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Abstract

Electrooculogram (EOG) is a bioelectric signal carrying eye movement informa-

tion. This signal can be utilized in medical and bio-electrical applications such

as diagnosing different ocular diseases and controlling human-computer inter-

faces. Point of care (POC) systems refer to the systems where testing is per-

formed right where the patient is. POC systems dedicated to detecting various

eye conditions can be developed by hardware implementations of EOG. Field

Programmable Gate Arrays (FPGAs) are reconfigurable integrated circuits offer-

ing flexible software features with fast parallel computation. Application specific

designs in FPGA fix the functionality and reduce the number of components used

providing cost-effectiveness, and power efficiency. In this research, a systematic

investigation of the research trend on hardware implementations of EOG is pre-

sented first. After that, an in-depth analysis of two novel FPGA-based architec-

tures is presented. The first work aims to design a hardware-optimized binary

EOG processor for blink detection by using multichannel EOG signals contain-

ing horizontal and vertical EOG signals. After preprocessing the EOG signals,

by extracting only two features- root mean square (RMS) and standard devia-

tion (STD), blink and saccades are classified employing support vector machine

(SVM) with 97.5% accuracy. The implemented system of this design in Xilinx

Zynq-7000 FPGA achieves an accuracy of 95%. The second work aims to design a

hardware-optimized machine learning based EOG signal processor to classify six

different eye movements (up, down, normal, right, left, and blink) adopting an

SVM classifier with average software accuracy of 97.92%. The accuracy of the im-

plemented system in Zynq UltraScale+ is 95.56%. The efficacy of the developed

systems is proved by comparing them with state-of-the-art technologies. A few

potential future research scopes are mentioned at the end of the thesis.

vi



সারাাংশ 

ইলেলরাকুলোগ্রাম (EOG) সসগন্যাে হে একটি জৈব জবদু্যসিক (Bio-electric) সাংলকি যা চ ালের 

গসিসবসির িথ্য বহন্ কলর।  এই সসগন্যাে স সকৎসা এবাং জৈব জবদু্যসিক অ্যাসিলকশলন্ বযবহার 

করা চযলি পালর, চযমন্ চ ালের সবসিন্ন চরাগ সন্র্ ণয় করা এবাং মান্ব-কম্পিউিার পসর ােন্া সন্য়ন্ত্রর্ 

করা। তাৎক্ষনিক সেবা সকন্দ্র (Point-of-Care System) চরাগীর অ্বস্থালন্ই পরীক্ষা সিাদ্ন্ কলর। 

হার্ণওয়যালর EOG সসগন্যাে বাস্তবায়ন্ কলর তাৎক্ষনিক সেবা সকন্দ্র জিসর করা  সম্ভব, যা চ ালের 

সবসিন্ন চরাগ সন্াক্তকরলর্র করলি সক্ষম। সিল্ড চরাগ্রালমবে চগি অ্যালর (FPGA) হলো 

পুন্সব ণন্যাসলযাগয ইসিলগ্রলির্ সাসকণি যার অ্ন্যিম জবসশষ্ট্য দ্রুি গর্ন্া। FPGA -এর মািযলম সন্সদ্ণষ্ট্ 

কালৈর ৈন্য সর্জৈিাে সাসকণি সর্ৈাইলন্র মািযলম রলয়াৈন্ীয় উপকরলর্র সাংেযা কমালন্া যায়। 

এর িলে, বযায় কলম, এবাং শজক্ত ের  কম হয়। এই গলবষর্ায় সব ণরথ্লম পূব ণবিী EOG এর 

হার্ণওয়যার বাস্তবায়লন্র উপর একটি পদ্ধসিগি পয ণালো ন্া ও সবলেষর্ করা হলয়লে। এরপর, 

FPGA-সিসিক দু্ইটি পৃথ্ক সসলেম সর্ৈাইন্ করা হলয়লে। রথ্ম সসলেলমর েক্ষয হলো EOG 

সসগন্যাে বযবহার কলর চ ালের পেক চিো সন্াক্তকরর্। এই কালৈ দু্ই  যালন্ে সবসশষ্ট্ EOG 

