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সারাংশ 

ফেটাে�িথসেমা�াম হল এক� আেলাক�া� সংেকত যা রে�র আয়তনগত পিরবত� েনর উপর 

িভি� কের কাজ কের। �যেহতু �দেরাগ র� পা� করার সােথ স�িক� ত, তাই �দেরাগ  

সনা� করার জন� িপিপিজ অধ�য়ন করা �যেত পাের। গেবষকরা ইিতমেধ� উ� র�চাপ, 

কেরানাির ধমনী �রাগ, ডায়ােব�স সহ িবিভ� �রাগ সনা�করেণর জন� িপিপিজ সংেকত 

িবে�ষণ কেরেছন। এছাড়াও, দ�ু ���পূণ� �া�� িনেদ�শক : �দ��ন এবং র�চাপ িবিভ� 

গেবষণায় িপিপিজ সংেকত �থেক িনণ�য় করা হয়। তেব পূেব�র �বিশরভাগ কাজই সফটওয়�ার 

পয�ােয় করা হেয়েছ �কােনা হাড� ওয়�ার বা�বায়ন ছাড়াই। এছাড়াও, মি�ে� র� �বাহ স�িক� ত 

দ�ু ���পূণ� �দেরাগ: �সির�াল ইনফাক� শন এবং �সিরে�াভাস�লার �রাগ এখনও িপিপিজ 

সংেকেতর উপর িভি� কের �বর করা হয়িন। তাই, এই গেবষনার ল�� হল এক� হাড� ওয়�ার-

িভি�ক িসে�ম �তির করা যা িবিভ� কািড� ওভাস�লার �রাগ - উ� র�চাপ, �সির�াল 

ইনফাক� শন, �সিরে�াভাস�লার �রাগ সহ ডায়ােব�স সনা� করেত পাের। গেবষণা� এক� 

বাইনাির ��িণিবন�াস প�িতেত এবং এক� ব�ে�ণীর ��িণিবন�াস প�িতেত পৃথকভােব এই 

�রাগ�িল সনা� করার স�াব�তা পরী�া কের। এছাড়াও, এই �রাগ�িলর সংিম�ণ 

সনা�করেণর স�াব�তা এক�  ব�মূখী ��ণীর ��ণীিবভাগ িসে�ম িডজাইন কের িবে�ষণ 

করা হয়। িপিপিজ সংেকত �থেক �দ��ন এবং র�চােপর পূব�াভােসর জন� এক� িসে�মও 

�েয়াগ করা হয়। Zedboard zynq 7000 এবং zynq ultrascale+ FPGA �বাড� েক ল�� কের 

Xilinx িসে�ম �জনােরটের িসে�ম�িল �তির করা হেয়েছ। উ� র�চাপ, �সির�াল ইনফাক� শন, 

�সিরে�াভাস�লার িডিজজ এবং ডায়ােব�স শনা� করার ��ে� যথা�েম ৯৬.৩৭%, 

৯৩.৪৮%, ৯৬.৪৩% এবং ৮৮.৪৬% স�কতা পাওয়া যায়। বাইনাির ��িণিবন�াস প�িতেত 

১১� �বিশ�� ও SVM ��ণীিবভাগ �েয়ােগর ফেল 0.৬৯৩ ওয়াট শি� ব�ব�ত  হয়। ব�মখূী 

��ণীর ��ণীিবভাগ িসে�ম �মাট ১.৪০৩ ওয়াট শি� ব�বহার কের, যা ৭ ��ণীর �রাগ সনা� 

করার জন� ৭৯.৮৩% িনভু� লতা �দান কের। এছাড়াও, �দ��ন এবং র�চাপ অনুমান 

িসে�ম ০.৩৫৩ ওয়াট শি� ব�ব�ত  হয়। হােট� র হার ৪.০৪% ��র সােথ পূব�াভাস করা 

হয় �যখােন সেব�া� সংেকাচন চাপ  এবং সব�িন� �সারন চাপ  যথা�েম ৩.৭৭% এবং 

৪.৮% ��র সােথ অনুমান করা হয়। পিরধানেযাগ� য�, �াট� ওয়াচ �তিরর জন� পিরকি�ত 

��ােটাটাইপেক আরও উ�ত করা �যেত পাের এবং িচিকৎসা ও িবে�ষেণর জন� উপেযাগী 

হেত পাের। 
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Abstract

Photoplethysmogram is an optically obtained signal working based on the

volumetric change of blood. As heart diseases are correlated with the pumping

of blood, PPG can be studied for detecting cardiovascular diseases. Researchers

have already analyzed PPG signals for various disease detection, including

hypertension, coronary artery disease, diabetes, and others. Also, two important

health parameters: heart rate and blood pressure have been predicted from PPG

signals in several studies. However, most of the work has been done at the

software level without any hardware implementation. In addition, two

important cardiovascular diseases related to blood flow in the brain: cerebral

infarction and cerebrovascular disease are yet to be explored based on PPG

signal. Hence, this study aims to develop a hardware-based system that can

detect several cardiovascular diseases - hypertension, cerebral infarction,

cerebrovascular disease, diabetes, and a few combinations of them. The study

checks the feasibility of detecting these diseases individually in a binary

classification system and also in a multiclass classification system. A system is

also implemented for predicting heart rate and blood pressure from PPG signals.

The systems are developed in Xilinx system generator targeting Zedboard zynq

7000 and zynq ultrascale+ FPGA board. The binary classification system uses 11

features and applied SVM classifier to get the accuracy of 96.37%, 93.48%,

96.43%, and 88.46% for detecting hypertension, cerebral infarction,

cerebrovascular disease, and diabetes, respectively, consuming a total of 0.693 W

power. The multi-class classification system utilizes a total of 1.403 W of power,

providing an accuracy of 79.83% for detecting 7 classes of diseases. Also, the

heart rate and blood pressure estimation system utilizes 0.353 W of power. The

heart rate is predicted with 4.04% error while systolic and diastolic blood

pressure are estimated with 3.77% and 4.8% error, respectively. The designed

prototype can be further extended to develop wearable devices, and

smartwatches and can be useful for medical treatment and analysis.
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Chapter 1: Introduction

Point-of-care (POC) systems are becoming essential in this modern era. It helps to detect

abnormalities and alarm people about their hidden health conditions at the initial level

when a patient consults a physician. Specially for monitoring cardiovascular fitness,

digital systems are becoming more prevalent. This is because people may be affected by

many cardiovascular diseases without showing symptoms. Photoplethysmogram (PPG)

is a non-invasive biosignal that can be analyzed to detect these CVDs. This chapter

gives a brief review of photoplethysmogram. After that the applications of PPG signal

are depicted. Also, the problem statement of this thesis is shared. This chapter outlines

the background in Section 1.1, the present state of the problem in Section 1.2 and specific

objectives in Section 1.3. Section 1.4 describes the significance and scope of this research.

Finally, Section 1.5 includes an outline of the remaining chapters of the thesis.

1.1 Background

A biosignal obtained from the body, the photoplethysmogram shows changes in

blood volume [1], [2]. Being a simple optical method, PPG is used to find

changes in blood volume in peripheral circulation. It is an inexpensive,

non-invasive technique that measures skin surface parameters. It measures how

much light is reflected or absorbed by human tissues. This optical waveform is

sometimes referred to as a digital volume pulse (DVP) [3]. PPG is linked to

changes in blood volume in the microvascular bed of tissue, which contains

important details about the neurological, respiratory, and cardiovascular

systems [4]. The toe and fingertip are usually selected for measuring the PPG

signal along with the earlobe, wrist, forearm, and forehead [5] as these areas are

suitable for measuring light absorption by blood. The PPG signal is an electrical

signal produced based on the volume of blood or in another way total

absorption of light.

Chapter 1: Introduction 1



Non-pulsatile 

component of

Artery Blood

Non-pulsatile 

component of

Venous Blood

Non-pulsatile 

component of

Other tissue

Pulsatile 

component of

Artery Blood

A
C

: 
p

u
ls

at
il

e 

p
ar

t

D
C

: 
st

ea
d

y
 

p
ar

t

Time

A
m

p
li

tu
d

e

Fig. 1.1 AC and DC component of a PPG signal

Pulsatile (AC) and superimposed (DC) components make up the PPG signal

which is shown in Fig. 1.1. The fluctuations in blood volume caused by

heartbeats give the AC component, whereas the sympathetic nervous system

activity, breathing, and temperature control shape the DC component [4]. The

systolic and diastolic phases of phasic cardiac activity, represented by the AC’s

systolic and diastolic components, cause changes in blood volume. The pulse

wave’s systolic peak occurs at the end of the systolic phase (also known as the

”rise time”), which starts with a valley. Another dip at the diastolic period’s

conclusion indicates the pulse wave’s termination. Using features like rising

time, amplitude, and shape, the ensuing waveform graphed from this data can

forecast vascular changes in the bloodstream.

The primary light source for PPG sensors is typically an infrared light emitting

diode (IR-LED) or a green LED. While green light is typically used to calculate

the absorption of oxygen in oxyhemoglobin (oxygenated blood) and

deoxyhemoglobin (blood without oxygen present), IR-LEDs are more sensitive

for measuring the flow of blood that is more deeply concentrated in certain parts

of the body, such as the muscles [6]. For exact measurement of changes in blood

volume in the microvascular tissue bed, the light source, specifically the
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wavelength, should absorb blood more thoroughly than other tissue

constituents. Shorter wavelengths of light are strongly absorbed by melanin,

whereas longer and ultraviolet wavelengths of light are absorbed by water [7].

As a result, PPG sensors often use red and near-IR light as their light sources.

However, as green light is better absorbed by haemoglobin and oxyhemoglobin

than red light [8], more and more devices began to employ this wavelength. A

better signal with less noise was the consequence of this. As a result, green LED

light is chosen and most frequently employed despite alternatives since it can

measure things more precisely because it can penetrate tissue more deeply. The

general PPG operating principle is shown in Fig. 1.2.

LED

Finger

Photo detector

Fig. 1.2 PPG acquisition process

In its simplest form, it needs a light source to illuminate the tissue and a

photodetector to track minute changes in light intensity caused by changes in

perfusion in the catchment volume. PPG uses low-intensity infrared green (IR)

light from the LED source. When light passes through biological tissues, it is

absorbed by venous and arterial blood, skin pigments, and bones. PPG sensors

can detect variations in blood flow as changes in light intensity because blood

more strongly absorbs light than the surrounding tissues. The amount of blood

flowing through the blood vessels is inversely correlated with the voltage signal

from PPG. Using this technique, even minute variations in blood volume can be

identified with higher precision.

The recorded PPG signal can be examined for blood-based health monitoring

systems due to its link with blood. The volumetric change of blood can indicate

a number of heart-related characteristics since the heart regulates blood

pumping. Therefore, PPG can be utilized for heart checks and health
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monitoring, significantly improving the healthcare system [9].

1.2 Present State of the Problem

As the medical field is developing with the development of new technologies,

PPG is also utilized more for health monitoring. New wearable devices are

being designed which provides multiple functionality. The wearable device

basically works on the principle of PPG signal. Hence, study on more health

parameters and disease detection from PPG signals will benefit medical

technology. Utilizing the PPG signal for various disease detection processes will

help to identify severe diseases at an early stage and thus will help to start

treatment early. Much of the disease detection has been done at the software

level. However, digital systems may help to reach a patient’s information to

doctors and relatives so that precautions and steps can be taken upon serious

action. Digital systems may also help to develop Point-of-care (POC) systems.

POC systems are hospital or outpatient information systems with bedside

terminals or other devices for data collection and entry at the location where

patients receive care. It will help to monitor the patient continuously. In an

emergency, the system can alert the doctors or other persons engaged for the

patients. This will help to save a lot of lives.

Cardiovascular diseases are increasing at an alarming rate in the whole world

[10]. Due to people’s modern and busy lifestyle, diseases are increasing rapidly.

With the spread of coronavirus, cardiovascular diseases have increased among

people more rapidly [11]. In most cases, the symptoms cannot be detected until

they reach a severe stage. So, early detection is needed for prevention of this

disease. Software-based work lacks in instantaneous disease detection or health

parameter determination. The need for a digital hardware-based system arises

to tackle this issue, which this thesis addresses.

1.3 Specific Objectives

The study’s main aim is to develop a digital system that can detect several

cardiovascular diseases and predict heart rate and blood pressure from recorded
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PPG signals. As software-based disease detection is commonly done, the

feasibility of a hardware-based system needs to be checked. Hypertension is one

of the most common cardiovascular diseases, which is in focus. Also, two

cardiovascular diseases related to blood flow are yet to be explored from the

PPG signal. Diabetes is another growing disease in the world that has a

connection with cardiovascular diseases. The designed system will try to detect

this disease from PPG signal. Also, a system can be designed for heart rate and

blood pressure estimation. This will help to check the health condition of

subjects during any activity or of a patient for monitoring. So the specific

objectives of this thesis are as follows:

1) To classify different cardiovascular diseases based on PPG signals &

implement the classification model on FPGA.

2) To estimate heart rate and blood pressure from FPGA implementation.

1.4 Significance of the Work

PPG signals are already used in wearable devices for oxygen saturation

monitoring. Also, some PPG-based devices measure heart rate and blood

pressure. If a digital system is developed for classifying cardiovascular diseases

from PPG signals, it can be readily integrated with modern e-health systems.

Smartwatches and other wearable devices can be used to implement the

proposed system for greater convenience. Diabetes measuring from PPG will

also help to control the disease in the world in a non-invasive manner.

Furthermore, the development of this system will open the door for other

diseases to be detected from the PPG signal. It will also help to monitor the heart

rate and blood pressure continuously. As the acquisition of PPG signal is very

simple through a PPG sensor, there will be scope to detect other health

parameters, which can be implemented at the hardware level.

In short, this research will pave the way for the study of many other cardiac

conditions and disease analyses along with different health parameters in the

future.
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1.5 Thesis Outline

Chapter 1. Introduction

Chapter 2. Literature 

Review

Chapter 3. Software 
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Chapter 4. Hardware 

Architecture

Chapter 5. Performance 

Analysis

Chapter 6. Conclusions

Backgrounds

System designs and 

analysis

Summaries

Fig. 1.3 Structure of the thesis

The thesis presents the design of the software framework and the hardware

architecture of some systems for detecting cardiovascular disease, diabetes, and

heart rate, and blood pressure estimation. The software framework and

hardware design are explained in separate chapters. The overall thesis

organization is depicted in Fig. 1.3.

The first chapter describes the background of photoplethysmogram signal. The

working principle of PPG signal acquisition and its basic characteristics are

explained. The problem statement and significance of the study are also
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discussed.

Chapter 2 reviews the application of photoplethysmogram signals in various

sectors. The previous works on PPG signals are discussed. The main focus has

been given to the previous works for classifying cardiovascular diseases,

diabetes, heart rate, and blood pressure estimation from PPG signals. PPG-based

Hardware system development studies are also analyzed in this chapter.

Chapter 3 shows the software framework of the study. The design procedure on

Matlab for developing the preprocessing stage, feature extraction, and classifier

is explained in this chapter.

Chapter 4 illustrates the system architecture of hardware design of various

subsystems in Xilinx system generator.

