificial intelligence (AI) 

based tools have been used to create synthetic data in this line. The category-1 
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synthetic dataset made up of mathematical equations and assumptions was split 

into two sets, the training set making up 80% and the testing set 20% of the total 

data, respectively. To create output values reflecting BOD5, COD, & TSS values, 

the model required input from 18 parameters (VL, V, F/M, HRT, Qo, X, MLVSS, 

Qr, Xw, SRT, Qw, Qratio, Xo, Xe, So, Se, COD and CODe).  

Table 4.2. Category 1 (Synthetic data associated with mathematical equation 

and assumptions): Performance evaluation of ML and DL for wastewater 

effluent (BOD5, COD and TSS) 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

Random 

Forest 

0.93 0.91 0.60 0.072 0.066 0.182 0.058 0.053 0.14 

Decision 

Tree 

0.85 0.82 0.12 0.101 0.092 0.272 0.077 0.07 0.202 

Extra Trees 0.93 0.91 0.57 0.072 0.067 0.189 0.058 0.053 0.147 

Multivariate 

Linear 

Regression 

0.91 0.91 0.05 0.079 0.065 0.282 0.064 0.052 0.243 

K-

Neighbors 

Regression 

0.85 0.85 -0.19 0.102 0.083 0.315 0.082 0.066 0.267 

Gradient 

Boosting 

Regressor 

0.93 0.91 0.33 0.071 0.065 0.236 0.058 0.052 0.196 

Adaboost 

Regressor 

0.92 0.90 0.11 0.074 0.067 0.272 0.061 0.055 0.232 

ANN-I 0.92 0.91 0.93 0.077 0.066 0.077 0.062 0.053 0.051 

ANN-II 0.92 0.90 0.90 0.073 0.067 0.089 0.06 0.054 0.025 

ANN-III 0.92 0.91 0.94 0.073 0.066 0.068 0.059 0.052 0.051 

Optimized performance metrics for different AI-based models that predict 

BOD5, COD, and TSS in an activated sludge system are provided in Table 4.2. The 

outcomes of various trials can be found in Tables B1–B3 of Appendix B. R2, RMSE, 

and MAE are some of the measures. The models were assessed, which included 
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three different Artificial Neural Networks (ANNs) and seven machine learning 

models (Gradient Boosting Regressor, Adaboost Regressor, Multivariate Linear 

Regression, Decision Tree, Extra Trees, and K-Neighbors Regression).  

The measurements reveal that multiple models accurately predict BOD5, 

COD, and TSS, as seen by strong R2 scores (close to 1), low RMSE, and low MAE 

values. Notably, the three ANNs (ANN-I, ANN-II, and ANN-III) appeared 

exceptionally good. The variations of these three ANN structures were based on 

the optimizer and activation functions, as in Table 3.4. Three different layer types 

are commonly present in ANNs: the input layer, one or more hidden layers, and 

the output layer. During training, the weights on the connections between 

neurons are changed, allowing the network to recognize and adapt to data 

patterns. The weights of ANNs were updated using optimization techniques like 

gradient descent to minimize the difference between the predictions and the 

actual labels after feeding it with labeled data (input-output pairs) and changing 

the number of both hidden layers and their nodes to perform at their best. This 

process is controlled by a loss function, which calculates the gap between 

predictions and actual results. Based on the accuracy of the predictions, this 

study employed a trial-and-error method to determine the optimum number of 

hidden layers and nodes. The attached appendices show how altering the hidden 

layers and the neurons within each layer affect the performance of the models. 

Eighteen neurons in the input layer for all ANNs were found to generate the best 

results after numerous tries. Again, optimum ANN architectures had three 

hidden layers with different neurons for each layer, and it emerged that the 18-

32-64-32-1, 18-64-124-64-1, and 18-32-64-32-1 were the most effective for ANN-I, 

ANN-II, and ANN-III respectively.  
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Fig. 4.4 (a) BOD5, (b) COD and (c) TSS prediction of ANN-III (Category 1: 

Synthetic data associated with mathematical equation and assumptions) 
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The three ANNs deliver commendable results, with high R2 values, with 

particular prominence in three outputs (BOD5, COD & TSS). Their relatively low 

RMSE and MAE values suggest precise predictive accuracy. ANNs are renowned 

for their capability to capture intricate non-linear data relationships, which is 

particularly advantageous in this context. The closest agreement between 

predicted and actual values for BOD5, COD, and TSS is also shown in Fig. 4.4. It 

is to be noted that for better representation, the first few data points were used 

for graphical representation. The R2, RMSE, and MAE values reported here are 

consistent with the research conducted by (Zhao et al., 2016), demonstrating their 

applicability in effluent prediction capabilities even in the context of Bangladesh, 

where long-term time-series data are not yet available. Additionally, due to the 

variations in input parameters and the quantity of data, the agreement of 

predicted outcomes is shown to be slightly higher and, in some cases, somewhat 

lower than a few studies reported elsewhere. 

However, this variation cannot be overlooked but rather discussed, 

considering that the wastewater quality is found to vary widely on different 

scales and geographic locations. Moreover, this study contributes to the field by 

incorporating a more extensive set of input variables, surpassing the scope of 

previous research. This expanded input dataset enhances the comprehensiveness 

of these models and strengthens their predictive capabilities. 

Ensemble methods such as Random Forest and Extra Trees often yield 

strong performance across various tasks. They exhibit high R2 values, attaining 

an R2 of greater than 0.9 in the case of BOD5 and COD, signifying robust 

correlations between the predicted and actual values, and they display low RMSE 

and MAE values. But in the case of TSS prediction, the performance of ML 

models is far behind that of ANN models, as clearly observed in Fig. 4.5. To 

produce a more accurate illustration, only a portion of the data points were 

included. These outcomes suggest their effective capture of underlying data 
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patterns and relationships. However, their performance in predicting TSS lags 

behind even negative in the case of K-Neighbors Regression that of ANNs which 

is clearly depicted in Table 4.2, showing less neighborhood between predicted 

and actual values. The values, however, are in line with other studies elsewhere 

(Wang et al., 2021).  