সসগন্যাে  বযাবহার কলর একটি হার্ণওয়যার এর ৈন্য উপলযাগী দু্ই চের্ীর EOG সসগন্যাে রলসসর 

সর্ৈাইন্ করা হলয়লে। চমসশন্ োসন্ ণাং পদ্ধসি অ্ন্ুসালর এই সসগন্যােলক সররলসসসাং করার পর, 

দু্ইটি  জবসশষ্ট্য -রুি গড় বগ ণলক্ষত্র (RMS) এবাং েযান্ডার্ণ চর্সিলয়শন্ (STD) সন্র্ ণলয়র মািযলম 

চ ালের পেক চিো সন্াক্তকরর্ করা হলয়লে,। সালপািণ চিক্টর চমসশন্ (SVM) এই কালৈ ৯৭  ৫% 

সন্িভ ণেিা অ্ৈণন্ কলর। FPGA Zynq-7000 বাস্তবাসয়ি এই সর্ৈাইন্টি  ৯৫%  সন্িভ ণেিা অ্ৈণন্ কলর। 

সিিীয় কালৈর েক্ষয একটি হার্ণওয়যার এর ৈন্য উপলযাগী চমসশন্ োসন্ ণাং সিসিক EOG সসগন্যাে 

রলসসর সর্ৈাইন্ করা। এই কালৈ চ ালের েয়টি সিন্ন গসিসবসি  (উপর, সন্ল , স্বািাসবক, র্ান্, বাম, 

এবাং পেক চিো) SVM পদ্ধসিলি ৯৭  ৯২% সন্িভ ণেিার সালথ্ চের্ীসবন্যাস করা সম্ভব হলয়লে। 

Zynq UltraScale+-এ বাস্তবাসয়ি এই সর্ৈাইলন্ ৯৫  ৫৬% সন্িভ ণেিা অ্ৈণন্ করা সম্ভব হলয়লে। 

অ্িযািুসন্ক রযুজক্তর সালথ্ িভেন্া করার মািযলম এই গলবষর্ার কায ণকাসরিা সন্ি ণারর্ করা হলয়লে। 

সথ্সসলসর চশষ অ্াংলশ কলয়কটি সম্ভাবয িসবষযি গলবষর্া সম্বলে সাংসক্ষপ্ত আলো ন্া করা হলয়লে। 
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Chapter 1: Introduction

Electrroculogram (EOG) is an electrophysiological signal. This signal provides insights

into eye movement patterns and eye-related conditions. EOG-based digital systems can

assist people in various fields such as medical professionals, researchers, and develop-

ers working on assistive technologies and human-computer interaction. Domain-specific

reconfigurable signal processors like field programmable gate arrays (FPGAs) are often

desirable in such applications to ensure real-time signal analysis, resource optimization,

and point-of-care usage. In this research, state-of-the-art EOG signal processors are thor-

oughly studied to identify contemporary research dynamics. In this thesis, two novel

prototypes are designed to answer a few research questions found in the academic litera-

ture. This chapter gives a brief review of EOG signals, EOG data acquisition methods,

and various eye movements. An overview of FPGA is also discussed. This chapter out-

lines the background in Section 1.1, the present state of the problem in Section 1.2, and

specific objectives in Section 1.3. Section 1.4 describes the significance and scope of this

research. Finally, Section 1.5 includes an outline of the remaining chapters of the thesis.

1.1 Background

According to the World Health Organization (WHO), at least 1 in 6 people go

through disability [1]. People from low-income countries are suffering more

than others in this issue. WHO introduced the Global Cooperation on Assistive

Technology (GATE) to ensure access to high-quality affordable assistive prod-

ucts worldwide [2]. In the last twenty-five years, progress in this sector has been

praiseworthy. GATE has shown a great contribution to creating a supportive en-

vironment for disabled people. However, there is still a need for the advancement

and use of rehabilitation and assistive technologies. Eyes can play a major contri-

bution in the development of rehabilitation Engineering. Most of the physically

disabled people can move their eyes only [3]. The development of eye movement-

based technological devices can assist them directly[4]-[8].
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The eyes are one of the most remarkable organs of human beings. Eyes con-

tribute significantly to the perception of the world. Taking care of the eyes and

addressing any vision issues promptly is essential for maintaining quality of life.