Chapter 5 shows the overall results of the software-based system and

hardware-based system. It gives an overview of the performances of the

designed systems. Also, a comparison between the software systems and

hardware systems is depicted. Resource utilization and power consumption

analysis are done in this chapter. Finally, the performances of the systems are

compared with previous works.

Chapter 6 summarizes the research work and shows the key findings of this

work. Limitations of the study are illustrated and some recommendations for

future study are mentioned.
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Chapter 2: Literature Review

There are many research works on detecting cardiovascular diseases from PPG signals.

Also, diabetes detection and heart rate, and blood pressure estimation from PPG signals

have been done by many researchers. However, not much work has been done at the

hardware level so far. This section shows the application of photoplethysmograms in

various health parameter analyses and disease detection. The study is focused on

cardiovascular disease along with diabetes detection. Hence in this section, previous

works on cardiovascular disease and diabetes are mentioned. Also, the other objective of

this study is to determine heart rate and blood pressure from PPG signals. Hence,

publications on this topic are also analyzed in this chapter. Recent works focused on

hardware implementation are also highlighted at the end.

2.1 Photoplethysmogram Application

Photoplethysmogram has a relation with the change in the volume of blood

flow. So, it can be analyzed for blood-related health complications. Heart

conditions are correlated with blood problems. Therefore, it can be studied for

cardiac system monitoring and heart complication analysis. Also, various

diseases are connected with blood and heart, so PPG has the potential to detect

these diseases also. Beyond its use in a clinical environment,

photoplethysmogram (PPG) is increasingly used for measuring the

physiological state of an individual in daily life [12]. PPG is typically used for

measuring blood oxygen saturation (pulse oximetry), peripheral vascular tone,

and changes in peripheral blood flow according to the respiratory cycle [13]. The

general application of PPG is shown in Fig. 2.1.

many wearable devices for measuring oxygen saturation utilize PPG signals.

However, nowadays, it is also used in various cardiovascular disease detection,

diabetes detection, heart rate variability checking, blood glucose measurement,

heart rate, blood pressure measurement, and others. Recent research indicates
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that Photoplethysmography (PPG) signals carry more information than oxygen

saturation level (SpO2) and can be utilized for affordable, fast, and noninvasive

healthcare applications [14]. PPG is used for detecting SpO2 in various studies

and some of them are implemented as wearable devices [15]–[19]. PPG has also

been used for drowsiness detection specially during car driving [20]–[24]. In

addition, for glucose level detection[25]–[28], respiration rate [17], [29], [30],

hemoglobin prediction [31]–[33], stress detection [34]–[36] PPG signals have

been used by researchers.

Berwal et al. [15] have proposed a method for improving oxygen saturation

estimation accuracy by denoising the infrared and red signals. They have

considered the green PPG signal as a reference for baseline wander removal.

Entropy, kurtosis, and signal-to-noise ratio have been considered for detecting

the signal quality of the signal. They are hopeful about their designed system

performance to provide with 1% variance in detecting oxygen saturation.

Fachrurazi et al. [16] have developed a wearable pulse oximeter for estimating

oxygen saturation. They used a MAX30100 PPG sensor and a microprocessor

that processes the PPG signal and sends the oxygen saturation data to android

device via bluetooth. It shows an accuracy of 99.72% in predicting oxygen
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saturation. Krizea et al. [17] have developed a wearable platform for various

health parameter checking including heart rate, respiration rate, and oxygen

saturation. The hardware components are implemented on a PCB surface. The

system uses a PPG sensor, microcontroller, accelerometer, and a power supply.

They have used an IIR Butterworth bandpass filter for denoising the PPG signal.

They predicted oxygen saturation by the ratio of AC and DC components of the

red and infrared light of the PPG sensor. They achieved a mean percentage error

of 0.8% in detecting oxygen saturation. Braun et al. [18] have designed an ear

pulse oximeter for oxygen saturation detection. They evaluated their system for

16 healthy subjects and 20 other hypoxemic patients. The results show almost

the same output in detecting oxygen saturation with a standard pulse oximeter.

Tham et al. [19] have developed an IOT-based health monitoring device for

measuring oxygen saturation. They also used the ratio of AC and DC

components of red and infrared light to detect oxygen saturation.

Rundo et al. have done multiple studies on drowsiness detection from PPG

signals. In [20], the authors proposed a driving assistance system based on an

ad-hoc designed biosensor that samples the PPG signal of the driver and

correlates it with attention level. They used a 1D Temporal dilated convolution

neural network to classify the driver’s attention level and achieved an accuracy

of 98.71% for the drowsy driver and 99.03% for the wakeful driver. From [21] it

is found from the same authors that they have used a 3D semantic segmentation

deep network with ad-hoc 1D Temporal dilated convolution neural network and

embedded the system on STA1295 Accordo5 core. In this method, they achieved

98.78% accuracy for the drowsy driver and 99.13% for the wakeful driver. In

[22], an embedded time-domain hyper-filtering approach is designed which is

combined with a 1D Temporal Convolutional architecture with a progressive

dilation setup. It has achieved 96% accuracy in drowsiness detection. Again, in

[23], the authors designed an embedded platform based on the STA1295 core for

drowsiness detection. For analysis, they used data from 40 subjects. Though

their system is able to detect drowsiness the performance analysis of their

system is lacking. In [24], the author suggests an embedded perceptual ADAS

system that uses the well-known hyper-spectral approach, often used to process
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2D images, as inspiration for a novel and patented PPG signal processing

technique termed ”hyper-filtering”. The proposed method has achieved an

accuracy of 98.71% accuracy in drowsy driver detection.

PPG has been studied for glucose level estimation also. Hina et al. [25] used

ensembled boosted trees to detect glucose levels from PPG signal. They

designed a preprocessor for the removal of baseline wander and motion

artifacts. The system has been implemented in a 180nm CMOS technology

which requires an area of 4.5mm2 and consumes 208µw power. It shows a

relative difference of 5.83% in glucose level prediction. The same author

designed a glucose monitoring system using support vector regression with fine

gaussian kernel [26]. In this study also, they used a 180nm CMOS technology

which requires an area of 4.0mm2 and consumes 1.62mw power. It shows a

mean absolute relative difference of 7.62%. Mahmud et al. [27] proposed a

cost-effective glucose estimation system based on PPG. They used a PPG sensor,

galvanic skin response, and temperature sensor to collect data and fed these in a

CNN model. However, the device is yet to be explored for testing on a large

scale. In [28], Hammour et al. have developed an in-ear blood glucose

prediction system. It uses a PPG sensor which is embedded in an earbud. 4

subjects have been used for this study which has achieved an accuracy of 82% in

blood glucose level prediction.

The respiration rate is also detected from the PPG signal. Park et al. have

designed an earphone-type device for detecting respiration rate from PPG signal

[29]. The noise of the PPG signal is removed by denoising the long short-term

memory encoder. Gradient element, heart rate, and envelope are extracted from

the preprocessed signal as features that are used to design a regression model.

The system shows an error of 8.95% in predicting respiration rate. Prasetiyo et

al. have designed a respiration rate estimation system from PPG signal [30].

They used a PPG sensor to detect changes in heartbeat frequencies. An

information filter has been used for denoising the PPG signals. The respiration

rate has been detected by the device algorithm and spirometer. Their system has

shown an accuracy of 80% compared with the spirometer.

Oxygen hemoglobin is also related to PPG signals as several studies suggested.
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In [31], Munadi et al. have designed a non-invasive system for detecting

hemoglobin from PPG signals. They used a PPG sensor and a microcontroller

for processing the signal. They used the K- nearest neighbor algorithm to

achieve 94.01% accuracy and the artificial neural network provided an accuracy

of 92.45% in detecting oxygen hemoglobin levels in the blood. Pintavirooj et al.

[32] used an optical technique to measure hemoglobin concentration from PPG

signal. The hemoglobin concentration will also help to detect anemia disease.

They measured the hemoglobin concentration by the modified Beer-Lambert

law. An android app is also developed for monitoring glucose concentration.

Their system achieved an accuracy of 90.9%. Olakanmi et al. have designed a

device for measuring blood hemoglobin based on the hypothesis that the

HbO2/Hb mixture in a given volume of blood significantly absorbs and

transmits light in the red and NIR regions of the electromagnetic spectrum [33].

They used a photo spectroscopic sensor and arduino with a display for the

hardware implementation. The system achieved an accuracy of 65.07% in

detecting hemoglobin levels. However, the system has also detected anemia

patients with an accuracy of 93.3%. Mitro et al. designed an AI-enabled smart

wristband for detecting stress from PPG signal [34]. The PPG sensor collects the

PPG data which goes through a bandpass filter for denoising. The denoised

signal is used for extracting four types of features and the SVM algorithm is

used for the classifier. The authors have achieved 91% accuracy for the WESAD

dataset while 76% accuracy has been achieved for an independent dataset. Nath

et al. have designed a smart wristband for detecting stress [35]. However, they

used 3 other signals along with PPG for stress detection. Electrodermal activity,

blood volume pulse, and skin temperature are also used with PPG signals in

their study. They achieved an accuracy of 94% upon collecting the four signals

from 40 subjects. Chaowadee et al. [36] have designed a prototype called stress

warning unit for measuring stress index from PPG signal. Their system can

predict 4 levels of stress based on the stress index value.

This study aims to design a hardware-based system for cardiovascular disease

detection and heart rate and blood pressure estimation. In the following
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sections, some of the previous works of application of PPG signal in detecting

cardiovascular disease with heart rate and blood pressure estimation will be

analyzed in depth.

2.2 Cardiovascular Disease Classification

Cardiovascular diseases (CVD), a group of disorders of the heart and blood

vessels, are one of the leading causes of death worldwide, taking approximately

17.9 million lives each year [37], [38]. CVD is an umbrella term that covers a

range of pathologies, including heart attack, hypertension, stroke, heart failure,

myocardial infarction, cerebral infarction, and cerebrovascular disease. Delay in

detection and, therefore late treatment can lead to death, which in recent years

has increased with the spread of coronavirus. From March 2020 to March 2022,

about 1,946,662 deaths have been reported by the National Centre for Health

Statistics (NCHS) in the USA [39]. With the advancement in medical technology,

it is expected to be in control though the lifestyle, food habits, and lack of

physical activity have been worsening the situation. Despite recent

developments in medication and management of CVDs, the challenge remains

to detect CVDs due to the lack of an appropriate point-of-care system [40] .

PPG has great potential to assess age-related changes in arterial stiffness, an

accepted cardiovascular risk factor [41]. So, PPG signals have been analyzed for

various cardiovascular disease identification. Cheng et al. achieved an accuracy

of 98.21% in detecting atrial fibrillation from PPG signal [42]. In the study, the

collected PPG is converted to a time-frequency chromatograph of 128 × 1024 × 3

which is fed into convolution neural network (CNN) and long short-term

memory (LSTM). They have achieved high accuracy and the model needs

0.00072195 s for atrial fibrillation recognition. Wang et al. used support vector

machine (SVM) to detect cardiovascular diseases from PPG signal [43]. Allen et

al. have studied to detect peripheral arterial disease (PAD) from PPG signal

using a deep learning approach [44]. They have used AlexNet CNN, a deep

learning method for detecting PAD into three classes: non-PAD, mild PAD, and

major PAD. However, other CNN models were not analyzed in this study. Also,
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the distribution of the three classes was unbalanced in their study. Fahoum et al.

have detected coronary artery disease (CAD) from PPG signal collected from 360

subjects [45]. They have used the naı̈ve bayes classifier and got an accuracy of

94.44%. Paradkar et al. also have studied the detection of CAD using the MIMIC

II database [46]. They have used wavelet approach and got a sensitivity of 85%

and specificity of 78%. The accuracy of their detection system is lacking in their

study. Ave et al. have developed a device that works with a phone or tablet

wirelessly through Bluetooth connection [47]. The system analyzes the PPG

signal and gives the warning of cardiovascular disease in color code. However,

the performance analysis and resource and power analysis of the system are

lacking. Ramachandran et al. have cardiovascular risk level detection based on

PPG signal [48]. The authors have used nine statistical features along with

singular value decomposition and different wavelets and the study has achieved

an accuracy of 97.24%. So far, PPG-based studies on cardiovascular disease

detection have been analyzed. This thesis focused on classifying hypertension,

cerebral infarction, and cerebrovascular disease from PPG signals. Hypertension

is a common cardiovascular disease while the other two diseases are related to

blood flow in the brain.

2.2.1 Hypertension

Hypertension is one of the leading cardiovascular diseases as the number of

patients has almost doubled in recent years [49]. Hypertension is the medical

term used to describe high blood pressure. High blood pressure causes the

death of 7.6 million people around the world annually which is almost 13.5% of

the total death [50]. High blood pressure affects more than 1 billion people

worldwide and accounts for more than 20% of all cardiovascular diseases [51],

[52]. Normal blood pressure is necessary to ensure the proper flow of blood

from the heart to body organs and tissues. Blood pressure is related to many

cardiovascular diseases. Hypertension is classified according to the blood

pressure level. Another important parameter is heart rate which means the

speed at which the heart beats. It is also an important indicator of overall health
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Table 2.1. Hypertension Categories

Blood pressure
category

Systolic Blood
pressure (mm Hg)

And/
Or

Diastolic blood
pressure (mm Hg)

Low <90 Or <60
Normal <120 And <80
Elevated 120-129 And <80

Stage 1 hypertension 130-139 And 80-89
Stage 2 hypertension >140 Or >90
Hypertensive crisis >180 And/Or >120

as when the heart beats too fast or slow, that can be a vital sign of an unhealthy

heart or other body problems. So, the detection of these heart parameters is

essential for health condition analysis and to take immediate actions in case of

emergency.

Normal blood pressure level, also known as normotension, is generally

considered if SBP<120 mm Hg and DBP< 80 mm Hg [53]. If it exceeds a certain

range, then it is called hypertension which is a multifactorial disease involving a

broad array of risk factors and targets different organ injuries and

cardiovascular events [54]. Blood pressure is classified into different stages

according to the level. Table 2.1 shows the different stages of hypertension

alongside their blood pressure level. Among the blood pressure category of

Table 2.1; stage 1, stage 2, and hypertensive cases are considered as

hypertension, while the elevated category can be considered a warning to future

hypertension. Even though American Heart Association guidelines from 2017

advise lowering the threshold for hypertension from 140/90 to 130/80 mm Hg

[55]. There are some research works on detecting hypertension from PPG signal

which is related to blood pressure as well. Liang et al. used 10 PPG features and

risk stratification approach for hypertension detection [56]. They achieved a

maximum F1 score of 92.31% in the case of the normotension vs. hypertension

trial. When compared to non-severe hypertension, the risk stratification

technique performed better at identifying severe hypertension. Frederick et al.

achieved a maximum of 80% accuracy using a deep learning model for detecting

hypertension from PPG signal [57]. They have achieved a maximum accuracy of

80% for AvgPool (VGG-16) approach. The detection accuracy of other

approaches is not so high either. Martinez-Rı́os et al. applied different machine
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learning algorithms to detect hypertension from PPG signal [58]. They used 22

features and achieved an accuracy of 71.42% accuracy using the SVM classifier.