Fig. 4.5 (a) BOD5, (b) COD and (c) TSS prediction of Random Forest (Category 1: 

Synthetic data associated with mathematical equation and assumptions) 
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An excellent general model for projecting BOD5, COD, and TSS in the 

activated sludge system can be determined depending on the project's needs.  To 

make a final choice, issues including model training and inference times, resource 

requirements, and the accessibility of supplemental data should be taken into 

account. Which models offer the most insightful understanding of the system can 

be determined by additional analysis, such as ratings of feature relevance and 

partial dependence plots. Additionally, if available, the validation of the models 

using extra test data might improve the overall model selection process. 

However, based on basic statistics (R2, RMSE and MAE), the ANNs emerge as 

strong contenders if capturing complicated non-linear data correlations is crucial. 

4.4 Category 2: Real Wastewater Data against Generated Synthetic Data 

In Category 2, samples of 89 were taken from septic tanks, pits, and 

residential area drains throughout Chittagong to determine whether various 

models built using the 18 operational and qualitative parameters of the ASS 

system could accurately represent the situation. For this, only the BOD5, COD, 

and TSS values from synthetic and real data are employed. The outcomes 

demonstrated in Table 4.3 show how well different models predict BOD5, COD, 

and TSS levels in an activated sludge system. The results from different trials are 

available in Tables C1–C3 of Appendix C. R2, RMSE, and MAE are three 

evaluation criteria used to assess these models. 

Several machine learning models display significantly high values for R2, 

according to the data. The R2 values of the following models: Random Forest, 

Extra Trees, Gradient Boosting Regressor, and Adaboost Regressor are all greater 

than 0.92, demonstrating an excellent capacity to capture the variance in the 

target variables. Random Forest, Extra Trees, and Gradient Boosting Regressor 

all exhibit a comparable pattern in terms of RMSE and MAE, with consistently 

low RMSE and MAE values for the three target variables (BOD5, COD, and TSS). 

This shows that the predictions made by these models are pretty accurate. As 
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shown in Fig. 4.6, BOD5, COD, and TSS had the best agreement between 

predicted and actual values. The R2, RMSE, and MAE values presented here agree 

with the findings of other research, proving their relevance in effluent prediction 

abilities even in the geographical area of Bangladesh, where long-term time-

series data are not yet available (Baki et al., 2019b). 

Table 4.3. Category 2 (Real wastewater data against synthetic data): 

Performance evaluation of ML and DL for wastewater effluent (BOD5, COD and 

TSS) 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

Random 

Forest 

0.93 0.91 0.98 0.072 0.066 0.087 0.058 0.053 0.048 

Decision 

Tree 

0.85 0.82 0.74 0.101 0.092 0.098 0.077 0.07 0.033 

Extra Trees 0.93 0.91 0.74 0.072 0.067 0.083 0.058 0.053 0.056 

Multivariate 

Linear 

Regression 

0.91 0.91 0.82 0.079 0.065 0.085 0.064 0.052 0.085 

K-

Neighbors 

Regression 

0.85 0.85 0.81 0.102 0.083 0.092 0.082 0.066 0.059 

Gradient 

Boosting 

Regressor 

0.93 0.91 0.90 0.071 0.065 0.091 0.058 0.052 0.091 

Adaboost 

Regressor 

0.92 0.90 0.83 0.074 0.067 0.085 0.061 0.055 0.086 

ANN-I 0.92 0.91 0.92 0.077 0.066 0.092 0.062 0.053 0.047 

ANN-II 0.92 0.90 0.86 0.073 0.067 0.088 0.06 0.054 0.043 

ANN-III 0.92 0.91 0.82 0.073 0.066 0.084 0.059 0.052 0.067 

Additionally, each model performs better than other studies reported 

elsewhere because of the differences in input parameters and the volume of data. 

However, the abundance of data could be responsible for this variation. 

Furthermore, this study advances the area by using a limited number of factors 
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from a collection of input variables, which have rarely been employed in earlier 

studies. 

Fig. 4.6 (a) BOD5, (b) COD and (c) TSS prediction of Random Forest (Category 2: 

Real wastewater data against synthetic data) 
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The three ANNs, ANN-I, ANN-II, and ANN-III, on the other hand, looked 

to be equally effective and produced praiseworthy results, with high R2 values 

over 0.9 and special prominence in three outputs (BOD5, COD, and TSS), with the 

exception of ANN-II and ANN-III in the case of TSS displaying below 0.9. 

Fig. 4.7 (a) BOD5, (b) COD and (c) TSS prediction of ANN-I (Category 2: 

Real wastewater data against synthetic data) 
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They have consistently low RMSE and MAE values for the three target 

variables (BOD5, COD, and TSS). It is especially useful in this situation as ANNs 

are recognized for capturing complex non-linear data correlations. Fig. 4.7 also 

displays the BOD5, COD, and TSS values where predicted and actual values were 

most closely aligned. The R2, RMSE, and MAE values of this work are consistent 

with earlier studies, demonstrating their applicability to effluent prediction in 

Bangladesh (Alsulaili & Refaie, 2020). Due to input parameters, data volume, and 

the use of a small number of input variables, the model performs well. 