The activity of various cells and structures within the eye produces biopotential

through electrical signals. These electrical signals are essential for transmitting

visual information from the retina to the brain. An electrooculogram, often ab-

breviated as EOG, is a diagnostic tool used in medical and scientific research to

measure and record the electrical activity generated by the movements of a per-

son’s eyes. This non-invasive technique is valuable in understanding and ana-

lyzing eye movements, which can provide insights into various neurological and

ophthalmological conditions. By monitoring the electrical potentials generated

by the eye muscles, an EOG can help in diagnosing disorders such as nystag-

mus, strabismus, and other eye movement abnormalities. Additionally, EOGs

have applications in the field of human-computer interaction, where they are

used to control devices or interfaces through eye movements, making them a

versatile tool with both clinical and technological significance. EOG can be uti-

lized in automated cars to detect stress or drowsiness of the driver. Point-of-care

(POC) systems can play an important role in the timely and accurate diagnosis,

management, and treatment of eye conditions. Including EOG analysis in POCs

has the potential to improve patient outcomes, increase access to eye care ser-

vices, and enhance the overall efficiency of eye care delivery, making them an im-

portant component of modern healthcare systems. Modern technologies require

fast, low-cost, and compact hardware devices that provide quick solutions to the

user. These issuses can be addressed with a re-configurable approach, Field Pro-

grammable Gate Array (FPGA). In this thesis, hardware-software cosimulation

is opted for as it verifies that hardware and software function correctly together.

It helps to verify the functionality before building the final hardware. Therefore,

this thesis aims to design EOG signal processor for detecting eye movements in

FPGA. Subsection 1.1.1 describes EOG, EOG acquisition techniques, and various

eye movement characteristics. It is also important to give an insight into FPGA,

which is described later on in subsection 1.1.2. A brief description of the FPGA

modules and the design tool are given in 1.1.3 and 1.1.4 respectively.
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1.1.1 Electrooculogram

The eye can be considered as a dipole having its positive and negative poles at

the cornea and retina respectively [9]. The eye has a steady corneo-retinal poten-

tial generated within the eyeball by the metabolically active retinal epithelium.

The potential can be measured by placing electrodes on the skin surface around

the eyes which is referred to as the electrooculography technique. This technique

provides electrooculogram (EOG) which represents the recording of eye move-

ments. The major advantages of EOG are that it is non-invasive and inexpensive

[10]. Generally, the amplitude of EOG signals is in the 50 to 3500 µV range[11].

The frequency of EOG signals can vary in the range of DC to 100 Hz [12]. How-

ever, useful EOG information can be extracted from the 0 to 30 Hz range or 0

to 40 Hz range [11,13]. These values can vary with the luminous intensity [13].

EOG contains some impulsive noises such as powerline interference, and base-

line drift. Therefore, filters are used for canceling these noises in the preprocess-

ing stage. The denoised EOG signals are then ready to be processed further to the

application stage. EOG signals covers a broad area of applications and research.

A classification of research on EOG is shown in Fig. 1.1. Research on EOG deals

with classifying eye movements, eye angle, sleep state, predicting emotion, and

developing wheelchairs, game exercises [14]. The research of EOG based eye

movement detection is directly connected to various disease detections. For ex-

ample, normal and abnormal eye movements play an important role in detecting

neurodegenerative diseases [15], diagnosing attention deficit hyperactivity dis-

order [16] etc. Besides, eye movements help in the communication of disabled

people translating their thoughts into words [17]. On the other hand, sleep dis-

order threatens the quality of health of people all around the globe. Sleep stage

information from EOG can be utilized to solve this disease [18]. Classification

of EOG is a major concern for the future development of multimode controllers,

communication devices, and HCI [19]. Most of the work done for classifying

EOG is based on software [20, 14]. However, the hardware implementation for

providing compact and mobile solutions for disabled persons is also getting pop-

ular day by day [21, 22]. Therefore optimized hardware implementation of EOG

is still an issue of research. EOG can be implemented at the hardware level using
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discrte circuits, micro-controllers, Arduino, as well as reconfigurable devices like

FPGA.