Most of the features they have used are physical variables rather than features

from the signals. Sadad et al. have used decision trees, naı̈ve bayes, and support

vector machines along with convolutional neural networks for detecting

hypertension [59]. This is a multiclass classification approach for detecting 4

stages of hypertension. They have achieved 99.5% accuracy for the decision tree

approach. Nour et al. also achieved 99.5% accuracy in hypertension detection

using a decision tree approach from the same PPG BP dataset [60]. Welykholowa

et al. have found that PPG along with another bio signal such as ECG can

improve the accuracy of hypertension detection [61].

2.2.2 Cerebral Infarction

Cerebral infarction is a medical condition that occurs when the blood flow to the

brain is interrupted by issues with the arteries that supply it. It is also called

ischemic stroke, which leads to the death of brain cells due to deprivation of

oxygen and other nutrients caused by a lack of blood supply. The brain receives

less blood due to atherosclerosis, which is the buildup of fatty plaque in the

blood vessels. This buildup may cause a blood clot or thrombus in an artery that

supplies the brain or elsewhere in the body. A cerebral embolism can result from

a piece of this clot breaking off and migrating to the blood vessels in the brain.

People having high blood cholesterol may be affected by cerebral infarction.

Being a frequently occurring disease, cerebral infarction is characterized by poor

prognosis, high disability, and fatality rate [62]. 20% ischemic strokes are caused

by cerebral infarction [63]. Risk factors for this condition include having

diabetes, smoking, drinking too much alcohol, being overweight, and having a

family history of heart disease. However, no study has been done yet to detect

cerebral infarction from PPG signals.
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2.2.3 Cerebrovascular Disease

Cerebrovascular disease is another type of CVD that represents a group of

conditions that affect the blood flow and blood vessels in the brain. Blood vessel

narrowing (stenosis), clot formation (thrombosis), artery blockage (embolism),

blood vessel rupture (hemorrhage) etc. can be causes of this serious issue.

Cerebrovascular disease is the fifth leading cause of death in the United States,

causing 486 fatalities per million people [64]. The spread of coronavirus has

increased the rate in recent years, and it has been found to be associated with

cerebrovascular disease [65]–[67]. Zhu et al. have studied on detection of

cerebrovascular disease detection from PPG signal using the wavelet transform

method [68]. The study showed a good feasibility of detecting cerebrovascular

disease in this method from PPG. Both cerebral infarction and cerebrovascular

disease can lead to severe damage, while the ultimate result can cause death.

Therefore, the detection of these diseases at an early stage is necessary.

2.2.4 Diabetes Detection

Another vital disease that is rapidly growing in the world is diabetes. It is a

health condition that refers to the presence of high blood sugar. In this case, the

body cannot make enough insulin or use it properly due to the incapability of

beta cell production in the pancreas. Being a chronic disease, it tends to increase

the risk of other diseases that negatively impact the brain, kidneys, eyes, and

heart [69]. There are two main types of diabetes: type 1 and type 2. Type 1

diabetes is believed to be caused by an autoimmune reaction and develops early

in life. As a result of the body’s immune system attacking the insulin-producing

islet cells in the pancreas, this condition prevents the pancreas from producing

insulin. Type 2 diabetes develops over the course of many years and is related to

lifestyle factors such as being inactive and carrying excess weight. In this type,

the pancreas makes less insulin than used to, and the body becomes resistant to

insulin. So, even though the body has insulin, it is unable to use it. Diabetes is

correlated with cardiovascular diseases as people with diabetes are likely to
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develop cardiovascular diseases 2 to 4 times more than others [70]. Detection

and early-stage control of diabetes can prevent the build-up of cardiovascular

diseases and help to grow consciousness about health. This study focuses on

type 2 diabetes detection alongside cardiovascular diseases as the dataset

provides PPG signals of patients with type-2 diabetes.

Some works have been done to detect diabetes from PPG signals. Prabha et al.

have used a radial basis function (RBF) kernel SVM-based algorithm to detect

diabetic mellitus from PPG signal [71]. They used PPG signals collected from

217 subjects. 104 MFFC features have been extracted and along with these, 3

physical features have been used for classification. An accuracy of 92.28% has

been achieved by their system. Qawqzeh et al. have diagnosed diabetes from

PPG signal using 3 predictors [72]. They have achieved 92.3% accuracy using the

logistic regression method. However, there was an imbalance between diabetic

and non-diabetic subjects used in the study. Susana et al. have achieved 98%

accuracy in detecting diabetes from PPG signal using the ensemble bragged tree

algorithm [73]. This work has used 400 raw datasets of blood glucose levels

measured with PPG signal. Hettiarachchi et al. achieved an accuracy of 79% in

predicting type 2 diabetes [74]. The authors have applied different machine

learning algorithms, but linear discriminant analysis (LDA) achieved the

maximum accuracy. Reddy et al. [75] have achieved 89% accuracy by SVM

approach in detecting diabetes using 31 features from PPG signal.

2.3 Health Parameter Estimation

Various health parameters can be estimated upon analyzing the PPG signals.

Oxygen saturation, body temperature, heart rate, and blood pressure are

predicted from PPG signals. In this study, blood pressure and heart rate, two

important health parameters are selected to be estimated from the PPG

recordings.
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2.3.1 Blood Pressure Estimation

The phrase ”blood pressure” is crucial for tracking a person’s health conditions.

Blood pressure is a measurement of the force of the blood against the arteries

[76]. It is necessary to monitor the blood pressure of heart disease-related

patients regularly as uncontrolled high blood pressure can cause heart failure,

kidney disease, eye disease, dementia, and other health issues. Both low and

high blood pressure can cause serious issues in the human body. Even a healthy

person can be a victim of high or low blood pressure with almost no or

insignificant symptoms. Hence, blood pressure is an important health parameter

that is necessary to check frequently.

PPG has been used in many studies for blood pressure detection. Yue et al. have

used SVM method to predict blood pressure using 9 features from PPG signal

[77]. Systolic pressure has a mean error+ standard deviation of 11.6415±8.2022

mmHg and diastolic pressure has a mean error + standard deviation of

7.617±6.7837 mmHg. Samimi et al. have used 21 morphology features from

PPG signal of 30 patients for blood pressure estimation [78]. They achieved a

mean absolute error (MAE) of 3.32 for DBP and 7.41 for SBP. Slapnicar et al.

have proposed a system for blood pressure detection based on PPG [79]. They

used the MIMIC database for their study and achieved the lowest MAE of 8.57

mmHg for SBP and 4.42 mmHg for DBP using the ensemble of regression trees.

There are some hardware-based blood pressure estimation works as well.

Jeremy et al. implemented a digital system for estimating blood pressure using a

fast digital chip of 3.97 mm2 size and having a power consumption of 15.62 mW

[80]. Their system achieved a maximum blood pressure error of ±6 mm Hg from

PPG signal of 8 patients. Bo et al. designed a cuffless blood pressure prediction

device utilizing ECG and PPG signal [81]. The system is implemented in

heterogeneous DSP and FPGA platforms though the accuracy and therefore the

validation of the system is lacking. Rehman et al. designed a BP estimation

processor which is implemented in a 180nm 1P6M CMOS process having an

area of 3.45mm2 and 73 µW power consumption [82]. Sheeraz et al. have

utilized Artix-7 FPGA to develop a blood pressure estimation system from the

PPG signal of 25 subjects [83]. Using the decision tree algorithm, it has achieved
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96.2% accuracy consuming 18.23 µW power. However, this paper lacks the

resource utilization analysis of the designed system.

2.3.2 Heart Rate Measurement

Heart rate is also an essential parameter for physiological and pathological

condition analysis. Detection of abnormal heart rate may indicate various

diseases. The heart generally pumps the blood at about 60 to 100 beats per

minute (bpm). An irregular heartbeat indicates different complications in the

heart. Tachycardia is characterized by a heart rate exceeding 100 bpm, and

bradycardia by a heart rate below 60 bpm [84]. Different types of arrhythmias

such as atrial fibrillation, atrial flutter, ventricular fibrillation etc. can be detected

based on heart rate variability [85]. So, heart rate measurement can help to

detect the arrhythmia types during emergency situations.

Heart rate prediction from PPG signals is also studied by researchers. Yuntong

et al. [86] have combined signal processing and machine learning and achieved

5% error in heart rate prediction. The authors have used 10 to 20 features in their

study for different trials. Attila et al. [87] used a convolution neural network for

predicting heart rate. They have got MAE of 7.47 bpm for the WESAD dataset

and an MAE of 7.65 bpm for PPG-DaLiA dataset. Chang et al. have used deep

learning to design a heart rate detection approach which achieved an average

absolute error of 1.61 bpm [88]. They used 12 records of PPG signals collected

during various physical activities from the IEEE CUP training dataset. Using

only 12 PPG recordings limits the validation of their study. Motin et al. achieved

an average absolute error of 1.85 bpm for 23 PPG recordings during physical

exercise [89]. They used Wiener filtering-based denoising algorithm to estimate

heart rate. Karim et al. [90] have designed an FPGA-based heart rate calculation

system using Xilinx system generator though the accuracy and performance

analysis of their designed system is missing. Burrello et al. have designed a

PPG-based heart rate monitoring system using microcontroller [91]. They have

used temporal convolution network (TCN) and achieved an MAE of 3.84 bpm.

However, TCN requires a large amount of data to be accurate and also they
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trained their model based on two datasets. Ngoc-Thang et al. have developed a

wearable device that uses a PPG sensor to collect PPG data and transfer to a

microcontroller [92]. Microcontroller selects the high-quality PPG signal and a

deep learning algorithm is implemented and the software-based design shows

the estimated heart rate on the display. Kuo et al. have developed a wearable

device based on senor and Arduino for heart rate monitoring [93]. They applied

a new Fuzzy algorithm in their system which can show the heart rate in mobiles

through Bluetooth connection. Pamuk et al. have used a PPG sensor and a

Raspberry Pi microcomputer to determine heart rate variability [94]. However,

the preprocessing and heart rate determination was done at the software level.

Also, they applied their system only on one subject for validation which is a

major limitation in terms of generalization.

2.4 Hardware-based Implementation

Nowadays digital systems are developing and becoming popular due to their

cost-effectiveness and their usage as a point-of-care device [95]. Many platforms

are available for digital hardware-based designs like field programmable gate

arrays (FPGA), complex programmable logic devices (CPLD), simple

programmable logic devices (SPLD), microcontrollers, and others. There are

some research works of implementing PPG signals for various purposes at the

hardware level. Different sensors are commonly used for PPG data acquisition

in different studies. Microcontroller has been used for heart rate and blood

pressure estimation, hemoglobin prediction, drowsiness detection, and other

applications [22], [91], [96], [97]. In [22] and [96], an embedded system for

drowsiness detection of car drivers has been implemented using a

microcontroller. In [91] and [97] microcontroller has been used to detect heart

rate from PPG signal. Arduino is also used for hardware-based system design in

some studies on the applications of PPG signals [98]–[101]. In [98], arduino has

been used to implement a system for the detection of smokers and non-smokers

from PPG signal. In [99], a pulse oximeter for measuring oxygen saturation is
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developed using arduino. In [100] and [101] arduino has been used for health

monitoring and continuous blood pressure measurement. Raspberry Pi is also

used in a few applications like PPG signal compression, signal quality

assessment, and detecting some bio parameters [94], [102]–[104]. In [94],

Raspberry Pi is used to detect heart rate variability from PPG. In this study,

10-minute data of PPG signal has been recorded from a 24-year-old male and 5

time domain features have been extracted from the recorded signal. The change

in these features according to different emotions is also studied. [102] and [104]

have used Raspberry Pi for signal quality assessment and data reduction of PPG

signal. [102] has achieved an accuracy of 97.09% in PPG signal quality

assessment while [104] has achieved 95% compression ratio in data reduction.

[103] have used this hardware system for blood pressure measurement. This

study has used the MIMIC II and MIMIC III databases and extracted 20 features

from the PPG signals. The authors have achieved a low latency and required less

memory for this work.

In most cases, the hardware system is limited to acquiring the signal using a

sensor and some preprocessing using microcontroller or Arduino. The main

objectives have been achieved at the software level. However the nature of

cardiovascular diseases requires a fully digital hardware system for quick

identification and getting alerts about the disease. There are some studies that

are fully hardware-implemented work based on CMOS processor or FPGA [80],

[82], [83], [90]. However, these works sometimes lack performance or resource

and power utilization analysis.

2.5 Summary and Implications

State-of-the-art- analysis verifies the use of PPG signals in multi-purpose

applications. Health monitoring, oxygen saturation checking, stress detection,

and drowsiness detection are common applications of PPG signals. PPG is also

used for different cardiovascular disease detection such as hypertension,

coronary artery disease, peripheral arterial disease, etc. Though there are some

studies on hypertension detection from PPG signal they are done at the software
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level. On the other hand, two important cardiovascular disease cerebral

infarction and cerebrovascular disease detection from PPG signal has not been

explored yet in previous studies. Hence, there is scope to detect these diseases

from PPG. Diabetes is also detected from PPG by various researchers but they

are at the software level. Blood pressure and heart rate estimation is another

common application of the PPG signal. Again, most of these works are at the

software level. Few works have been done at the hardware level based on PPG

signal but they have some limitations in their studies as described in the

literature review. Therefore, this study aimed to develop a hardware-based

digital system for detecting hypertension, cerebral infarction, cerebrovascular

disease, and diabetes. Furthermore, a system will be designed to detect heart

rate and blood pressure from PPG.
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Chapter 3: Software Framework

A software-based simulation framework is needed to benchmark a digital PPG processor,

which is the final goal of this thesis. This section presents the methodology of the system

at the software level. At first, a dataset is selected, and PPG recordings are selected.

Then the selected signals go through a preprocessing stage consisting of filters. Features

are extracted from the preprocessed signals and used for designing a suitable classifier.

3.1 Complete Methodology

This study aims to develop a hardware-based prototype for various disease

detection and heart rate and blood pressure estimation. As software-based

designs are commonly practised, the systems have been designed at the

software level first. The overall methodology is shown in Fig. 3.1.

PPG 

Database

Sample 

Selection 
Preprocessing

Feature 

Extraction

Classifier 

Design

Hardware 

Frontend

Performance 

Analysis

Power & 

Resource 

Utilization

Fig. 3.1 Overall methodology of the study

It shows that the design procedure needs a PPG dataset to be selected first. From

the dataset, proper signals are needed to be selected for disease detection. Then

the selected dataset needs to be normalized. Then the normalized signals will go

through a preprocessing stage for denoising the signals. Then the preprocessed

signals will be used for feature extraction. The extracted features will be utilized
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for classifier design. From the classifier, the disease will be detected, and heart

rate and blood pressure will be estimated.

3.2 Dataset Selection

 Raw data 

from 256 

subjects

Abnormal values & missing 

entries? 

Exclude subject data 
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Other diseases 

except CVD?
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subjects?

Exclude 

subject data 

7

Exclude subject data 
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Added data of 
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Yes
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No
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Fig. 3.2 PPG data acquisition process in the PPG BP dataset
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For this study, an open-access “PPG BP Database” has been chosen [105]. The

database contains 657 PPG data segments from 219 subjects. Among the

subjects, 105 are males, and the rest are females. Their age covers the range of 20

to 89 years. A detailed description of the dataset is presented in Appendix A.