Overall, combining these metrics reveals that while Random Forest, Extra 

Trees, and Gradient Boosting Regressor models are performing remarkably well 

in predicting BOD5, COD, and TSS levels within the activated sludge system, 

exhibiting strong explanatory power (high R2) and low prediction errors (low 

RMSE and MAE), the ANNs are also capable of capturing these variations and 

even outperform them if they were fed with modifications in their structural 

elements like epoch number and neurons variation. However, it is crucial to keep 

in mind that other practical factors, such as processing resources, model 

interpretability, and ease of implementation, may also influence the decision 

between these models. 

4.5 Category 3: Seasonal Variation Based Performance 

In Category 3, it was checked whether different models created using the 18 

operational and qualitative ASS parameters could accurately represent the 

limited real data that had been collected from the various sites (grab samples) 

during both dry and wet seasons. This was done without the use of any 

mathematical equations that were connected to the operation of ASS. The 

improved results for the R2, RMSE, and MAE evaluation criteria are shown in 

Table 4.4, Table 4.5, and Table 4.6, which illustrate how well various models 

predict BOD5, COD, and TSS respectively, using the proposed machine learning 

and deep learning models under different dataset settings. The findings of BOD5, 
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COD, and TSS performance derived from diverse trials are presented in Tables 

D1–D15 of Appendix D. For training and testing purposes, the dataset of the dry 

period was split into 80% and 20%, respectively. The dataset for the wet period 

was likewise handled in a similar way. After that, dry period data was tested 

against wet period data, and vice versa. In the end, all data from the dry and wet 

periods were combined and divided into two parts, 80% of which were used for 

training and 20% for testing. 

Random Forest, Decision Tree, Extra Trees, Multivariate Linear Regression, 

Gradient Boosting Regressor and Adaboost Regressor models consistently 

achieve excellent results, demonstrating robustness across all scenarios of BOD5 

(Table 4.4), COD (Table 4.5) and TSS (Table 4.6) showcasing high R2 values 

exceeding 0.9, low RMSE, and low MAE, making them top-performing models 

overall. However, Decision Tree struggles in some scenarios like only dry 

condition (R2 around 0.88) in the case of BOD5, wet to dry condition (R2 around 

0.88) in the case of COD, particularly in the case of TSS (R2 less than 0.8). K-

Neighbors Regression performs relatively poorly compared to other models, 

especially in scenarios with Wet conditions in all pollutant cases (BOD5, COD, 

TSS). It has lower R2 values (sometimes less than 0.5) and higher RMSE and MAE 

values, indicating weaker predictive power. The predicted values for BOD5, 

COD, and TSS showed the best correlation with the actual values, as shown in 

Fig. 4.8. Here, the predicted values are seen to be very close to the actual value, 

indicating that the BOD5 value is being predicted very effectively by the 

Multivariate Linear Regression model. The plots in the COD and TSS cases are 

pretty similar. This study's results are consistent with those of earlier research, 

proving its adaptability to regional circumstances. Despite the little amount of 

data, each model performs almost identically to other studies published 

elsewhere (Zhao et al., 2016). 
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Fig. 4.8 (a) BOD5, (b) COD and (c) TSS prediction of Multivariate Linear   

Regression for different scenarios (Category 3: Seasonal variation) 
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Fig. 4.9 (a) BOD5, (b) COD and (c) TSS prediction of ANN-II for different 

scenarios (Category 3: Seasonal variation) 
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Depending on the context, the performance of ANN models varies greatly 

but satisfactory. It is seen that although RMSE and MAE values are pretty similar 

to the values that are found in machine learning models, relatively lower values 

of R2 are found in comparison to machine learning models. In all pollutant cases 

(BOD5, COD, and TSS), ANN-II, ANN-I and ANN-III perform well under certain 

conditions (R2 between 0.8 and 0.95) but moderately under other situations (R2 

between 0.7 and 0.8) and sometimes falling below 0.6. This difference is due to 

the limited number of input data sets, which may hinder the model's ability to 

understand the intrinsic heterogeneous behavior of wastewater quality. Fig. 4.9 

shows that the predicted values for BOD5, COD, and TSS best agreed with the 

actual values. It indicates that the ANN-II model predicts the BOD5 levels 

accurately but with some deviations, which reflects the comparatively lower 

performance of deep learning models. An analogous plot is also shown for COD 

and TSS in Fig. 4.9. The R2, RMSE, and MAE values of this study agree with other 

studies, demonstrating their applicability to local contexts. Additionally, each 

model performs almost similarly to other studies reported elsewhere, despite the 

small volume of data (Qiu et al., 2016). 

In summary, the overall excellent models based on limited real data for 

predicting BOD5, COD and TSS are Extra Trees, Multivariate Linear Regression, 

Random Forest, and Adaboost Regressor. These models consistently 

demonstrate high R2 values, low RMSE, and low MAE across various scenarios, 

indicating strong predictive power and robustness. Multivariate Linear 

Regression, in particular, stands out as the top-performing model with 

consistently outstanding results in all scenarios. Deep learning model 

performance, however, also meets acceptance criteria. 

4.6 Category 4: Synthetic Data Generation from Real Wastewater Data  

The availability of time series data is crucial for the performance of WWTP 

modeling studies in the AI-based machine learning process because they are 
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critical disruptions in a WWTP. Following this line of reasoning, synthetic data 

of 1000 samples was created using real data of 89, collected from septic tanks, 

pits, and residential area drains throughout various locations in Chittagong, of 

which 500 samples originated from 57 samples of dry period data and the 

remaining 500 samples developed from 32 of the wet period dataset in Category 

4. 

The created synthetic data sets were evaluated in various ways to test the 

additional robustness of the proposed models. Real data from the dry period was 

judged against synthetic data that was based on that data. Again, synthetic data 

based on wet period real data was assessed against real data of the wet period. 

Then, after combining and dividing it into two portions, 80% of the artificial data 

from the dry and wet periods was used for training and 20% for testing. 