EOG Data Acquisition Methods

EOG data can be obtained by placing electrodes near the eyes. Generally, EOG

data acquisition can be categorized into main two types: dual channel and single

channel acquisition.
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1. Dual Channel

Dual channel EOG signals acquisition needs two pairs of electrodes. These

electrodes are sensors to record the electrical activity from the eyes during

eye movements. Here, two electrodes are placed on the horizontal sides of

the eyes as shown by electrodes 1 and 2 in Fig. 1.2 and two electrodes i.e.

electrodes 3 and 4 are placed above and under the right eye. The ground

electrode, G is generally placed on the forehead and The reference elec-

trode, R can be placed on the mastoid behind the left ear. The placement

of reference electrodes can vary in individual works. Fig. 1.2 shows a dual

channel electrode configuration. EOG signals contain horizontal and ver-

tical components. The output from the electrodes provides the horizontal

EOG signals, EOGh and vertical EOG signals, EOGv as given in equation 1.1

and equation 1.2 respectively.

EOGh(t) = V1(t)−V2(t) (1.1)

EOGv(t) = V3(t)−V4(t) (1.2)

Here, Vx(t) denotes the EOG potential recorded using electrode x where,

x = 1, 2, 3, 4.

2. Single Channel

Single channel EOG signals acquisition needs only one pair of electrodes.

Horizontal EOG signals, EOGh can be obtained by placing electrodes on

two sides of the eyes as shown (green) in Fig. 1.2. On the other hand, the

electrode pair placed above and under the eye as shown (blue) in Fig. 1.2

provides the single channel vertical EOG signals, EOGv.

In addition to the main two EOG data acquisition techniques, there are some

other techniques in the literature. Those include modified elctrode configuartion

[23], eyeglasses [24], EOG sensors [25], optical sensors [26], contact lenses [27]. In

this work, dual channel EOG data containing horizontal EOG signals and vertical

EOG signals is used.
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Eye movements

EOG provides the signal extracted from the electrode placed around the eyes. It

reflects the movement of the eyes. Eye movements can be mainly categorized

into three types: saccade, blink, and fixation.

1. Saccade

Saccades can be represented as the movement of the eyes while viewing a

visual scene. During this activity, simultaneous movement of both eyes is

seen. Saccade duration ranges from 300 to 400 ms [28]. During this period

the eyes abruptly change the point of fixation. Saccades play an important

role in reading. They allow the eyes to move from one word and one line to

the next. Saccades can be detected using eye-tracking technologies [24]

2. Blink

Blinking can be defined as an automatic process of eyes getting open and

closed. This is a rapid and repetitive movement of the eyelids. Eyebillinks

are an integral part of the normal function of the eyes. This movement helps

to spread a thin layer of tear film across the surface of the eye and ensures

the moisture in eyes. Blinks also protect eyes from damage caused by ex-

cessive brightness by reducing the amount of light entering the eye. Gener-

ally, blinking occurs throughout the whole day. The average blink duration

ranges from 100 to 400 ms [9]. The average blink rate can be 12 to 19 blinks

per minute at rest. This rate can be influenced by environmental and phys-

ical factors. Environmental factors include temperature, relative humidity,

and brightness. The physical factors include the health of the eyes, activity

level, level of cognitive workload, or fatigue.