The data selection process is shown in Fig. 3.2.

Each subject has 3 segments of PPG signal, each of 2.1 s in length. The dataset

contains information on different CVDs like hypertension, cerebral infarction,

cerebrovascular disease, and diabetes of the subjects. All the 3 segments went

through a signal quality evaluation process. The signal quality index has been

found to have a connection with the quality of the PPG waveform [106]. The

signal quality index (SQI) of each signal was provided with the dataset. The SQI

was measured after data collection to evaluate against the classification

threshold of excellent, acceptable, or unfit PPG signals according to the

following equation:

SSQI =
1
N

N

∑
i=1

(xi −
µx

σ
)3 (3.1)

where, N is the sample number of the PPG signal, µx and σ are empirical

estimates of the mean and standard deviation of xi, respectively.

3.3 Segment Selection

The data set comprises various diseases, such as hypertension, diabetes, cerebral

infarction, and cerebrovascular disease. It also includes blood pressure, heart

rate, age, height, and body mass index (BMI) of the individual patient.

According to the blood pressure level, hypertension has been labelled into four

categories: normal, prehypertension, stage 1 hypertension, and stage 2

hypertension. Other diseases are labelled into 2 categories: normal or unhealthy.

Cerebral infarction, cerebrovascular disease, hypertension, and type 2 diabetes

have been chosen for the binary classification approach. Among the 219 subjects,

38 subjects were diagnosed with type 2 diabetes, 54 subjects were identified with

stage 1 or stage 2 hypertension, 20 subjects were diagnosed with cerebral
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Table 3.1. Sample selection from the database for the study

Available in
database

Selected for the
study(SQI ≥ 0.8)

Total subjects 219
Available segments 657 331
Cerebral infarction 20 subjects

60 segments 23 segments
Cerebrovascular disease 25 subjects

75 segments 42 segments
Hypertension 54 subjects

162 segments 69 segments
Type 2 diabetes 38 subjects

114 segments 65 segments

infarction, and 25 subjects were identified with the problem of cerebrovascular

disease. As each subject has PPG data of 3 segments, there are in total 114

segments for type 2 diabetes, 162 segments with hypertension, 60 segments with

cerebral infarction, and 75 segments with cerebrovascular disease. However, the

signal quality index is also considered for this study. As high-quality signals will

help to provide the result more accurately, it is decided to consider only the

signals having SQI equal to or greater than 0.8 for this study. In this process, 65

segments of subjects have been found to have type 2 diabetes, 69 segments with

hypertension, 23 subjects with cerebral infarction, and 42 subjects with

cerebrovascular disease. These PPG signal samples will be used for the detection

of diseases through binary classification. Table 3.1 depicts the subject selection

process for this study.

Again, for multiclass classification, combinations of different diseases have been

considered. For this study, PPG signals having SQI equal to or above 0.8 have

been considered. After screening through the dataset, 331 segments from 657

segments have been found to fulfil this criterion. From this list, it has been found

that 165 segments belong to normal conditions, 17 segments have only diabetes

mellitus type-2, 20 segments have only cerebral infarction, 32 segments with

only cerebrovascular disease, 34 segments with stage 1 and 2 hypertension, 18

segments having hypertension and diabetes mellitus type-2, 4 segments with

cerebrovascular disease and hypertension, 10 segments with cerebral infarction
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and cerebrovascular disease, and 31 segments with diabetes mellitus type-2 and

prehypertension. There are no segments for diabetes with cerebral infarction,

diabetes mellitus type-2 with cerebrovascular disease, and cerebral infarction

with hypertension. So, for developing a proper classifier with training and

testing data, the cases having a minimum of 17 segments have been considered,

as other cases have very few segments. A total of 7 classes have been found for

this study. The segment selection process for the study is depicted in Fig. 3.3.

Total 
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Diabetes mellitus-2 (DM2) 17
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Class 1: Normal: 17

Fig. 3.3 Preprocessing stage of proposed the system

For the heart rate and blood pressure detection, all segments with SQI equal to or

over 0.8 will also be considered.

3.4 Preprocessing

Biosignals are generally contaminated with different noises which hinder the

proper analysis of the signal. PPG is also affected by various noises like motion

artifacts, baseline wander, power line noise etc. [107]. To remove the noises, a

preprocessor needs to be designed first. The signal is first normalised before

giving input to the preprocessor, which is designed using low and high-pass

filters. For the normalization, the signal is divided by the typical maximum

Chapter: 3: Software Framework 28



value of the PPG signal, which is 5 mV. The unit of the PPG signal amplitude is

not given in the dataset. So considering the unit in µV the signals are divided by

5 mV or 5000µV. As the PPG signal ranges from 0.5 to 15 Hz [108], removing the

frequency component below 0.5 Hz and above 15 Hz from the signal is

necessary. FIR and IIR filters are usually chosen to remove noises from digital

systems. IIR filters become unstable, and the impulse response is not absolutely

summable. Also, they are hard to implement using fixed-point arithmetic. So,

FIR filters are selected for this study. FIR filter has the advantage of attaining an

exact linear phase. They are simple to implement and also suited to multi-rate

applications. The response of an FIR filter is as follows:

y(n) =
N

∑
i=0

bix(n − 1) (3.2)

where, x(n) is the input signal, y(n) is the output signal, N is the order of the

filter, & bi is the impulse response at ith instant for 0 ≤ i ≤ N of Nth order filter.

To remove the baseline wander noises a high pass filter of 0.5 Hz is designed

while a low pass filter of 15 Hz has been developed to remove the

high-frequency noises caused by electromyogram (EMG) and motion artifacts.

Both the FIR filters have been designed in MATLAB, while the order of the

filters has been selected so that the FFT of the preprocessed signals shows the

removal of all undesired noises. In the case of the high pass filter order is 50,

while for the low pass filter, the order is 81. Choosing lower filter orders does

not attenuate the noise perfectly. The FFT response shows more noise spikes for

filter orders lower than 50 and 81 for the high-pass and low-pass filters,

respectively. Again, choosing a higher filter order number than the selected ones

will require more resources, and thus, more power will be consumed.

3.5 Feature Extraction

The signals are used to extract various features for implementing them in the

classifier later. In this study, it is necessary to choose the hardware-friendly
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features. As the final target of this thesis is to implement the system in

hardware, features must be chosen accordingly. For this purpose, nine statistical

features: mean, mean absolute deviation (MAD), sum, absolute energy (AE),

root mean square (RMS), standard deviation (SD), variance, skewness, and

kurtosis are selected. These features are easy to implement in the FPGA board

and consume less resources and power. Hence, they are selected for this study.

The description of these features is given below:

Mean: Mean is the average value of all the samples in a signal. It can be expressed

by the following equation:

mean, x̄ =
1
N

N

∑
i=1

xi (3.3)

Mean Absolute Deviation: The mean absolute deviation (MAD) is the mean or

average difference between each data value and the mean of the dataset. The

following equation presents it:

MAD =
1
N

N

∑
i=1

|xi − x̄| (3.4)

Sum: Sum is the summation of all the samples of a signal. It is expressed by the

following equation:

Sum =
N

∑
i=1

xi (3.5)

Absolute signal energy: Absolute signal energy (AE) is a way to represent the

strength of the data and is defined as follows:

AE =
N

∑
i=1

x2
i (3.6)

Root Mean Square: Root Mean Square (RMS) is the square root of the arithmetic
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mean of the squares of a group value. It is defined by the following:

RMS =

√√√√ 1
N

N

∑
i=1

x2
i (3.7)

Standard Deviation: Standard Deviation (SD) is a measure of the dispersion of

the data in relation to the mean. The equation expresses it:

SD, σ =

√
∑N

i=1(xi − x̄)2

N
(3.8)

Variance: Variance means the variability that measures the spread between

numbers in a dataset. It is defined as follows:

variance, σ2 =
∑N

i=1(xi − x̄)2

N
(3.9)

Skewness: Skewness is a measurement of the distortion of symmetrical

distribution or asymmetry in a data set. It is expressed by:

Skewness = ∑N
i=1(xi − x̄)3

(N − 1) ∗ σ3 (3.10)

Kurtosis: Kurtosis is a measure of the tailedness of a distribution. It is defined as:

Kurtosis = ∑N
i=1(xi − x̄)4

(N − 1) ∗ σ4 (3.11)

Where, N is the total number of samples, xi is the instant sample of a data

recording, x̄ is the mean of a data recording, and σ is the standard deviation.

Along with these nine statistical features, two physical features: age and body

mass index (BMI) have also been considered. These two physical features are

available in the dataset. Here, BMI is an index of body fat measured based on
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body weight and height. Its normal value is 18.5 to 25 [109]. A BMI below 18.5 is

considered underweight, while over 25 is considered overweight. These two

features are considered in these study as age, and BMI has a relation with

developing different diseases [110].

3.6 Classifier

In machine learning, a classifier is an algorithm that automatically arranges or

groups data into one or more of a set of ”classes”. Different classifiers are used

in various classification studies according to need and application. Decision

trees, naive bayes classifiers, k-nearest neighbours, support vector machines,

and artificial neural networks are some commonly used machine learning

algorithms. A supervised machine learning classification approach called a

decision tree is used to create models with the structure of trees. It divides

information into ever-finer categories. A series of probabilistic algorithms called

Naive Bayes determines the likelihood that every given data point will fall into

one or more of a set of categories. An algorithm for pattern recognition called

K-nearest neighbours (k-NN) stores training data points and learns from them

by figuring out how they relate to other data in an n-dimensional space. K-NN

seeks to identify the k closest linked data points in future, unforeseen data.

Artificial neural networks are built to function similarly to the human brain. The

next algorithm is triggered when one algorithm or procedure successfully solves

a problem. They link problem-solving processes in a chain of events.

This study aims to design a binary classification system to detect different

cardiovascular diseases along with type 2 diabetes. Also, a multiclass

classification system is designed to classify different combinations of

cardiovascular diseases and type 2 diabetes. At last, heart rate and blood

pressure are focused to be estimated from the PPG signals. The extracted

features are given as input in the machine learning classification app, and the

accuracy of different classifiers is determined. Linear SVM has shown the

highest accuracy for binary and multiclass classification, while linear regression

has achieved the highest accuracy for heart rate and blood pressure estimation.
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So, for the binary and multiclass classification system, SVM classifier is selected

to be applied while for the heart rate and blood pressure prediction analysis, a

linear regression classifier will be used.

Binary classification is a popular classification method for which Support Vector

Machine (SVM) is commonly used. Since its inception in the 1990s, it has been

one of the most effective machine learning algorithms, mostly used for pattern

identification [111]. SVM can be used for data that have an unknown

distribution. It provides good accuracy and performs faster prediction

compared to other classification strategies. It has the ability to perform well with

small datasets. SVM is an easy-to-implement machine learning method that

eliminates complexity in the hardware. When there is a large gap between the

two classes, SVM performs reasonably well. It works well in high-dimensional

space as well. SVM categorizes data points even when they are not otherwise

linearly separable by mapping the data to a high-dimensional feature space.

Once a separator between the categories is identified, the data are converted to

enable the hyperplane representation of the separator. After that, traits of fresh

data might be utilized to forecast the group to which a new record should

belong. Also, it requires less memory because it uses a subset of training points

in the decision phase. Considering the advantages of SVM specially the

advantages provided for hardware implementation, it is chosen for binary and

multiclass classification in this study.

The mathematical function used for the transformation is known as the kernel

function. SVM uses different kernel functions such as:

• Linear

• Polynomial

• Radial basis function (RBF)

• Sigmoid

When the linear separation of the data is simple, a linear kernel function is

advised. One of the other functions ought to be used in other circumstances.
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Fig. 3.4 Boundary between two categories defined by a hyperplane

The extracted features from the previous section have been used to train an SVM

classifier. In this study, linear SVM has been used as it is simple and easy to

implement in hardware platforms due to its simple function:

f (x) = x′β + b (3.12)

where, x is an observation corresponding to a row of x indicating the features. b

is the bias term, and β represents the weight values of the features.

The bias term b and the weight values are obtained upon training the data. For

binary classification of hypertension, 69 segments with stage 1 or stage 2

hypertension segments have been selected from the dataset, along with 69

segments labelled normal. Similarly, for cerebral infarction, 23 segments of

normal cases have been considered, with 23 segments with the disease, 42

segments of cerebrovascular disease, and 42 segments of normal PPG for this

disease detection has been selected. And finally, for type II diabetes, 65 normal

PPG segments have been taken, with 65 segments of diabetes selected in the

segment selection process. In each disease detection case, 5-fold cross-validation

has been applied where the dataset has been split into 5 folds, and for each fold,

80% data have been used for training, and the rest 20% have been for training.

The classification has been done in Matlab at the software level. While training

the data, the generated model provides the bias and weight values.
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The SVM method is also used for disease identification in the multiclass

operation. SVM does not, however, natively enable multiclass classification in its

most basic form. It facilitates categorizing data points into two classes and using

binary classification. The same method is applied to multiclass classification

after dividing the multiclassification problem into numerous binary

classification problems. It is intended to map data points to high-dimensional

space to achieve mutual linear separation between every two classes. This

technique, known as a One-to-One strategy, divides the multiclass classification

problem into several binary classification problems. For each pair of classes, a

binary classifier is needed. Another strategy is called One-to-Rest. In such a

strategy, each class has a binary classifier as the breakdown. In the One-to-One

technique, the points of the third class are ignored and a hyperplane is used to

divide every two classes. This signifies that the present split solely considers the

points of the two classes, as shown in Fig. 3.5. A hyperplane is required in the

One-to-Rest technique in order to divide all classes from one another

simultaneously. This indicates that all points are considered, and they are split

into two groups: a group for class points and a group for all other points, as

shown in Fig. 3.6.

In the multiclass detection approach, the one-to-rest SVM approach has been

used for detecting the classes. The one-to-rest approach trains less number of

classifiers than the one-to-one approach. Hence, the computational time will be

faster and fewer resources and power will be utilized for the one-to-rest

approach. There are seven classes in this multiclass detection study, so seven

SVM classifiers are needed to design at this stage. In this study, for a particular

classifier, 17 segments from that class and 17 others from all the other classes

were for training and testing. 80% data have been used for training and 20% for

testing for that particular classifier. So, a total of seven model functions for seven

classifiers, along with the bias and weight values, have been generated in the

software design.

Again, for heart rate and blood pressure detection, linear regression model has
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Class 1: 

Class 2: 

Class 3: 

Fig. 3.5 One-to-one approach in multiclass SVM

Fig. 3.6 One-to-rest approach in multiclass SVM

been chosen. For estimating or prediction of a variable, regression analysis is

usually used [112]. Regression is one of the most significant supervised learning

tasks. In regression, a series of records with X and Y values are present, and

these values are used to train a function that may be used to predict Y from an

unknown X. To perform regression, the value of Y needs to be determined. In
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order to predict continuous Y in the case of regression, given X as independent

features, a function is needed. There are various regression models for

estimation and prediction studies, such as linear regression, logistic regression,

polynomial regression, random forest, etc. However, linear regression is the

simplest algorithm among them. It is less complex than other approaches and

hence easy to implement at the hardware level. Because it enables the measuring

of anticipated effects and the modelling of those effects against one or more

input variables, linear regression is commonly used in mathematical analysis

[113]. The link between the variables is shown by a slanted straight line

provided by the linear regression model as shown in Fig. 3.7.
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Datapoints

Fig. 3.7 A simple linear regression process

Simple linear regression and multiple linear regression are two different types of

linear regression. In the case of simple linear regression, the estimated value or

the dependent variable is measured using a single independent variable. It is

expressed by:

y = a + bx (3.13)

where, y represents the dependent or estimated value, a represents the intercept

of error value, b is the slope or regression coefficient, and x is the independent

value.