In conclusion, merged artificial data was evaluated in relation to a real sample of 

89 datasets. Tables 4.7, 4.8, and 4.9 demonstrate how effectively suggested 

machine learning and deep learning models predict BOD5, COD, and TSS, 

respectively, concerning performance metrics (R2, RMSE, and MAE) under 

various dataset conditions. The BOD5, COD, and TSS performance results 

obtained from a variety of trials are presented in Tables E1–E12 within Appendix 

E. 

Extra Trees, one of the machine learning models, produced low RMSE and 

MAE values in the context of BOD5 and high R2 values (e.g., 0.99 for Synthetic to 

Real case of dry period data and applicable for other scenarios). This 

demonstrates that Extra Trees offered an excellent data fit and gave precise BOD5 

level forecasts. High R2 values and low error metrics were also displayed by 

Decision Trees, Random Forest, Multivariate Linear Regression, Gradient 

Boosting Regressor, and Adaboost Regressor, all of which performed well. On 

the other hand, K-Neighbors Regression exhibited lower R2 values and greater 

error metrics, indicating less accurate predictions in the BOD5 scenario. 
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Fig. 4.10 (a) BOD5, (b) COD and (c) TSS prediction of Multivariate Linear 

Regression for different scenarios (Category 4: Synthetic data from seasonal real 

wastewater data) 
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Fig. 4.11 (a) BOD5, (b) COD and (c) TSS prediction of ANN-III for different 

scenarios (Category 4: Synthetic data from seasonal real wastewater data) 
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Multivariate Linear Regression replaces Extra Trees as the top-performing 

machine learning model for COD (Table 4.8) and TSS (Table 4.9) prediction, 

obtaining remarkably high R2 values and extremely low RMSE and MAE values 

across all scenarios. However, with high R2 values and low error metrics, 

Decision Trees, Random Forest, Extra Trees, Gradient Boosting Regressor, and 

Adaboost Regressor all show excellent performance. Lower R2 values and larger 

error metrics, which indicate less accurate predictions in the context of COD and 

TSS, are characteristics of K-Neighbors Regression, which exhibits a similar trend 

to BOD5 prediction. In Fig. 4.10, it was observed that the predicted values are 

pretty similar to the actual value, showing how well the Multivariate Linear 

Regression model predicts the BOD5 value. The COD and TSS illustrations show 

a similar plot (Fig. 4.10) for Multivariate Linear Regression. The results of this 

study support the usage of it in regional contexts. They are consistent with 

extreme quality compared to earlier research (Zhao et al., 2016). 

Based on artificial data sets, all three ANN models (ANN-I, ANN-II, and 

ANN-III) perform exceptionally well in predicting BOD5, COD, and TSS. In all 

circumstances, they consistently attain high R2 values (over 0.9) and low RMSE 

and MAE values. The consistency of R2 values across all ANNs shows that they 

can explain a substantial portion of the variance in the target variables. 

Additionally, the low RMSE and MAE values imply that the prediction errors in 

these models are minimal. The limitations associated with category 3's small data 

set were tackled in this category across all situations as the size of the data set 

increased, demonstrating the improved ability of ANNs to understand the 

inherently diversified behavior of wastewater quality fully. The values predicted 

by the ANN-III model and the actual values are illustrated in Fig. 4.11. The ANN-

III model accurately predicts the BOD5 levels, which reflects the superior 

performance of deep learning models, as shown by the close positioning of the 
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green line to the red line. An analogous plot is also illustrated for COD and TSS 

in the same Fig. 4.10. 

The results of this study support the suitability of its implementation in 

regional contexts by correlating with earlier research findings (Qiu et al., 2016). 

It should be noted that the limitations associated with category 3's small data set 

were removed in this category across all scenarios as the size of the data set 

increased, demonstrating the improved ability of ANNs to thoroughly 

comprehend the naturally diverse behavior of wastewater quality. 

In summary, the accuracy of the models varies depending on the specific 

pollutant (BOD5, COD, or TSS) predicted and the data circumstances. Overall, 

employing the three ANN models to predict BOD5, COD, and TSS, high R2 values 

(over 0.9) and low RMSE and MAE values are consistently attained under all 

circumstances. The limitations imposed by category 3's small data set were 

removed in this category across all scenarios as the size of the data set 

increased, demonstrating the improved capacity of ANNs to comprehend the 

naturally variable behavior of wastewater quality thoroughly. Similarly, machine 

learning models, Extra Trees and Multivariate Linear Regression consistently 

outperformed all situations. These models excelled in capturing and forecasting 

the levels of these water quality indicators, exhibiting high R2 values, low RMSE, 

and low MAE. 

4.7 Summary of the Findings 

Following the aims and methodologies employed to achieve the objectives 

of this study, the results, obtained through a comprehensive examination and a 

detailed analysis, have been presented in Table 4.10. 

• This analysis suggests that when real data is unavailable, it is feasible to 

create synthetic data analogous to the operations and attributes of a WWTP 
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using an AI-based machine learning model with mathematical equations, 

necessary assumptions and consideration of local conditions. 