3. Fixation

Fixation is the stationary state of the eyes. Fixations represent the interval

between two saccades. Fixation time is the time to focus after stopping the

eyeball which ranges from 100 to 200 ms [9]. This movement helps to con-

struct a continuous and coherent visual perception. For example, during

reading, fixations occur at each word in a text and process the visual infor-

mation within each word.
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In the literature, a good amount of work has been done with blink detection,

classification of saccade and blink. In addition, to blink information, EOG signals

can provide information on various eye movements such as: up, down, right,

and left. These eye movements can be easily detected using EOG signals as the

signals represent significant differences for different eye movements. Literary

works show evidence that EOG signal processing for eye movement classification

is getting more popular for human machine interfaces (HMIs). In this work, EOG

is processed for blink detection, and eye movement classification that can further

be used in other HMI applications.

1.1.2 Reconfigurable Computation Architecture- FPGA

Digital hardware systems can be implemented in various devices such as Field

Programmable Gate Array (FPGA), Complex Programmable Logic Device (CPLD),

Simple Programmable Logic Device (SPLD), microcontroller, and others.

In this work, FPGA is utilized to implement the designs at the hardware level

because of its characteristics. FPGA refers to a type of integrated circuit that can

be reconfigured or programmed after manufacturing to perform various digital

logic functions. The reconfigurable architecture makes FPGA highly adaptable

for various tasks. FPGAs are capable of parallel processing, which means they

can perform multiple tasks simultaneously. This makes them suitable for tasks

like signal processing, and real-time data analysis [29]. FPGAs have low latency

and high throughput, making them suitable for applications that require fast data

processing. FPGAs are valuable in the development and prototyping phases of

electronic designs. FPGAs help in quick testing and iterating designs before com-

mitting to application specific integrated circuits (ASICs) or other fixed hardware.

This custom-made circuit designing scheme ensures dynamic resource utilization

to speed up data processing- the hardware acceleration. FPGAs are energy ef-

ficient, especially when compared to power-hungry Graphics Processing Units

(GPUs). Because FPGAs execute tasks in hardware, they can often perform the

same calculations with significantly lower power consumption. FPGAs also offer

longer lifespans compared to off-the-shelf GPUs. Therefore, it can be said that

FPGAs are a suitable choice when it is needed to ensure hardware customization,
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low latency, and specialized acceleration for specific tasks.

Based on the advantages of FPGA, it can be useful in proof-of-concept designs.

This kind of design helps to demonstrate whether an idea can be turned into a

reality. Therefore, in this work, FPGA is chosen for developing the designs.

FPGAs are typically programmed using Hardware Description Languages (HDLs)

like Very High-Speed Integrated Circuit Hardware Description Language (VHDL)

or Verilog. There are also higher-level programming tools and languages that

make FPGA development more accessible. Before programming FPGA, it is needed

to get insights into the basic structure of FPGA and its components.

CLB CLB CLB CLB
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Fig. 1.3 Basic structure of an FPGA chip

Figure 1.3 shows a typical internal structure of an FPGA chip. Generally, an FPGA

consists of three basic components. They are:

1. Configurable Logic Blocks (CLB)- responsible for implementing the core

logic functions.

2. Programmable Interconnection – responsible for connecting the Logic Blocks.
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3. Input/Output Blocks (IOB) – connected to the Logic Blocks through the

routing and make external connections.

The logic functions of these blocks and the connections are given by the designer

as needed. The CLB is the fundamental block in FPGA that contains flip-flops

(FFs), look-up tables (LUTs), and multiplexers inside. FF refers to a binary reg-

ister circuit that can store one bit. A flip-flop is the smallest storage resource on

the FPGA. It can save logic states between clock cycles on an FPGA circuit. LUT

represents a collection of gates hardwired on the FPGA. It can store a predefined

list of outputs for every combination of inputs. LUTs provide a fast way to re-

trieve the output of a logic operation because possible results are stored and then

referenced rather than calculated. A multiplexer represents a circuit that can se-

lect between two or more inputs and then return the selected input. There can be

some other blocks such as memories (BRAMs, LUTRAMs, ROMs, shift registers),

Digital Signal Processors (DSP), Phase-Locked Loop (PLL) clock generators, etc.

in a modern FPGA.