Again, for multiple linear regression, there is more than one independent
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variable on which the estimated value depends. It is expressed by the following:

y = bo + b1x1 + b2x2 + .... + bmxm (3.14)

where, y is the estimated value, bo is the intercept, b1, b2, b3, ...., bm are regression

coefficient, and x1, x2, x3, ...., xm are the independent variables or the feature

values.

As nine features have been extracted from the PPG signal, multiple linear

regression will be applied in this study for heart rate and blood pressure

estimation. Different combinations of the extracted features will be used in the

linear regression model to determine the most optimized features for the

prediction study. Predicting the most accurate heart rate and blood pressure

values from a minimum number of features will ensure using the least resources

and the lowest power consumption.
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Chapter 4: Hardware Architecture

After designing the systems at the software level, it is necessary to develop a hardware

architecture for implementing the system. This section provides the system architecture

design for FPGA implementation. Xilinx system generator has been used for the system

architecture design. The Xilinx zedboard zynq-7000 and the zedboard ultrascale+ have

been used for the implementation of the systems. The design procedure of the preprocessor,

feature extractor, and classifier are presented in this chapter.

4.1 Methodology for Hardware Design

In this stage, the system developed at the software level in Chapter 3, has to be

implemented at the hardware level. The overall process is shown in Fig. 4.1.

Like the software design, segments for further processing need to be selected at

first. In the next stage, a proper tool selection is required for the hardware

design. Then it is necessary to normalize the signals and pass them through a

preprocessing stage. The preprocessing stage will denoise the signals. The

preprocessed signal will be used for feature extraction. The extracted features

will be used for classifier design. The classifier will give the ultimate results by

providing the disease detection result or estimating the heart rate and blood

pressure.

Selected 

PPG Signal

Low 

Pass 

Filter

High 

Pass 

Filter

Feature 1

Feature 2

Feature 3

Feature n

Classifier Result Tool 

Selection
Normalization

Fig. 4.1 Overall methodology of hardware design
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4.2 Device selection

The system has to be designed at the hardware level to fulfill the purpose of the

study. Hardware-based digital and embedded systems are becoming more

popular due to their multifunction capability, low cost, and high-performance

accuracy [114]. Digital hardware systems can be implemented in various devices

such as field programmable gate array (FPGA), complex programmable logic

devices (CPLD), simple programmable logic devices (SPLD), microcontrollers,

and others [115]. FPGA has been chosen for this study as it is simple and easy to

design as well as has the advantage of reprogrammable functionality [116].

FPGA contains more logic blocks than CPLD or SPLD. It allows greater

customization and more complex processes than CPLD and SPLD. Also,

microcontroller provides reprogramming of firmware, but FPGA has the

advantage of changing the functionality of both hardware and firmware. FPGA

has the advantage of hardware acceleration as it can be used to accelerate

workloads and gain significant benefits. Parallel computing is another

advantage of the FPGA. It allows to handle multiple workloads without

sacrificing performance. This enables one to work on different stages of tasks

concurrently, which cannot be done with GPUs. Smaller board space, power

efficiency, and reliability are also reasons for choosing FPGA in this study.

Zedboard zynq-7000 has been primarily targeted for developing the proof of

concept of this system. However, in case the zedboard zynq-7000 fails to provide

the necessary resources, zynq ultrascale+ will be utilized for the design. Both the

FPGA board offer embedded system design and development at low cost and

provide the advantage of long life.

4.2.1 Zedboard zynq-7000

It is a low-cost development board for Xilinx. Everything required to develop a

design for Linux, Android, Windows, or other OS is included on this board.

Additionally, a number of expansion connectors provide simple user access to

the processing system and programmable logic inputs and outputs. It Utilizes
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Fig. 4.2 Zynq-7000 FPGA board structure

the tightly integrated ARM (Advance RISC Machine) processing system and

7-series programmable logic of the Zynq-7000 AP SoC to build innovative and

potent designs for the ZedBoard. Target applications include embedded ARM

processing, software acceleration, video processing, motor control,

Linux/Android development, and general Zynq-7000 all-programmable SoC

(system-on-a-chip) prototyping.

It contains four major blocks.

• Application processor unit (APU)

• Memory interfaces

• I/O peripherals

• Interconnect
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The APU includes Dual-core or single-core ARM Cortex-A9 MPCores. The

memory interface unit includes dynamic and static memory controller modules.

The dynamic memory controller supports DDR3, DDR3L, DDR2, and LPDDR2

memories. The I/O peripherals unit contains the data communication

peripherals. The APU, memory interface unit and the IOP are all connected to

each other and to the PL through a multilayered ARM AMBA AXI interconnect.

The interconnect is non-blocking and supports multiple simultaneous

master-slave transactions.

Fig. 4.3 Zynq-ultrscale+ FPGA board structure

4.2.2 Zynq Ultrascale+

Xilinx Zynq UltraScale+™ Multiprocessors feature 64-bit processor scalability,

combining real-time control with soft and hard engines for graphics, video,

waveform, and packet processing. The multiprocessor systems-on-chip devices

are constructed on a platform with a common real-time processor and

programmable logic. Three different models of Xilinx UltraScale+
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Multiprocessors (dual-core, quad-core, and video code-c) are available. Devices

with dual-core application processors are ideal for sensor fusion and industrial

motor control. Devices with quad-core application processors perform

exceptionally well in the data center, aerospace, and defence applications.

Devices with video codecs are useful for surveillance, multimedia, and

automated driving assistance systems in automobiles.

It uses Arm Cortex-A53-based application processing unit (APU). CPU

frequency is up to 600 MHz. The programmable logic block has 36Kb block ram,

288Kb dual port ultra ram, dsp blocks, I/O blocks, and video encoder/decoder.

Zynq ultrascale+ FPGA board has more resources than the zedboard zynq-7000

FPGA board. However, zynq ultrascale+ is more costly than zynq-7000.

Therefore, zynq-7000 will be primarily used for the design implementations. If

the resources of this board are insufficient, then the ultrascale+ FPGA will be

utilized for the implementation.

4.3 Design Tool Selection

For the hardware prototype design Xilinx system generator (XSG) has been

selected. It is a MATLAB Simulink add-on that enables the development of

architecture-level FPGA designs using graphical block programming. Xilinx

FPGAs are heterogeneous compute platforms that include Block RAMs, DSP

Slices, PCI Express support, and programmable fabric. They enable parallelism

and pipelining of applications across the entire platform as all of these compute

resources can be used simultaneously. In XSG, hardware description language is

used to assemble FPGA building blocks into a circuit that performs a specific

task, making the programming different from typical high-level languages. The

two most popular hardware description languages are VHDL and Verilog. In

XSG the system is designed in Matlab Simulink and then synthesized the design

into an FPGA. The next sections present the hardware design procedure.

Screenshots of actual designs of the different subsystems in the Xilinx system

generator are presented in Appendix B.
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4.4 Normalization

Normalization is the process of reducing data redundancy in a dataset and

improving data integrity. The main objective of database normalization is to

eliminate redundant data, minimize data modification errors, and simplify the

query process. Ultimately, normalization goes beyond simply standardizing

data, and can even improve workflow, increase security, and lessen costs.

÷Raw PPG Signal

Divider

Normalized Signal
In (i)

Fig. 4.4 Normalization of the raw PPG signal

The raw PPG signal is first normalized using a divider. The signal amplitude is

divided by a high-value number to get the normalized signal. The high-value

number can be the maximum amplitude of the PPG signal or a higher value than

the maximum amplitude. The typical maximum value of the PPG signal is 5 mV.

The unit of the PPG signal amplitude is not given in the dataset. So considering

the unit in µV the signals are divided by 5 mV or 5000µV. The procedure is shown

in Fig. 4.4 where the input is the raw PPG signal, and the output is the normalized

signal indicated by In(i) in the figure, which is the input to the preprocessor in the

next stage.

4.5 Preprocessor Subsystem

The processes executed for software-level design will be followed in this case

also. At first, the normalized signal passes through a high pass filter of 0.5 Hz

and then a low pass filter of 15 Hz, designed in the Xilinx system generator using

the FDA tool. Filter orders are kept the same, 50 and 81, respectively, for the

high and low pass filters, as per software design. FFT filters are designed for the

hardware-based preprocessing system. The response of both the high and low
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pass filters follows the equation:

y(n) =
N

∑
i=0

bix(n − 1) (4.1)

where, x(n) is the input signal, y(n) is the output signal, N is the order of the

filter, & bi is the impulse response at ith instant for 0 ≤ i ≤ N of Nth order filter.

The high and low pass filters can be designed using different filtering methods.

In the FDAtools, several filtering techniques such as equiripple, least square,

constrained least square, barlett, rectangular, hann, hamming etc. These filtering

techniques have been applied to design the high and low pass filters. For each

filtering technique, the resource and power utilization have been found to get

the optimized resource utilization technique. After the resource utilization

analysis, the best filtering technique will be chosen for the optimized design.

The resource utilization and filter type selection are explained in detail in

Chapter 5.
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Σ
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b0 b1 b2

Σ

High Pass Filter

Prepo(i)

Fig. 4.5 Preprocessing stage of proposed the system

The preprocessor design is shown in Fig. 4.5. Here, b0, b1, b2, a1, a2. . . .. are filter

coefficients. The In(i) is the normalized PPG signal, and the Prepo(i) is the output

of the preprocessor.

4.6 Feature Extractor

In the next step, the features are needed to be extracted from the hardware design.

The system architecture has been designed to extract the features that are already

selected at the software level. Various mathematical and logic blocks are used for
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the implementation. The system architectures for feature extraction in the Xilinx

system generator have been depicted in Fig. 4.6-4.15.

Counter 1

do

d1

Sel

    RAM

Data

Address

WE
RAM_Op(i)

Counter 2

Comparator 

1

Prepo(i)

Ctrl_1(i)

Not

Counter 1

Frequency = 1 KHz

Initial value = 0

Step = 1

Bit width= 12 

(unsigned)

Counter 2

Frequency = 1 KHz

Initial value = 0

Step = 1

Bit width= 12 

(unsigned)

Ctrl_2(i)Comparator 2

Fig. 4.6 Memory and control subsystem for feature extraction

In Fig. 4.6, a multiplexer (mux) and a RAM are used to store the input signal

data in a memory which will be utilized in further feature extraction blocks. The

output of the preprocessor, prepo(i) is input to the data port of the RAM. Two

counters having the same frequency are used. Counter 1 starts counting from

zero, and it passes through a logic comparator. It continues to count till the total

sample number of a PPG signal is 2100, and during that period, it keeps the

writing enable (WE) disabled due to the not gate. The logical comparator 1 also

controls the selector switch. When the counter follows the comparator 1 logic, it

is selected to do, and when the comparator logic breaks, it is selected to d1, which

is controlled by counter 2. Counter 2 is enabled and starts saving the data in the

proper address after the comparator 1 logic breaks, when counter 1 exceeds

counting 2100, enabling the (WE) port. Counter 2 counts to 4200, controlled by

the logical comparator 2 and stores the 2100 sample of a PPG signal in the RAM

address. The counters passing through the comparator’s logic blocks create two

control signals mentioned as Ctrl 1(i) and Ctrl 2(i). These control signals are

used during feature extractions.

In Fig. 4.7, all the sample values of prepo(i) signal are added using an

Chapter 4: Hardware Architecture 46



Accumulator Divider Register
Mean

Prepo(i)

Ctrl_1(i)

Fig. 4.7 Mean feature extraction in hardware level

accumulator, which is later divided by the total number of samples to generate

the mean value of the signal. The control signal ctrl 1(i) helps to store the value

in a register.

Subtractor

a

b

En

Abs Divider Register
MAD

Mean

Ram_Op (i)

Ctrl_2(i)

Accumulator

Fig. 4.8 MAD extraction in Xilinx system genrator

To determine the mean average deviation (MAD), the sample values of a signal,

RAM Op(i), are recalled from the RAM and the mean value is subtracted from

each of the sample value of the signal using the block mentioned as Subtractor in

Fig. 4.8. Then, the absolute value, indicated by the Abs block in Fig. 4.8, of the

subtraction is added using an accumulator and later divided by the total

number of samples to generate MAD. The feature is stored in a register using the

Ctrl 2(i) signal.

Accumulator Register
Sum

Prepo(i)

Ctrl_1(i)

Fig. 4.9 SUM extraction in the hardware design

In Fig. 4.9 the result of the accumulator gives the sum output shown. In the case

of extracting AE, it is needed to square each sample value of prepo(i), and for

the summation of the squared values, an accumulator is used in Fig. 4.10.

Ctrl 1(i) is also used to store the sum and AE value in a register.
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Fig. 4.10 AE extraction for the FPGA design
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Fig. 4.11 RMS extraction in Xilinx system generator

In Fig. 4.11, the sample values of prepro(i) are squared using a multiplier block

and then added using an accumulator. The result is divided by the total number

of sample values and later square rooted for generating RMS value which is

stored in a register and Ctrl 1(i) is used for controlling this.
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Accumulator RegisterMultiplier
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root
Subtractorb
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a
Mean

Fig. 4.12 Standard deviation extraction for FPGA design

For determining the standard deviation mean value of each prepo(i) signal is

subtracted from all the samples and squared. The squared values are added

using an accumulator followed by a divider dividing the accumulator output by

the total number of samples. Later the result of the divider is root squared to get

the standard deviation of the input signal as shown in Fig. 4.12. The extraction

of the feature called variance is almost the same process as extracting standard

deviation except for the root square process. After determining the variance, a

root square block is used to determine the standard deviation. A register is used

to store the standard deviation of the input PPG signal. The process is shown in

Fig. 4.13.

In the case of skewness, the mean value of a PPG signal is subtracted from the

sample values preserved in the RAM, RAM Op(i). Then the same result is
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Fig. 4.13 Variance extraction for classifier design
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Fig. 4.14 Skewness extraction at the hardware level
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Fig. 4.15 Kurtosis extraction for hardware design

multiplied three times and added to an accumulator. The standard deviation,

extracted previously, is multiplied three times and then multiplied with 1 less

than the total number of samples. This multiplication output divides the

accumulator output to get the skewness value. For kurtosis, the process is

almost the same, except here, it is necessary to multiply the values four times

instead of three times, as in the case of determining skewness. In the case of

standard deviation, variance, skewness, and kurtosis, the Ctrl 2(i) signal is used

to control registers that store the values respectively.

The overall extraction of all the features is shown in Fig. 4.16. The different

colour boxes indicate the individual feature extraction in this figure. The design

uses accumulators, dividers, multipliers, absolute blocks, and square blocks for

different operations. Also, it needs registers for storing the features.