Table 4.10. Performance comparison between ML and DL (all categories and 

scenarios) for wastewater effluent (BOD5, COD and TSS) 

Category Training  Testing  ML DL Superiority 

Category-1 

Synthetic Data 

(in association 

with 

mathematical 

equation and 

assumptions) 

Synthetic Data 

(80%) 

Synthetic 

Data (20%) 

Random Forest 

> Extra Trees 

(Not All ML 

Models 

satisfactory) 

 

ANN-III > 

ANN-I > 

ANN-II 

(almost 

same) 

DL 

Category-2 Synthetic Data 

(Category-1) 

 

Real Data 

 

Random Forest 

> Gradient 

Boosting 

Regressor 

(All ML 

Models 

satisfactory) 

ANN-I > 

ANN-II > 

ANN-III 

(almost 

same) 

ML and DL 

(almost 

same) 

Category-3 

(Real Data) 

Dry (80%) Dry (20%) Multivariate 

Linear 

Regression > 

Extra Trees 

(Not All ML 

Models 

satisfactory) 

 

ANN-II > 

ANN-I > 

ANN-III 

(All DLs 

almost 

equally 

satisfactory) 

Selected ML 

(due to 

limited 

data) > all 

DLs  

Wet (80%) Wet (20%) 

Dry (100%) Wet (100%) 

Wet (100%) Dry (100%) 

Dry + Wet 

(80%) 

Dry + Wet 

(20%) 

Category-4 

(Synthetic 

Data 

Generated 

with Real 

Data) 

Dry_Synthetic Dry_Real Multivariate 

Linear 

Regression > 

Extra Trees 

(Not All ML 

Models 

satisfactory) 

 

ANN-III > 

ANN-I > 

ANN-II 

(almost 

same) 

Selected ML 

and all DLs 

(almost 

same) 

Wet_Synthetic Wet_Real 

(Dry +Wet) 

Synthetic 

(80%) 

(Dry +Wet) 

Synthetic 

(20%) 

(Dry +Wet) 

Synthetic 

(Dry+ Wet) 

Real 

 

• In Category 1, dealing with AI-based synthetic wastewater data, three 

ANNs exhibit strong predictive performance with R2 values exceeding 0.9 
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and high precision, indicated by low RMSE (0.066-0.073) and MAE (0.051-

0.059) values for BOD5, COD, and TSS in the order ANN-III > ANN-I > ANN-

II. In the case of ML, Random Forest and Extra Trees models perform well 

only for BOD5 and COD, except TSS, showing, in some cases, negative results. 

• Similar to Category 1, the three ANNs appeared to be equally effective in 

Category 2 in the context of real wastewater data versus synthetic data, with 

noteworthy results showing high R2 values above 0.9 and consistently low 

RMSE (0.066-0.084) and MAE (0.052-0.067) values for the three outputs (BOD5, 

COD, and TSS), except ANN-II and ANN-III, with R2 values for TSS falling 

just below the 0.9 threshold, a clear indication of avoiding overfitting the data, 

which is a crucial consideration when working with complex real wastewater 

data sets. Although Random Forest and Gradient Boosting Regressor have 

almost identical performance with ANN, the choice of the priority ML model 

differs from Category 1, which is fully satisfied in the case of ANN. 

• Multivariate Linear Regression and Extra Trees are the best-performing 

models in Category 3 based on a limited number of seasonal real wastewater 

data, demonstrating high R2 values above 0.9 and low RMSE and MAE. 

However, they struggle in certain situations, especially in the TSS scenario, 

with incredibly poor performance in wet conditions. Conversely, ANNs have 

slightly lower R2 values than ML models but are acceptable, with ANN-II, 

ANN-I, and ANN-III performing well in some circumstances but moderately 

in others. This inconsistency may be due to a lack of sufficient data sets, 

making it difficult to fully understand the naturally varied behavior of 

wastewater quality. 

• In Category 4, assessing the generation of synthetic seasonal data from 

limited real wastewater data, all three ANN models consistently achieve the 

best results in terms of R2 exceeding 0.9 and low RMSE (0.009-0.019) and MAE 
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(0.007-0.011) when predicting BOD5, COD, and TSS under all conditions, and 

the restrictions associated with the limited data set in Category 3 were 

eliminated in this category across all scenarios due to the increased data set, 

revealing the improved ability of ANNs to understand the naturally diverse 

behavior of wastewater quality comprehensively. In contrast, the best-

performing ML models are different for BOD5, COD, and TSS, and some ML 

models encounter difficulties in certain conditions, similar to Category 1 and 

Category 3, particularly in the TSS scenario.  
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Chapter 5: CONCLUSIONS AND 

RECOMMENDATIONS 

5.1 General 

The performance of wastewater treatment facilities using data-driven and 

artificial intelligence-based techniques has become prominent in recent years. 

These approaches do not require any knowledge about the structural details or 

current condition of the system. However, the effectiveness of these strategies is 

heavily influenced by the data quality. AI models have the advantage of being 

able to estimate effluent concentrations without having any prior knowledge of 

the system. Furthermore, there is no need to make any assumptions about the 

mathematical relationships between inputs and outputs. These models are 

capable of identifying the connections between the input and output elements 

without requiring explicit consideration of the underlying physics of the process. 

This study aims to assess the effectiveness of artificial intelligence-driven 

machine learning tools in simulating activated sludge wastewater treatment 

plants. ASS modeling using various AI-based machine learning and deep 

learning techniques in association with addressing variability in wastewater 

characteristics is evaluated. The most effective AI-based ML and DL algorithms 

for the best ASS performance were revealed. 

5.2 Conclusions of the Study 

After a thorough examination and in-depth analysis involving various 

scenarios, including seasonal fluctuations, this study concludes the following: 

• AI-based machine learning tools demonstrate significant potential for 

synthetic data generation, similar to WWTP operations and attributes, tested 

by basic statistics and the correlation of wastewater parameters when real 
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data is unavailable, to model the biological treatment process for treating 

domestic wastewater. 

• The variability of wastewater composition and their reduction potential 

performances by ASS using ANN are found to be fairly appropriate for the 

prediction of effluent quality parameters. 

• The ANN-III model is revealed as the most effective predictive tool in this 

investigation, demonstrating exceptional performance across a wide range of 

conditions, including seasonal variations with R2 values exceeding 0.9, as well 

as maintaining low values of RMSE (0.009-0.084) and MAE (0.007-0.067) in 

almost all variabilities addressed. 