1.1.3 Module Selection

This thesis aims to implement EOG signals processor at the hardware level. Hard-

ware based digital and embedded systems are becoming more popular due to

their multifunction capability, low cost, and high-performance accuracy. FPGA

has been chosen for this study as it is simple and easy to design as well as has the

advantage of reprogrammable functionality. FPGA contains more logic blocks

than CPLD or SPLD. It allows greater customization and more complex pro-

cesses than CPLD and SPLD. Also, microcontroller provides reprogramming of

firmware but FPGA has the advantage of changing the functionality of both hard-

ware and firmware. FPGA has the advantage of hardware acceleration as it can

be used to accelerate workloads and gain significant benefits. Parallel computing

is another advantage of the FPGA which allows to handle multiple workloads.

This provides the scope to work on different stages of tasks concurrently which

cannot be done with GPUs. Some other advantages of FPGA are smaller board

space, power efficiency, and reliability. Therefore, in this thesis, two FPGA mod-

ules: Zedboard Zynq-7000, and Zynq Ultrascale+ are chosen to implement the
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designed works. A short description of the selected modules is given below.

Zedboard Zynq-7000

ZedBoard is a low-cost development board manufactured by Digilent. This board

employs Xilinx Artix-7 FPGAs coupled with a dual-core ARM Cortex-A9 proces-

sor [30]. The ZedBoard has a broad range of applications, such as digital sig-

nal processing (DSP), image processing, industrial automation, etc. This FPGA

system-on-a-chip (SoC) based board enables the designers to accelerate the cus-

tom DSP algorithm, as it is possible to program Zedboard whenever necessary

[31]. The first design of this thesis uses ZedBoard for hardware implementation.

Zynq UltraScale+

The ZCU106 Evaluation Kit contains a Zynq™ UltraScale+™ MPSoC EV device

and supports all major peripherals and interfaces, enabling development for a

wide range of applications [32]. This kit is able to make designs for video confer-

encing, surveillance, Advanced Driver Assisted Systems (ADAS), streaming, and

encoding applications. The included ZU7EV device is equipped with a quad-core

Arm® Cortex®-A53 applications processor and a dual-core Cortex-R5 real-time

processor. The second design of this thesis uses Zynq UltraScale+.

Appendix D provides a detailed description of the above-mentioned modules.

1.1.4 Design Tool Selection

The goal of this thesis includes hardware-software codesigning of the EOG signal

processors. Hardware-software codesign refers to the concurrent designs of hard-

ware and software components of complex electronic systems. These designs are

capable of merging hardware and software that can ensure optimization, and

satisfaction of the design constraints such as cost, performance, and power con-

sumption. These types of designs can be very beneficial for real-life problems

dealing with a pragmatic approach. The pragmatic approach checks the practical

feasibility of a defined task. Therefore, the designs of this work use hardware-

software codesign. For this design purpose, proper tool selection is necessary.

In this thesis, the Xilinx system generator (XSG) is selected for design at the hard-
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ware level. XSG is a design tool for the implementation of DSP algorithms in

Xilinx devices. It is a MATLAB Simulink add-on that enables the development of

architecture-level FPGA designs using graphical block programming. Xilinx FP-

GAs platforms contain Block RAMs, DSP Slices, PCI Express support, and pro-

grammable fabric, etc. It is possible to process in both parallel and pipelining

approaches as all of these compute resources can be used simultaneously. In XSG

hardware description language is used to assemble FPGA building blocks into a

circuit. This design is easier compared to typical high-level languages. The two

most popular hardware description languages are VHDL and Verilog. In XSG the

system is designed in Matlab Simulink and then synthesized the design into an

FPGA. High-level synthesis (HLS) uses a high-level programming language like

C, and C++ to describe the functionality of a digital circuit or electronic system.