4.7 Classification Subsystem

At this stage, it is necessary to design a classifier to achieve the purposes of the

study. One classifier is needed for a binary classification for detecting individual
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Fig. 4.16 Complete feature extraction process in Xilinx system generator

diseases, and another for multiclass classification. Also, to predict heart rate and

blood pressure another classifier needs to be designed. Binary SVM and

multiclass SVM classifiers are designed for binary and multiclass classification

analyses, while linear regression classifier has been designed for heart rate and

blood pressure estimation.

4.7.1 Classifier for Binary Classification

The extracted features have to be utilized for developing a classifier to classify

the PPG signal for the detection of diseases. For this, SVM classifier has been
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Fig. 4.17 SVM Classifier for binary classification

chosen as it is easy and simple to implement in hardware due to its simple

function. There will be one SVM classifier for each disease for binary

classification of diseases. The total classifier system architecture designed in the

Xilinx system generator is shown in Fig. 4.17. The weight values (w1,w2,....w11)
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and bias values (b) are chosen from the model found in Matlab by training the

dataset at the software level as mentioned in Chapter 3. The extracted features

are multiplied by the weight values and added together. Finally, the bias value is

added and the total summation is divided by the absolute value of the sum.

class =
f (x)
| f (x)| (4.2)

If it results in 1, it is considered a normal case and if the result is −1, it is

considered a signal of a subject of a particular disease.

4.7.2 Classifier Design for Multiclass Classification
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Fig. 4.18 Individual SVM classifier architecture for multi-class classification

For multiclass classification also, SVM classifier is used. In this study, seven

classes have been used, so it is required to design seven SVM classifiers as the

binary SVM classifier. The system block for this case is presented in Fig. 4.18.

The figure shows the preprocessing stage design to a single SVM classifier

design. Seven similar SVM classifiers are designed in the same pattern. All the
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Fig. 4.19 Comparator in multiclass classification

Algorithm 1: Algorithm for class prediction
if class 1=-1 then

f class =1
else if class 2=-1 then

f class =2
else if class 3=-1 then

f class =3
else if class 4=-1 then

f class =4
else if class 5=-1 then

f class =5
else if class 6=-1 then

f class =6
else

f class =7
end

class results will go to a comparator which compares the classes of all classifiers

to show the final class of the signal. It is shown in Fig. 4.19. The comparator

checks the output of all the classifiers and then gives the final class output. The

comparator gives the result by the Algorithm 1.

The comparator logic is implemented to determine the actual class between the

seven classes. It checks the output of the seven classifiers. If the class 1 output is
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-1 then the comparator gives the output f (class) 1 indicating the PPG segment

belongs to normal or class 1. If the output of classifier 1 is 1, it checks the next

classifier’s output. If the output of the second classifier is -1 then the comparator

gives an output of 2. Similarly, it shows the output of other classes if their

respective classifier output results in -1. When multiple classifiers show the

same -1 output, the comparator checks the classifier outputs and provides the

result according to the algorithm.

4.7.3 Classifier Design for BP and Heart Rate Estimation

A linear regression classifier is designed for heart rate and blood pressure

estimation. The regression coefficients and intercept value needed for the system

development are taken from the software design in Chapter 3. Nine statistical

features have been extracted in this study. Different numbers of features are

used to predict the heart rate and blood pressure from PPG signals. At first, 3

features are used and then in the next steps, the number of features is increased

by 1. For increasing a new feature, it has been ensured that the new feature

requires fewer resources than the other features. Upon trying these

combinations of features, it has been found that using 5 features: mean, MAD,

sum, AE, and RMS gives the best results for heart rate and blood pressure

estimation. It is shown in the result section in Chapter 5. The system architecture

is shown in Fig. 4.20.

The linear regression model can be designed such that a single classifier model

can provide the output of heart rate, systolic blood pressure, and diastolic blood

pressure. It is necessary to design three linear regression classifiers for these three

parameter estimations in a single system. Each class’s regression coefficients and

intercepts must be implemented in their respective classifiers. However, it will

take a lot of resources, and thus power consumption will be much higher. Hence,

a single health parameter estimation system is designed in this study.
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Fig. 4.20 Linear regression classifier for heart rate and BP estimation
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Chapter 5: Performance Analysis

Analyzing the system performance of the design system both at the software and

hardware level is necessary for the validation of the systems. It will also provide a

distinction between the performances of the FPGA-based system and the software

system. This section represents the results of the software system developed in Chapter 3

and the Hardware prototype designed in Chapter 4. The performance of the preprocessor,

feature extractor, classifier, and prediction system is analyzed.

5.1 Results of Preprocessing Subsystem

As biosignals are contaminated with different noises preprocessing stage must

remove them before further analysis of the signal. The preprocessor is designed

with a low-pass filter and a high-pass filter. Different filtering techniques have

been applied for quantitative analysis. Resource utilization of the designed

system for various filtering techniques has been determined. After analyzing all

the filtering techniques, these have appeared to be the best regarding resource

utilization and power consumption. The overall resource utilization for different

Table 5.1. Resource utilization for different filtering approaches

Filter Design for PPG Preprocessor Resource Utilization
High Pass

Filter
Low Pass Filter LUT LUTRAM Flipflop DSP I/O

Kaiser Kaiser 2700 2513 5315 112 65
Least Square Least Square 2717 2513 5320 112 65
Constrained
Least square

Constrained
Least square

2700 2513 5315 112 65

Equiripple Equiripple 2719 2513 5322 112 65
Barlett Barlett 2719 2513 5322 112 65

Rectangular Rectangular 2700 2513 5315 112 65
Hann Hann 2712 2513 5318 112 65

Hamming Hamming 2698 2501 5277 112 65

techniques is presented in Table 5.1. From the resource analysis, it is seen that

the hamming window requires the least amount of logic elements, and thus the
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on-chip power consumption will be the lowest among all filtering techniques for

the PPG preprocessor. The use of I/O, and DSP is the same for all the different

filtering techniques. The amount of LUTRAM required is also the same for all

the techniques except the hamming window. However, different numbers of

LUT and flip-flops are required by them. As the hamming window requires the

lowest number of resources for the preprocessor system, hence it is selected for

the hardware system design. So, the next results are analyzed based on the

Hamming window filtering technique. These filters have successfully removed

the noises so, higher order filters are avoided for minimum resource and power

utilization.

Table 5.2. Preprocessing stage performance

Raw Signal Normalized and preprocessed
signal

W
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m
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T i m e
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The PPG signal from the database is given input to the preprocessing stage

designed in the Xilinx system generator. The high and low pass filters remove

the undesired noises from the signal. In Table 5.2, it can be seen that the raw
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PPG signal is noisy which is noise-free in the case of preprocessed signal after

passing through the filter. Also, the signal is normalized first before giving input

to the preprocessing stage.

In the software stage, the FFT analysis of the preprocessed signal shows the

removal of noises. In the hardware stage, noise removal is also evident in the

FFT response of the signals. The FFT of raw PPG signal and preprocessed PPG

signal is shown in Table 5.2. It is evident from the figure that noises contaminate

the raw PPG signal, and noise spikes are found all over the frequency range.

After passing the normalized signal through the filters, the noises are removed.

It can be seen that at the hardware level, the designed preprocessor output has

very little amount of noise above 15 Hz and above 20 Hz, noise is almost fully

suppressed.

5.2 Performance of Feature Extractor

The feature extractor subsystem extracts nine statistical features. To verify the

extracted features, they are compared with features extracted in software

simulation. The Pearson correlation coefficient and root-squared error (RSE)

values are determined for statistical analysis.

The most popular method for determining a linear correlation between two

variables is the Pearson correlation coefficient (r). It is expressed by the

following equation:

r =
1

n − 1
(

∑ x ∑ y(x − x̄)(y − ȳ)
SxSy

) (5.1)

where, r is Pearson correlation coefficient, n is the total number of compared data,

x̄ and ȳ are the average of x and y values, x values are considered software data

and y values are considered hardware data, Sx & Sy are corresponding standard

deviations.

In the study, nine features have been used, which are extracted from the designed

subsystem. The Pearson correlation coefficients of these features are presented in

Table 5.3 and Fig. 5.1. A Pearson correlation coefficient value close to 1 indicates
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higher accuracy [117]. The Table shows that all the extracted features from the 331

PPG recordings by the subsystem have a Pearson correlation coefficient above

0.97. This validates the feature extractor design of this study.

Table 5.3. Pearson correlation coefficient for extracted features for 331 PPG recordings

Feature Pearson correlation coefficient
Mean 0.9982
MAD 0.9893
Sum 0.9793
AE 0.9812

RMS 0.9882
Standard deviation 0.9791

Variance 0.9832
Skewness 0.9783
Kurtosis 0.9884

M e a n M A D S u m A E R M S S D V a r i a n c e S k e w n e s s K u r t o s i s
0 . 9 0

0 . 9 5

1 . 0 0
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nge

Fig. 5.1 Pearson Correlation coefficient for extracted software and hardware features

Another metric is root squared error (RSE), one of the common methods for

gauging how well a model predicts quantitative data. It is expressed by:

RSE =
√
(X − Y)2 (5.2)

where, X represents software outcome, Y represents hardware outcome. RSE

Value closer to 0 indicates higher accuracy. Fig. 5.2 shows the boxplot of RSE

data for the extracted features. The “×” sign indicates the outliner, and ”-”
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indicates the range of minimum and maximum data points considered. A closer

value to 0 indicates higher accuracy. In the figure, all the RSE values of the

features are close to 0. The Pearson correlation coefficient and the RSE values

validate the feature extraction subsystem design in the hardware level.

M e a n M A D S U M A E R M S S D V a r i a n c e S k e w n e s s K u r t o s i s
- 0 . 0 5

0 . 0 0

0 . 0 5

0 . 1 0
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0 . 2 0

0 . 2 5
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ng

e

Fig. 5.2 Boxplot of RSE for different features

5.3 Performance of the classifier

Three classifiers have been designed, as explained in Chapter 4. It is needed to

analyze the performance of these classifier subsystems to validate the designs.

The first system is designed for the purpose of binary classification of different

cardiovascular diseases. The designed prototype gives the result of 1 or -1 in the

final stage. In the second classifier, the classifier gives the output from class 1 to

class 7 upon processing the PPG signal. For these two classifiers, it is required to

determine the true positive (TP), false positive (FP), true negative (TN), and false
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negative (FN) cases from the system.

True Positive (TP): Normal instances correctly identified as normal

False Negative (FN): Normal instances that are identified as abnormal

True Negative (TN): Abnormal instances that are identified as abnormal

False Positive (FP): Abnormal instances that are identified as normal

Various parameters are checked to analyze the system performance of a machine

learning classifier. These are discussed below which will be used to check the

system performance of the designed classifiers in detecting various diseases.

How well a machine learning model can identify positive examples is measured

by its sensitivity. It is often referred to as recall or true positive rate (TPR). It is

expressed by eqn. 5.3.

Sensitivity =
TP

TP + FN
∗ 100 (5.3)

The capacity of the algorithm or model to forecast a true negative for each

possible category is referred to as specificity. It is defined by eqn. 5.4.

Speci f icity =
TN

TN + FP
∗ 100 (5.4)

The accuracy in machine learning is a measurement statistic that compares the

proportion of accurate predictions made by a model to all predictions made. The

following equation determines it:

Accuracy =
TN + TP

TN + TP + FN + FP
∗ 100 (5.5)

Eqn. 5.6 shows the error rate, which measures how far a model deviates from the

genuine model in its predictions.

Err =
FN + FP

TN + TP + FN + FP
∗ 100 (5.6)

A false alarm rate is calculated as the ratio of false alerts to all other non-events.

It is expressed by eqn. 5.7

FA =
FP

TN + FP
∗ 100 (5.7)
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Precision indicates the proportion of positive identifications that are actually

correct. It is determined by the following equation:

Precision =
TP

TP + FP
∗ 100 (5.8)

The F-measure, commonly called the F1 score, is a metric used to assess how well

a machine learning model performs. The harmonic mean of precision and recall

is used to calculate the F-measure, giving each the same weight. It enables the

evaluation of a model that accounts for both precision and recall using a single

score, which is useful for characterizing the model’s performance. It is expressed

by eqn. 5.9

F − measure = 2 ∗ Sensitivity ∗ Precisiom
Sensitivity + Precisiom

∗ 100 (5.9)

The necessary confusion matrices for measuring these parameters are presented

in Fig. 5.3. It can be seen from the confusion matrices that using the physical

features: age and BMI, along with nine statistical features provides the better

result. The total number of true positives and true negatives has increased for 11

features. So, it has improved the classification performance for each disease

detection if it is compared with the performance in the case of using only the

nine statistical features. Hence, the accuracy and classification parameters have

improved. Therefore, the results are analyzed for 11 features for the binary

classifier performance analyses. We can see the total number of true positives

and true negatives has increased by 2 for hypertension. For cerebral infarction

and cerebrovascular disease, it has increased by 1. For diabetes, the total number

of true positives and negatives has increased by 6. So, for all the diseases, the

accuracy will be better for 11 features.
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Fig. 5.3 Confusion matrix for binary classification using 9 and 11 features

5.3.1 Hypertension Detection

The performance of the designed binary SVM classifier for hypertension is

analyzed in this section. In the software level design, 5-fold cross-validation has

been applied. It resulted in 98.5% accuracy in detecting hypertension. For

hardware-level implementation, nine statistical features and two physical

features are used. The performance of the classifier using these features is

determined using Eqn. 5.3 to Eqn. 5.9 and presented in Table 5.4.
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Table 5.4. Confusion matrix and classifier performance for hypertension detection

Performance
parameter

Rate Confusion matrix

Sensitivity 94.2%

65 4

1 68

Predicted Class

T
ru

e
 C

la
s
s 1

-1

1 -1

Specificity 98.55%
Accuracy 96.37%
Error rate 3.63%

False alarm 1.45%
Precision 98.48%

F-measure 96.29%

5.3.2 Cerebral Infarction Detection

In the case of cerebral infarction, an accuracy of 96.05% has been achieved using

9 statistical and 2 physical features with 5-fold cross-validation in the software

design. The confusion matrix and classifier performances for cerebral infarction

detection with nine statistical features are presented in Table 5.5.

Table 5.5. Confusion matrix and classifier performance for cerebral infarction detection

Performance
parameter

Rate Confusion matrix

Sensitivity 100%

23 0

3 20

Predicted Class

T
ru

e 
C

la
ss 1

-1

1 -1

Specificity 86.96%
Accuracy 93.48%
Error rate 6.53%

False alarm 13.04%
Precision 88.46%

F-measure 93.48%

5.3.3 Cerebrovascular Disease Detection

For cerebrovascular disease detection at the software level, an accuracy of

98.33% has been achieved from the SVM classifier using 11 features with 5-fold

cross-validation. The confusion matrix for cerebrovascular disease detection is

presented in Table 5.6.
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Table 5.6. Confusion matrix and classifier performance for cerebrovascular disease
detection

Performance
parameter

Rate Confusion matrix

Sensitivity 95.24%

40 3

0 43

Predicted Class

T
ru

e 
C

la
ss 1

-1

1 -1

Specificity 97.62%
Accuracy 96.43%
Error rate 3,57%

False alarm 2.38%
Precision 97.56%

F-measure 96.39%

5.3.4 Diabetes Detection

For diabetes detection using 5-fold cross-validation in Matlab, 97.17% accuracy

is achieved. At the hardware level, the classifier is tested with the selected

recordings. The confusion matrix for diabetes detection with eleven features is

presented in Table 5.7.