Utilizing AI-based ML and DL algorithms, in particular Artificial Neural 

Networks (ANN), has proven to be an efficient method for generating 

synthetic data when real data is unavailable because of its capacity to capture 

intricate non-linear correlations within the data. 

5.3 Implications of this Study 

The effectiveness of WWTP modeling studies greatly depends on the 

presence of time-series data, as this data is essential for understanding 

disruptions in WWTPs caused by various factors, such as changes in wastewater 

composition due to dietary habits, environmental conditions, climate, and other 

local factors. Unfortunately, in Bangladesh, real-time series data is often 

unavailable, making it challenging to gather sufficient information. In the 

absence of real data, it is possible to create synthetic wastewater data utilizing 

AI-based machine learning tools that closely resemble the operations and 

characteristics of the WWTP by considering the specific local conditions. 

Simultaneously, ML and DL algorithms, particularly ANN, can capture complex 

non-linear correlations among wastewater parameters. This surely helps 

wastewater professionals monitor WWTPs effectively, promptly identify issues, 
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take the remedial action needed for existing or newly developed WWTPs, and 

make decisions related to wastewater treatment, quality control, process 

optimization, and environmental pollution control and management. 

5.4 Recommendations for Future Study 

While this study has achieved notable success, specific aspects have been 

recognized as areas for potential further investigation. In the continuation of this 

research, future studies can explore the following issues: 

• This study primarily concentrates on tackling the multiple-input-single-

output (MISO) situation; however, the use of a multiple-input-multiple-output 

(MIMO) technique for evaluating the resilience of artificial neural networks 

(ANNs) can be explored with the developed models. 

• Testing the model with real-time series and seasonal operational data from 

wastewater treatment plants is a recommended way to assess the precision, 

homogeneity, and dependability of the model. 

• Another suggested strategy is to use the same techniques with synthetic 

data, considering diverse parameters beyond BOD5, COD, and TSS to assess 

the potential for 3Rs (reduce, reuse and recycle) in accordance with the 

guidelines outlined in Bangladesh Standards (BECR, 2023). 

• One potential avenue for promising future research involves utilizing 

feature extraction methods like PCA on the same dataset and then conducting 

a comparative analysis with the models that have been developed. 

It is vital to remember that the choice of a neural network structure for 

activated sludge wastewater treatment system depends on the specific 

circumstances, data availability, and modeling goals. Suitable data pre-

processing and validation approaches are also essential for developing precise 

and trustworthy ANN models for wastewater treatment operations.  
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Appendix A: Different types of ANN structures 

Table A1: ANN variation with different network architecture 

 

 

 

 

 

 

 

 

Model 

Name 

Optimizer Activation 

Function 

Network Architecture 

Trial-1 Trial-2 Trial-3 

ANN-

I 

Adam ReLU 8-16-8-1 8-64-8-1 32-64-32-1 

ANN-

II 

SGD Sigmoid 8-16-32-16-8-
1 

8-16-64-16-8-

1 

128-64-32-

16-8-1 

ANN-

III 

Adam SELU 8-16-32-64-

32-16-8-1 

8-16-32-128-

32-16-8-1 

128-16-32-

64-32-16-8-1 
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Appendix B: Category-1: Synthetic data in association with mathematical 

equations and assumptions [Training (80%), Testing (20%)] 

Table B1. Trial–1: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) 

 

 

Table B2. Trial–2: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) 

 

Table B3. Trial–3: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) 

 

 

 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.85 0.90 0.62 0.101 0.066 0.186 0.077 0.053 0.142 

ANN-II 0.80 0.87 0.63 0.072 0.078 0.185 0.098 0.055 0.146 

ANN-III 0.88 0.90 0.70 0.079 0.068 0.174 0.082 0.053 0.132 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.82 0.80 0.67 0.173 0.108 0.178 0.16 0.153 0.135 

ANN-II 0.82 0.80 0.60 0.174 0.109 0.189 0.162 0.155 0.15 

ANN-III 0.81 0.80 0.70 0.181 0.109 0.174 0.164 0.154 0.131 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.88 0.86 0.83 0.106 0.097 0.099 0.106 0.084 0.086 

ANN-II 0.88 0.85 0.62 0.103 0.099 0.186 0.105 0.085 0.147 

ANN-III 0.88 0.85 0.69 0.108 0.099 0.175 0.102 0.083 0.132 
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Appendix C: Category-2 (Training: Synthetic data of Category-1 and Testing: 

Real wastewater data) 

Table C1. Trial–1: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) 

 

 

Table C2. Trial–2: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) 

 

Table C3. Trial–3: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) 

 

 

 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.75 0.86 0.86 0.115 0.088 0.087 0.089 0.071 0.038 

ANN-II 0.74 0.83 0.83 0.115 0.096 0.085 0.09 0.079 0.036 

ANN-III 0.73 0.82 0.86 0.118 0.1 0.088 0.087 0.081 0.038 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.75 0.84 0.86 0.118 0.094 0.087 0.082 0.075 0.038 

ANN-II 0.75 0.81 0.83 0.114 0.102 0.085 0.09 0.088 0.036 

ANN-III 0.75 0.83 0.86 0.114 0.098 0.088 0.086 0.079 0.038 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.76 0.82 0.60 0.111 0.1 0.198 0.081 0.08 0.147 

ANN-II 0.76 0.84 0.63 0.112 0.094 0.186 0.086 0.079 0.136 

ANN-III 0.77 0.84 0.64 0.111 0.094 0.186 0.085 0.076 0.136 
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Appendix D: Category-3: Seasonal variation based performance 

Table D1. Trial–1: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Dry Real (80/20)] 

 

Table D2. Trial–2: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Dry Real (80/20)] 

 

Table D3. Trial–3: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Dry Real (80/20)] 

 

 

 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.82 0.84 0.86 0.104 0.119 0.103 0.084 0.096 0.083 

ANN-II 0.67 0.81 0.43 0.241 0.123 0.202 0.213 0.087 0.184 

ANN-III 0.83 0.86 0.46 0.088 0.109 0.201 0.089 0.083 0.156 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.43 0.67 0.88 0.25 0.187 0.094 0.212 0.109 0.069 

ANN-II 0.66 0.64 0.58 0.209 0.192 0.296 0.182 0.159 0.251 

ANN-III 0.70 0.68 0.43 0.185 0.124 0.206 0.176 0.181 0.181 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.87 0.82 0.70 0.107 0.084 0.15 0.036 0.069 0.124 

ANN-II 0.85 0.54 0.67 0.137 0.292 0.295 0.306 0.259 0.249 

ANN-III 0.85 0.51 0.43 0.134 0.301 0.205 0.06 0.246 0.17 
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Table D4. Trial–1: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Wet Real (80/20)] 

 

Table D5. Trial–2: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Wet Real (80/20)] 

 

Table D6. Trial–3: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Wet Real (80/20)] 

 

 

 

 

 

Model 

 

R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.89 0.84 0.86 0.129 0.119 0.103 0.117 0.096 0.083 

ANN-II 0.81 0.81 0.83 0.145 0.123 0.92 0.357 0.107 0.74 

ANN-III 0.80 0.86 0.46 0.1217 0.109 0.201 0.109 0.083 0.156 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.86 0.83 0.89 0.128 0.096 0.122 0.107 0.054 0.093 

ANN-II 0.80 0.63 0.75 0.387 0.231 0.261 0.064 0.189 0.325 

ANN-III 0.81 0.47 0.63 0.344 0.243 0.226 0.269 0.209 0.203 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.87 0.86 0.86 0.057 0.174 0.14 0.036 0.111 0.104 

ANN-II 0.85 0.87 0.72 0.107 0.172 0.204 0.106 0.109 0.188 

ANN-III 0.85 0.81 0.86 0.094 0.136 0.148 0.86 0.167 0.161 
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Table D7. Trial–1: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Dry Wet (80/20)] 

 

Table D8. Trial–2: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Dry Wet (80/20)] 

 

Table D9. Trial–3: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Dry Wet (80/20)] 

 

 

 

 

 

Model 

 

R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.79 0.66 0.85 0.224 0.264 0.098 0.184 0.225 0.076 

ANN-II 0.78 0.81 0.80 0.275 0.153 0.175 0.134 0.117 0.137 

ANN-III 0.79 0.62 0.86 0.244 0.258 0.095 0.197 0.203 0.085 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.74 0.36 0.60 0.185 0.284 0.16 0.148 0.225 0.132 

ANN-II 0.80 0.51 0.57 0.136 0.253 0.172 0.133 0.217 0.136 

ANN-III 0.90 0.52 0.61 0.113 0.258 0.167 0.093 0.213 0.154 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.79 0.84 0.95 0.205 0.087 0.058 0.153 0.67 0.049 

ANN-II 0.81 0.81 0.57 0.189 0.156 0.272 0.129 0.125 0.234 

ANN-III 0.85 0.87 0.60 0.187 0.084 0.239 0.121 0.063 0.211 
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Table D10. Trial–1: Performance evaluation of DL for wastewater effluent 
(BOD5, COD, TSS) [Training: Dry, Testing: Wet] 

 

Table D11. Trial–2: Performance evaluation of DL for wastewater effluent 
(BOD5, COD, TSS) [Training: Dry, Testing: Wet] 

 

Table D12. Trial–3: Performance evaluation of DL for wastewater effluent 
(BOD5, COD, TSS) [Training: Dry, Testing: Wet] 

 

 

 

 

 

Model 

 

R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.86 0.80 0.45 0.138 0.124 0.283 0.109 0.093 0.243 

ANN-II 0.46 0.74 0.45 0.298 0.125 0.296 0.261 0.107 0.257 

ANN-III 0.62 0.58 0.47 0.171 0.297 0.268 0.138 0.252 0.212 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.55 0.80 0.76 0.33 0.124 0.166 0.3 0.093 0.119 

ANN-II 0.63 0.74 0.68 0.28 0.105 0.287 0.26 0.21 0.262 

ANN-III 0.67 0.68 0.46 0.22 0.197 0.334 0.186 0.152 0.271 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.42 0.61 0.65 0.29 0.276 0.283 0.261 0.223 0.259 

ANN-II 0.66 0.71 0.58 0.268 0.182 0.312 0.221 0.264 0.266 

ANN-III 0.62 0.79 0.45 0.28 0.212 0.309 0.238 0.26 0.256 
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Table D13. Trial–1: Performance evaluation of DL for wastewater effluent 
(BOD5, COD, TSS) [Training: Wet, Testing: Dry] 

 

Table D14. Trial–2: Performance evaluation of DL for wastewater effluent 
(BOD5, COD, TSS) [Training: Wet, Testing: Dry] 

 

Table D15. Trial–3: Performance evaluation of DL for wastewater effluent 
(BOD5, COD, TSS) [Training: Wet, Testing: Dry] 

 

 

 

 

 

Model 

 

R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.89 0.63 0.76 0.081 0.247 0.142 0.064 0.208 0.109 

ANN-II 0.90 0.47 0.72 0.078 0.274 0.295 0.063 0.218 0.252 

ANN-III 0.70 0.49 0.86 0.134 0.257 0.081 0.095 0.2 0.078 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.69 0.65 0.84 0.13 0.169 0.149 0.102 0.291 0.102 