Table 5.7. Confusion matrix and classifier performance for type-2 diabetes mellitus
detection

Performance
parameter

Rate Confusion matrix

Sensitivity 81.54%

47 19

0 66

Predicted Class

T
ru

e
 C

la
s
s 1

-1

1 -1

Specificity 95.38%
Accuracy 88.46%
Error rate 11.54%

False alarm 4.61%
Precision 94.64%

F-measure 87.6%

A comparison showing the performance parameters for all the disease detection

in the binary classifiers is presented in Table 5.8. It shows that all the classifiers

have an accuracy of over 85% and over 90% for 3 cardiovascular diseases. On

average, the accuracy of the binary classifiers is 93.69%.
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Table 5.8. System performance analysis for binary classification

Hypertension Cerebral Cerebrovascular Diabetes
infarction diseases

Sensitivity 94.2% 100% 95.24% 81.54%
Specificity 98.55% 86.96% 97.62% 95.38%
Accuracy 96.37% 93.48% 96.43% 88.46%

Err 3.63% 6.52% 3.57% 11.54%
FA 1.45% 13.04% 2.38% 4.61%

Precision 98.48% 88.46% 97.56% 94.64%
F-1 score 96.29% 93.88% 96.39% 87.6%

5.3.5 Multiclass Classification

In the case of multiclass classification, 7 classes have been considered. The

classifier is developed based on the SVM classifier. A comparator gives the

output of different classes after analyzing the PPG signal. The confusion matrix

for this case is shown in Fig. 5.4. Here, among the different classes the
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Fig. 5.4 Confusion matrix for multiclass classification

developed system can predict all the 17 normal cases accurately. In the case of

diabetes, it can predict 15 accurately. 12, 13, 11, 13, and 14 cases are accurately
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predicted for cerebral infarction, cerebrovascular disease, hypertension,

hypertension with diabetes and prehypertension with diabetes, respectively. So,

It has an accuracy of 100% for class 1, 88.24% for predicting class 2, 70.58%for

class 3, 76.47% for class 4 and class 6, 64.71% for class 5, and 82.35% for class 7.

The overall accuracy of this system is approximately 80%.

5.3.6 Heart Rate and Blood Pressure Estimation Classifier

Linear regression algorithm has been used for estimating blood pressure and

heart rate. A different number of features have been utilized to check the result.

It has been started from 3 features: mean, sum, AE and the mean absolute error

(MAE) and standard deviation have been checked for each case. Then one

feature has been added and the system performance has been checked again.

This has been continued for all the nine statistical features. When a feature is

increased for accuracy, the feature requiring fewer logic blocks during design

has been given priority. The heart rate and blood pressure for different feature

combinations are measured following the multiple linear regression equation:

y = bo + b1x1 + b2x2 + .... + bmxm (5.10)

where, y is the estimated value, bo is the intercept, b1, b2, b3, ...., bm are regression

coefficients, and x1, x2, x3, ...., xm are the independent variables or the feature

values.

The performance in heart rate and blood pressure estimating for different

feature combinations is shown in Table 5.9.

Table 5.9 shows that for all cases, using 5 features gives the best result. Using only

three features, the worst result is achieved. By using 5 features, the MAE±SD for

heart rate estimation is 3.05±1.99 beat per minute. In the case of systolic and

diastolic blood pressure, they are 4.79±2.74 and 3.52±2.33, respectively.
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Table 5.9. Performance analysis for different features

Heart Rate Blood Pressure
SBP DBP

features MAE SD MAE SD MAE SD
3 4.33 2.18 6.3 2.4 5.14 2.87
4 3.75 2.14 5.72 2.88 4.51 2.98
5 3.05 1.99 4.79 2.74 3.52 2.33
6 3.29 2.15 4.99 2.97 4.12 3.13
7 3.45 2.67 5.39 3.06 4.34 2.76
8 3.38 2.54 5.07 2.99 3.94 2.88
9 3.56 2.27 5.33 3.18 4.22 3.02

5.4 Resource and Power Utilization Analysis

The system has been implemented in the Xilinx system generator primarily

targeting Zedboard Zynq xc7z020-1clg484. It utilizes look-up table (LUT),

lookup table random access memory (LUTRAM), flip flop (FF), block random

access memory (BRAM), digital signal processing (DSP), input/output (IO),

global buffer (BUFG). These resources consume power for their operation. The

resource utilization of the various systems designed is presented in this section.

Also, the amount of power required by the designed prototype is analyzed in

this section.

5.4.1 Binary Classification Architecture

For the binary classifier, a SVM classifier is designed. The system with eleven

features performs better than the other designs with nine features. Hence, the

better system has been selected for resource and power utilization analysis.

Table 5.10. Zedboard Resource utilization for binary classifier

Resource Utilization Available Utilization
percentage

LUT 20349 53200 38.23%
LUTRAM 501 17400 2.88%

FF 3990 106400 3.75%
BRAM 7.50 140 5.35%

DSP 134 220 60.9%
I\O 65 200 32.5%

BUFG 1 32 3.12%
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The resource utilization considering eleven features is presented in Table 5.10. It

is evident from Table 5.10 that, the Zedboard zynq 7000 FPGA board has enough

resources for this system design.

Due to the requirement of these resources, the system will require some power

to operate these logic blocks. The power consumption by the binary system is

depicted in Fig. 5.5.

83.5%

16.5%

Dynamic: 0.579W

Static: 0.114W

Clocks: 0.031W      (4.4%)

  Signals: 0.254W    (36.7%)

   Logic: 0.203W       (29.3%)

  BRAM: 0.010W      (1.4%)

     DSP: 0.058W         (8.5%)

       I/O: 0.022W           (3.2%)

PL Static: 0.114W  (16.5%)

Fig. 5.5 Power Utilization for the binary classifier in Zedboard

As shown in Fig. 5.5, the system requires a total of 0.693 W power, among which

0.579 W is dynamic power and 0.114 W is static power. Static power is the power

supplied when the design is configured but no activity is applied. It is the

minimum power that is required while the design operates. On the other hand,

dynamic power is the power that is required when the device is running an

application. 83.5% of the dynamic power is distributed for different logic

operations where signals and logic blocks consume maximum power. This

system requires maximum power for signals and logic portion.

5.4.2 Multiclass Classification Architecture

For the multiclass classifier, seven SVM classifiers have been designed. Due to

the high amount of logic blocks required during the design procedure, it will
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have more resource utilization than the binary classification process. The system

requires more DSP than available in Zedboard zynq. Hence, zynq ultrascale+

have been selected for this design in FPGA. The resource analysis is presented in

Table 5.11.

Table 5.11. Zynq Ultrascale+ Resource utilization analysis for multiclass classification

Resource Utilization Available Utilization
percentage

LUT 49168 230400 21.34%
LUTRAM 501 101760 0.5%

FF 8783 460800 1.9%
BRAM 7.5 312 2.4%

DSP 270 1728 15.62%
I\O 258 360 71.67%

BUFG 1 544 0.18%

It can be seen from Table 5.11 that, the amount of LUT, LUTRAM, Flipflop,

BRAM, and BUFG required for this design are available in zedboard zynq.

However, the amount of DSP and Input-Output (I\O) blocks required for this

design are more than the number available in this board. However, zynq

ultrascale+ board has an available number of blocks for DSP and I\O. Also,

other resources are available in increased numbers on this board. Due to the

increased number of SVM classifiers in this design, it requires more resources.

So, it will require more power to operate. The power consumption by the

multiclass classifier system is depicted in Fig. 5.6.

This system requires 0.807 W of power as dynamic power which is 57.51% of

total power. The rest 42.49% is static power which is about 0.596 W. In this

system static power is required for processing system (PS) and programmable

logic (PL). In this system, maximum power is consumed for PL static case.

5.4.3 Heart Rate and Blood Pressure Estimation Architecture

For the heart rate and blood pressure estimation, linear regression classifier has

been used. Also, in this case, 5 features are used. So, the number of required
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Fig. 5.6 Power Utilization for the multiclass classifier in zynq Ultrascale+

resources will be less than in other designs. The heart rate and blood pressure are

measured following the multiple linear regression equation:

y = bo + b1x1 + b2x2 + .... + bmxm (5.11)

where, y is the estimated value, bo is the intercept, b1, b2, b3, ...., bm are regression

coefficients, and x1, x2, x3, ...., xm are the independent variables or the feature

values.

The resource utilization for this stage is shown in Table 5.12.

Table 5.12. Resource utilization analysis of the developed prototypes in zedboard

Resource Utilization Available Utilization
percentage

LUT 9903 53200 18.61%
LUTRAM 466 17400 2.68%

FF 2536 106400 2.38%
BRAM 7.50 140 5.35%

DSP 74 220 33.64%
IO 65 200 32.5%

BUFG 1 32 3.12%

It is evident from Table 5.12 that, this system requires the least amount of logic

blocks. As the zynq 7000 FPGA board has enough resources required for this

system, this board has been used in this design. The power requirement will also
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Fig. 5.7 Zedboard power Utilization for heart rate and blood pressure estimation

be less for this system with fewer resources. The power consumption by the

prediction system is depicted in Fig. 5.7.

So, the system requires 0.353 W of power, among which 0.245 W is dynamic

power and 0.108 W is static power. In this case, also, maximum power is

required for static operation.

5.5 Comparative Study

The designed system performance needs to be compared with the previous

works to show their efficacy.

A comparison study of cardiovascular disease detection from PPG signal is

shown in Table 5.13.

From Table 5.13 it is seen that different types of cardiovascular disease

classification have been done from PPG signal. However, to the best of my

knowledge, this is the first work to detect cerebral infarction and

cerebrovascular disease from PPG. This study has detected these diseases from

PPG signals with significant accuracy. Also, hypertension has been classified

from PPG signals and the detection accuracy is better than most of the works on
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hypertension classification from PPG signals.

A part of this study also includes a multiclass classification study to detect

various combinations of cardiovascular diseases including diabetes. However,

previously the maximum study was done for binary classification. Only [59] has

done a multiclass classification of different hypertension stages. Again,

considering the number of features used in previous studies it can be seen that

fewer features have been used in this study than most of the works. It should be

noted that the works that have used fewer features have achieved lower

accuracy. Also, most of the previous works are done at the software level while

the designed systems in this thesis have developed the classification or detection

system both at the software and hardware level. In both software and hardware

based studies this study has shown significantly improved accuracy than the

previous studies.

Considering the accuracy of the classification systems of the previous works it

also illustrates that the developed prototypes have achieved significantly more

accuracy than most of the works. It can be seen from Table 5.13 that some of the

works did not provide their system accuracy. Instead, these works have

provided the F1-score, sensitivity and specificity results. However, the designed

systems have overcome them in those parameters also. [59] has achieved more

accuracy in detecting hypertension. However, it is done at the software level,

while the system in this study is developed at the hardware level. Also, this

work has utilized 30 features, while only 11 features have been used for this

system design.

Therefore, this study has advantages over previous studies in terms of using

fewer features and achieving higher accuracy even at the hardware level, along

with classifying two cardiovascular diseases which were not explored before to

the best of my knowledge.
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The diabetes mellitus type-2 classification is also performed on the binary SVM

classifier system. Its performance is compared with some previous studies on

the detection of diabetes from PPG signal in Table 5.14.

It can be seen from Table 5.14 that, the previous works on diabetes detection

have been done at the software level. In this study, a hardware-based system is

designed for type-2 diabetes mellitus classification. Considering the number of

used features, it can be seen that the designed system uses fewer features than

some of the previous works. Different classification methods have been applied

for diabetes detection from PPG signals. This system uses SVM for diabetes

detection. The [75] has also used SVM for diabetes classification and achieved

slightly higher accuracy. But it has used more features than the proposed work

and done at the software level.

Though most of the previous works have better accuracy than the proposed

work, the proposed system is designed at the hardware level. To the best of my

knowledge, it is the first hardware-based work for type-2 diabetes mellitus

classification from PPG.
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Again, the heart rate estimation performance is compared with previous studies

in Table 5.15. Here also, most of the works are done at the software level. There

is a hardware-based implementation using FPGA for predicting heart rate [89].

However, it has not provided any performance analysis of the developed

system. In this study, the system’s performance has been analyzed evaluating its

error percentage in predicting the heart rate. Also, the power consumption

analysis and resource analysis are done in this study. It is seen that the number

of subjects considered for different studies is lower than the this study. 331

recordings from 153 subjects have been considered for this proposed work

which validates the system more. Also, the algorithm that has been

implemented, linear regression, is not used in those previous studies. Though

the mean absolute error of the proposed system is higher than some of the

works, as a cuffless and non-invasive method along with the hardware

implementation, this system has shown significant results in predicting heart

rate.

The blood pressure estimation system is compared with previous studies in Table

5.16. There are some works utilizing digital chips for predicting blood pressure

[79], [80]. However, the detection algorithm is implemented at the software level

in those works. Other previous works are also done at the software level. In this

case also, the proposed system has been developed considering more subjects

than other works. Also, fewer features have been used than most of the previous

works. The previous studies have used different machine learning algorithms

like SVM, ANN, and CNN, but in this study, a system has been designed using

linear regression. In previous studies, system performance analysis or resource

and power consumption analysis of the designed system is lacking. Furthermore,

the proposed work outperforms most of the works in blood pressure prediction

accuracy though it is developed at the hardware level.
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5.6 Key Findings

The key findings of this study are presented below:

• The study has designed an implementation of FPGA-based binary

classification of several cardiovascular diseases: hypertension, cerebral

infarction, and cerebrovascular disease from PPG signal.

• Though there are some previous works on hypertension detection, they are

done at the software level. The implemented system has been designed at

the hardware level with 96.37% accuracy. Also, to the best of my knowledge,

there are no previous works on classifying PPG signal for cerebral infarction

and cerebrovascular diseases. So, it is the first of its kind in this regard.

The designed system detects cerebral infarction with 93.48% accuracy and

cerebrovascular disease with 96.47%.

• The study also classifies PPG signal for the detection of type-2 diabetes.

In this case also, no FPGA-based previous implementation work has been

found. The system detects diabetes with 88.46% accuracy. To the best of my

knowledge, it is the first PPG-based hardware implemented type-2 diabetes

detection work.

• This study also checks the feasibility of multiclass classification of PPG

signals. There are few studies on the multiclass classification of

hypertension based on software-based PPG signals. However in this study,

a combination of four diseases have been considered for multiclass

classification and achieved an accuracy of 79.83% from the FPGA

implementation.

• The study also focuses on blood pressure and heart rate estimation from

PPG signal with FPGA implementation. It is analyzed for hardware

implementation, while the previous works are done at the software level.

Compared to traditional wearable devices, the designed system can also

detect some cardiovascular diseases and diabetes which is one of the

uniquenesses of this study.
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Chapter 6: Conclusions

The overall methodologies and findings of this study are presented in this chapter. It

summarizes the discussion of the methodology and results section. In addition, this

chapter contains general, key findings, and limitations along with the significance of the

study. The future study subsection will present the researchers interested in this topic

with some suggestions to work with.