ANN-II 0.88 0.72 0.75 0.119 0.127 0.169 0.092 0.267 0.16 

ANN-III 0.80 0.86 0.82 0.144 0.094 0.153 0.095 0.065 0.108 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.79 0.65 0.80 0.151 0.189 0.13 0.164 0.131 0.102 

ANN-II 0.82 0.68 0.72 0.113 0.184 0.149 0.187 0.125 0.139 

ANN-III 0.73 0.69 0.53 0.135 0.178 0.199 0.197 0.123 0.155 
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Appendix E: Category-4: Synthetic data from real wastewater data 

Table E1. Trial–1: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Dry Wet Synthetic (80/20)] 

 

Table E2. Trial–2: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Dry Wet Synthetic (80/20)] 

 

Table E3. Trial–3: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Dry Wet Synthetic (80/20)] 

 

 

 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.65 0.87 0.41 0.175 0.035 0.283 0.16 0.027 0.273 

ANN-II 0.51 0.83 0.50 0.137 0.169 0.157 0.112 0.156 0.144 

ANN-III 0.70 0.79 0.49 0.132 0.132 0.212 0.113 0.121 0.203 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.84 0.72 0.61 0.027 0.144 0.183 0.022 0.128 0.173 

ANN-II 0.54 0.83 0.62 0.139 0.137 0.132 0.114 0.119 0.113 

ANN-III 0.77 0.78 0.77 0.149 0.046 0.179 0.123 0.034 0.171 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.85 0.66 0.55 0.066 0.236 0.12 0.061 0.219 0.11 

ANN-II 0.66 0.38 0.68 0.084 0.153 0.134 0.081 0.136 0.117 

ANN-III 0.68 0.12 0.51 0.083 0.144 0.073 0.08 0.117 0.06 
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Table E4. Trial–1: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Training: Dry Synthetic, Testing: Dry Real] 

 

Table E5. Trial–2: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Training: Dry Synthetic, Testing: Dry Real] 

 

Table E6. Trial–3: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Training: Dry Synthetic, Testing: Dry Real] 

 

 

 

 

 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.53 0.54 0.53 0.165 0.269 0.319 0.137 0.223 0.253 

ANN-II 0.48 0.54 0.79 0.249 0.247 0.261 0.209 0.212 0.196 

ANN-III 0.73 0.93 0.64 0.125 0.064 0.293 0.099 0.049 0.231 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.53 0.57 0.92 0.236 0.203 0.063 0.194 0.251 0.043 

ANN-II 0.55 0.56 0.74 0.245 0.249 0.244 0.208 0.213 0.185 

ANN-III 0.52 0.53 0.85 0.224 0.246 0.088 0.187 0.203 0.074 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.75 0.71 0.80 0.234 0.134 0.172 0.187 0.16 0.156 

ANN-II 0.78 0.77 0.87 0.248 0.151 0.137 0.211 0.116 0.184 

ANN-III 0.80 0.86 0.84 0.227 0.025 0.175 0.184 0.039 0.117 
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Table E7. Trial–1: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Training: Wet Synthetic, Testing: Wet Real] 

 

Table E8. Trial–2: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Training: Wet Synthetic, Testing: Wet Real] 

 

Table E9. Trial–3: Performance evaluation of DL for wastewater effluent (BOD5, 
COD, TSS) [Training: Wet Synthetic, Testing: Wet Real] 

 

 

 

 

 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.83 0.42 0.70 0.076 0.427 0.247 0.063 0.327 0.181 

ANN-II 0.69 0.70 0.72 0.249 0.274 0.206 0.22 0.238 0.164 

ANN-III 0.87 0.87 0.82 0.05 0.051 0.078 0.037 0.042 0.066 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.45 0.86 0.86 0.333 0.054 0.103 0.233 0.045 0.092 

ANN-II 0.68 0.77 0.67 0.288 0.284 0.298 0.253 0.247 0.257 

ANN-III 0.84 0.87 0.89 0.07 0.051 0.092 0.058 0.035 0.084 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.85 0.92 0.87 0.061 0.043 0.049 0.045 0.035 0.041 

ANN-II 0.66 0.64 0.68 0.286 0.279 0.301 0.251 0.244 0.259 

ANN-III 0.86 0.91 0.72 0.054 0.038 0.079 0.048 0.032 0.07 
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Table E10. Trial–1: Performance evaluation of DL for wastewater effluent 
(BOD5, COD, TSS) [Training: DryWet Synthetic, Testing: DryWet Real] 

 

Table E11. Trial–2: Performance evaluation of DL for wastewater effluent 
(BOD5, COD, TSS) [Training: DryWet Synthetic, Testing: DryWet Real] 

 

Table E12. Trial–3: Performance evaluation of DL for wastewater effluent 
(BOD5, COD, TSS) [Training: DryWet Synthetic, Testing: DryWet Real] 

 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.87 0.83 0.88 0.024 0.094 0.03 0.031 0.017 0.023 

ANN-II 0.74 0.90 0.83 0.233 0.022 0.096 0.2 0.013 0.057 

ANN-III 0.89 0.89 0.86 0.022 0.019 0.036 0.016 0.015 0.025 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.89 0.89 0.89 0.017 0.023 0.023 0.014 0.017 0.016 

ANN-II 0.62 0.81 0.86 0.23 0.133 0.187 0.201 0.212 0.153 

ANN-III 0.89 0.89 0.87 0.019 0.017 0.032 0.015 0.013 0.021 

Model R2 RMSE MAE 

BOD5 COD TSS BOD5 COD TSS BOD5 COD TSS 

ANN-I 0.55 0.89 0.57 0.378 0.017 0.214 0.302 0.013 0.166 

ANN-II 0.64 0.51 0.72 0.224 0.233 0.192 0.195 0.202 0.156 

ANN-III 0.89 0.90 0.89 0.017 0.016 0.012 0.012 0.012 0.009 