6.1 Conclusions

Photoplethysmogram is a biosignal that can be acquired in a non-invasive

manner with the use of a simple sensor. It is an electrical signal that acts

according to the change in the volume of blood supply. It has been studied for

various purposes by researchers which include different disease detection,

health condition monitoring, and health parameter estimation. In this study, the

aim is to detect several cardiovascular diseases: hypertension, cerebral

infarction, and cerebrovascular disease along with diabetes from PPG signal. In

addition, predicting heart rate and blood pressure from PPG is another objective

of the study. State-of-the-art research presents most of the detection or

classification or estimation studies of PPG signals are at the software level. So,

the target has been to implement a hardware-based system for detecting the

diseases. FPGA is chosen for its advantage over other hardware-based

platforms. Xilinx system generator has been used for the design procedure and

Zedboard zynq 7000 board has been targetted primarily for implementation.

The binary classification system and the heart rate and blood pressure

estimation system have been successfully implemented using this FPGA.

However, for the multiclass classification, more resources have been required by

the system. So, zynq ultrascale+ FPGA board has been targeted for the

multiclass classification approach. All system performances have been

individually analyzed in the study. Furthermore, the power utilization analysis
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has been done, which verifies the efficacy of the systems as power-efficient

devices.

6.2 Limitations

The study has been tried to design with the best level to get maximum

performance with optimized resource and power utilization. However, still

some limitations are there which are as follows:

• Different disease detection systems have been developed and tested based

on one dataset only. It is needed to test and verify for other datasets also.

• There are not enough data in some cases, for example, in the case of

cerebrovascular disease, we have selected only 23 segments to work with.

More data will undoubtedly validate the system design more strongly.

• Three systems are designed in this study for multiple purposes. We could

develop all the systems in a single design, but due to resource limitations of

the FPGA board, all the systems had to be designed separately.

• Though we have achieved satisfactory accuracy in detecting hypertension,

cerebral infarction and cerebrovascular disease, the detection accuracy of

diabetes is below 90%.

• The multiclass classification system has an accuracy of 79.83%, which is also

not up to the mark.

• The power consumption analysis of various designs has shown the static

power consumption, which is the power needed during the design

operation, but no activity is applied. It consumes a lot of power in all the

cases. Specially, for the multiclass classification system, it is 42.49% of total

power and 30.59% in case of heart rate and blood pressure estimation.

6.3 Future Scopes

The designed systems can be utilized and improved for future studies. There are

scopes to develop wearable devices, smart healthcare systems, and point-of-care
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systems using FPGA-based designs.

The developed prototype can be extended further to design wearable devices

such as smartwatches, fitness trackers etc. Heart rate and blood pressure

measurements are important health parameters for checking the condition of

patients or during physical exercise. The designed system can be implemented

to develop wearable systems to detect these parameters from the PPG signal

instantly.

Smart healthcare systems are now a need in the modern world. Automatic

disease detection can save millions of lives from early departure. So, a smart

healthcare system based on FPGA-based designs can be handy. The developed

prototype can be improvised to detect disease or alarming symptoms of disease

and will pave the way for early treatment.

Point-of-care system can be implemented too using the designed prototypes. A

POC will monitor the condition of a patient and give information about

important health parameters to the doctors and relatives. It will also alarm the

patient during severe conditions. Thus the hidden symptoms of the disease can

be detected instantly and necessary steps for treatment can be made.

There is an opportunity to improve the designed systems from several

perspectives too. There is scope to increase the accuracy of the systems designed

in the Xilinx system generator. In particular, the multiclass classifier system has

an accuracy of 79.83% and the diabetes mellitus type-2 detection system has an

accuracy of 88.46%. These accuracies can be improved further.

Also, the system can be extended to detect other cardiovascular diseases. PPG is

verified to detect various cardiovascular diseases from the literature review and

also this study validates this more. So, PPG can be further studied to detect

other types of diseases in the future.

The system has been developed and tested based on one dataset only. In the

future, other PPG datasets can be combined to validate the system more firmly.

It will also ensure the incorporation of more PPG recordings to design the

system.

The power consumption analysis of various designs has shown the static power

consumption, which is the power needed during the design operation, but no
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activity is applied. It consumes a lot of power in all the cases. Specially, for the

multiclass classification system, it is 42.49% of total power and 30.59% in the

case of heart rate and blood pressure estimation. So, future studies can be done

to reduce the static power consumption along with the total system power

consumption.

The binary classification system, multiclass classification system and the blood

pressure and heart rate estimation system have been developed on individual

system designs. All the designs can be developed on the same system but it will

utilize more resources and more power will be needed. So, it can be analyzed in

future studies to develop all the systems in a single architecture with less

resource and power utilization.

There is scope to validate the system more by collecting practical data from

patients of the considered cardiovascular diseases and testing the designed

systems with those data.

It can be further improved to develop medical equipment for treatment

purposes and laboratory use in the future. The system will help doctors to detect

various diseases quickly and validate different test results. Also, cardiac patients

will get early treatment and will have a better chance of procurement.
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Appendices

Appendix A: Description of the Dataset

Data Descriptor: A new, shortrecorded photoplethysmogram dataset for blood

pressure monitoring in China

Open clinical trial data provide a valuable opportunity for researchers

worldwide to assess new hypotheses, validate published results, and collaborate

for scientific advances in medical research. Here, we present a health dataset for

the non-invasive detection of cardiovascular disease (CVD), containing 657 data

segments from 219 subjects. The dataset covers an age range of 20–89 years and

records of diseases including hypertension and diabetes. Data acquisition was

carried out under the control of standard experimental conditions and

specifications. This dataset can be used to carry out the study of

photoplethysmograph (PPG) signal quality evaluation and to explore the

intrinsic relationship between the PPG waveform and cardiovascular disease to

discover and evaluate latent characteristic information contained in PPG signals.

These data can also be used to study early and noninvasive screening of

common CVD such as hypertension and other related CVD diseases such as

diabetes.

This PPG and BP (PPG-BP) database integrates the deidentified, comprehensive

clinical data of patients admitted to the Guilin People’s Hospital in Guilin,

China. The openness of the data allows clinical studies to explore and improve

the understanding of relationships between cardiovascular health and PPG

signals, with the final goal of creating a simple, effective non-invasive detection

technology that is easy to use and wearable. This dataset has been collected from

219 subjects, aged 21–86 years, with a median age of 58 years. Males accounted

for 48%. The dataset covers several diseases including hypertension, diabetes,

cerebral infarction, and insufficient brain blood supply.

Experimental design and data acquisition:

The dataset collection program involved acquiring information on the basic
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physiology of individuals, extracting information on cardiovascular diseases

from hospital electronic medical records, collecting PPG waveform signals, and

detecting instant arterial blood pressure at the same time. The data acquisition

was conducted at the Guilin People’s Hospital. A customized portable hardware

platform was designed, and consisted of a PPG senor probe, microcontroller,

and a matching app. Data were transmitted via Bluetooth. The PPG sensor

model was SEP9AF-2 (SMPLUS Company, Korea), which contains dual LED

with 660nm (Red light) and 905 nm (Infrared) wavelengths, with a sampling rate

of 1 kHz and 12-bit ADC, and the hardware filter design is 0.5–12Hz bandpass.

The microcontroller model was MSP430FG4618 (Texas Instruments company,

USA) embedded on the probe’s board to configure the ADC, fetch the data and

send the data to the matching app via Bluetooth. Waveform data is collected

using a set of customized probes and a matching app that was developed based

on Android Studio. The PPG detection probe used the infrared light and

transmission method to collect fingertip PPG waveform data. These real-time

data are transmitted to the matching app via Bluetooth. The app can control the

detection probe, display the real-time waveform, and conduct a signal quality

assessment of the PPG waveform in order to save the high-quality PPG wave

segment. The arterial blood pressure is measured using the Omron HEM-7201

(Omron Company, Kyoto, Japan) upper arm blood pressure monitor.

The study was approved by the ethics committee of the Guilin People Hospital

and the Guilin University of Electronic Technology in China. All participants

gave written and informed consent before the study. They were compensated

monetarily at 10 Yuan/h. Participants answered questions about age, gender,

height, and weight and all initial data acquisition was conducted in a private,

and comfortable clinical room.

Before beginning with signal collected, each individual was asked to sit in an

office chair in the most comfortable posture and to relax their arms on an empty

desk. Each individual had 10 min to adapt to the environment and adjust their

breathing after entering the data collection room. The specific collection settings

were as follows: The PPG signal was collected at the fingertip of the left index

finger, the arterial blood pressure was collected from the right forearm, all of
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which was completed within three minutes. The arterial blood pressure

measurement was performed by the hospital nurse. During signal acquisition

the sampling precision of waveform data was set to a sampling rate of 1 kHz,

with 12 bits AD conversion precision. Three segments were recorded and saved

per subject, each segment included 2100 sampling points, which corresponds to

a length of 2.1 seconds. During the 3 min data collection phase, every PPG

segment of a particular subject scored a Skewness SQI value; values greater than

Zero were saved, and if a value was less than Zero the app prompted the user to

recollect the PPG signal. This step was developed to reduce including PPG

segments with high noise and motion artifacts.

The BP collection device (Omron HEM-7201) requires at a minimum a 30 second

waveform to detect the systolic and diastolic period. The BP reading represents

the blood pressure value for the 3 minute data recording for each subject, as

shown in Figure 1. During the data collection process, we aimed to collect the BP

and PPG data immediately after each other respectively. Three PPG segments

were saved during the data collection period in addition to the BP recording.

Every participant was asked to breath as they normally would on day-to-day

basis for practical applications. Note that we did not investigate the baroreflex

response to stress. The dataset includes BP and PPG information from subjects

that were diagnosed with normotension, prehypertension, and stage I/stage II

hypertension, which can be helpful and valuable for researchers.

Patients Characteristics:

The dataset was collected from 219 adult subjects and currently contains 657

PPG waveform segments. The dataset covers individuals aged 21–86 years, and

males account for 48% of participants. The dataset also covers several different

CVDs, including hypertension, cerebral infarction, and insufficient brain blood

supply and other related diseases such as diabetes.

Data Record:

The dataset has been fully uploaded to the network, and users can download

them through the Figshare repository with the title PPG-BP Database and

reference (Data Citation 1). The dataset comprises 1 table file and 219 waveform

data folders, which include three 2.1-secondlength infrared PPG signal text files
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and physiological information recording files. Among these, the PPG signal data

is the 2.1-second-length 12 bits AD raw value. The ID 1, ID 2, and ID 3 text files

represent three separate segments of waveform data Table 1 (available online

only). The ”PPG-BP database.xlsx” table file contains aggregated subjects of

physiological information and disease information. Information records include

ID, sex, age, height, weight, systolic pressure, diastolic pressure, heart rate, and

disease records. Before the participant record is archived, it was required to

conduct data integrity screening, data availability screening, and a waveform

signal quality evaluation (to remove inconsistent, abnormal, and high noise

data) in order to form a high-quality dataset. The detailed process of inclusion

and exclusion, is described as follows:

• Data integrity screening: This process includes the screening of missing

and abnormal values for: basic physiological information, disease

information, blood pressure, heart rate, and 3 segments waveform data. If

one or more items are missing or if there was an abnormal value, the

participant record was removed.

• Data availability screening: This dataset is designed to focus on the clinical

information for CVDs and other closely related diseases such as diabetes.

Data from the CVD patients who were diagnosed with non-CVD diseases

(except diabetes) were excluded during the screening process to ensure

that the dataset only contains data from participants who were diagnosed

with the disease of interest.

• Waveform signal quality evaluation: All 3 segments for each participant

went through a signal quality evaluation, and a robust signal quality index

(SQI) method was applied in order to achieve this step. If the SQIs of the 3

segments in one subject were lower than the mean SQI calculated from the

segments of all subjects, the subject data was removed.

Technical validation:
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The process of data collection experiment consists of five stages. The stage I and

stage II conduct some preparations of the customized hardware and software,

training of operators and recruitment of participants. Stage III is the phase of

data collection in hospitals, including the acquisition of basic physiological

information of participants, hospital electronic medical records, PPG signals and

blood pressure data. Stage IV is the data archiving part, including

de-identification, format conversion, data matching, data inclusion and

exclusion for all the collected data. Stage V is the public release of the PPGBP

dataset; researchers can download the dataset and validate their algorithms. At

present, Perfusion Indices (PSQI) are regarded as the gold standard of PPG

Signal Quality Indices (SQI). Various other signal quality evaluation methods

have been proposed and studied in order to identify more simple and accurate

evaluation methods for signal quality assessment. Elgendi13 compared eight

different signal quality indices: PSQI, Skewness (SSQI), Kurtosis (KSQI),

Entropy (ESQI), Signal-tonoise ratio (NSQI), Zero-crossing (ZSQI), Matching of

multiple systolic wave detection algorithms (MSQI), and Relative power (RSQI).

For varying lengths of PPG waveform recordings (i.e., from 2 s to 30 s), the SSQI

method demonstrated better performance when compared to other methods

((PSQI), (KSQI), (ESQI), (NSQI), (MSQI), (ZSQI), and (RSQI)). Moreover, PPG

waveform classification is possible with 2 s length recording (excellent vs. unfit)

using the (SSQI)index. These results motivated collecting PPG signals with 2 s

length.Skewness is used to measure the probability distribution of symmetric

signals, which can distinguish the periodic, symmetrical, stationary signals and

sudden jumps, periodic signals, and irregular signals. The specific definition is

as follows:

SSQI =
1
N

N

∑
i=1

(xi −
µx

σ
)3 (8.1)

where, N is the sample number of PPG signal, µx and σ are empirical estimates

of the mean and standard deviation of xi, respectively.

In the process of data collection, the data is evaluated using the PPG signal

quality before it was saved, and the evaluation method adopted the SSQI index.

Each segment of PPG signal was evaluated against the classification threshold of
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excellent, acceptable, or unfit PPG waveform in order to determine whether it

should be saved. During the evaluation of signal quality for each participant, the

(SSQI) for the three segments were compared. Among the three the segments,

the segment with the highest (SSQI) was deemed as ”high quality”, the segment

with the lowest (SSQI) was deemed as ”low quality” and the remaining segment

was deemed as ”medium quality”. Note, we are providing the PPG segments

and their corresponding (SSQI) values to make it easier for investigators to select

the segment with highest quality. Additionally, with the availability of the three

(SSQI) values, researchers will able to analyze each segment, if needed, for

validation, etc.
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Appendix B: Design in Xilinx System Generator

Figure B1. Preprocessor

Figure B2. Filters Subsystem

Figure B3. Memory and control system
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Figure B4. Mean extraction

Figure B5. Sum extraction

Appendices 108



Figure B6. AE extraction

Figure B7. MAD extractionr
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Figure B8. RMS extraction

Figure B9. Variance
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Figure B10. Standard deviation extraction

Figure B11. Skewness

Figure B12. Kurtosis extraction
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Figure B13. Feature extraction subsystems
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Figure B14. SVM classifier for binary classification

Figure B15. Multiclass Classifier with 7 SVM classifiers
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Figure B16. Comparator subsystem

Figure B17. Linear regression classifier for heart rate and blood pressure estimation
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