HLS tools then automatically convert this high-level description into a register-

transfer level (RTL) hardware description, which can be implemented on pro-

grammable hardware such as FPGAs or ASICs. HLS helps in building and veri-

fying hardware. Therefore, optimization of the hardware design is possible. The

designer can design at a higher level of abstraction and the tool can complete the

RTL implementation.

The design flow of FPGA implementation in Xilinx system generator is given in

Figure 1.4. In Software co-simulation, all Xilinx blocks are connected between

two blocks - Gateway In and Gateway Out, which behave as input and output

respectively for the hardware design. The Xilinx blocks work with fixed point

format, therefore, it is necessary to convert real-world signals of floating format

into the fixed point and vice versa. In this case, Gateway In and Gateway Out

blocks act as translators for format conversion.

After software simulation, the System Generator token needs to be configured to

allow the model to be compiled into hardware. The XSG token dialog box needs

to be configured with adequate settings for compilation, synthesis, and clocking.

At first, the compilation Target is chosen by specifying the FPGA platform. After

that, the synthesis tool is involved in synthesizing the design. It includes setting

some parameters such as hardware language, clock etc. After the configuration,

a bit stream (.bit) file is generated. Then, the hardware co-simulation target is se-

Chapter 1: Introduction 11



 Vivado™ 

Environment

Synthesis Implementation FPGA
HDL Netlist Gate-level Netlist Bitstream

MATLAB®

Environment

Hardware 

Implementation

MATLAB®

SIMULINK®

Xilinx System 

Generator™ 

Duplicates removed (2757)

Titles screened (437)

Abstract screened (86)

Final Selected papers for review (47)

Added (7)

Citations and references 

screening for additional 

relevant papers

Primary

Phase

Secondary

Phase

Automated search of databases using the defined search string 

Total papers collected (3173)

ScienceDirect (212) Springer Link (172) IEEE Xplore (04) PubMed (05) Google Scholar (2759)

Full text screened (40)

Id
e
n

ti
fi

c
a
ti

o
n

S
c
r
e
e
n

in
g

In
c
lu

d
ed

EOG Data 

Acquisition
Preprocessing Feature Extraction

ClassificationFPGA Implementation

Classifier Selection

Statistical Comparison of 

Software and Hardware Results

 Resource and Power 

Utilization Analysis

Fig. 1.4 Design flow of FPGA implementation using XSG

lected and a block will be generated. This block can be then added to the design

and all the blocks for both software and hardware can considered to be co-exist.

In this work, firstly ZedBoard is chosen to implement the binary classification.

Then, Zynq Ultrascale+ is chosen to implement the multiclass classification. Both

modules are designed using XSG.

1.2 Present State of the Problem
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Fig. 1.5 A ven diagram illustrating the present state of the problem

In this section, the present state of the problem for EOG hardware implementa-

tions is depicted. The world is heading towards point-of-care testing systems.
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Blinks and eye movements detected from the EOG signal are utilized to deter-

mine various eye conditions. EOG signals are being studied through machine

learning for various eye condition analyses and disease detection which is indi-

cated by the “area 1” in Fig. 1.5. There are some works of EOG that include hard-

ware implementations as indicated by “area 2”. There are studies that include

hardware implementation without using machine learning as given in “area 3”.

However, as machine learning is getting more popular day by day, more focus

on the combination of machine learning & re-configurable hardware implemen-

tation of EOG signals is more demanding nowadays. A common platform of

machine learning, EOG hardware implemented works are indicated in “area 4”.

These can be utilized for digital point-of-care systems. These type of implemen-

tations includes the design and implementation of various stages: preprocess-

ing, feature extraction, and classification. Efficient designs need optimization

throughout each stage. Therefore, the need for compact and optimized hardware-

based systems for eye movement detection arises to overcome this issue. This

thesis addresses the issue by providing proof-of-concept complete digital sys-

tems for blink and various eye movement detection.

1.3 Specific Objectives

Eye movement is a frequent physiological activity of human beings. It possible

to collect information on these eye movements by processing EOG signals . An

efficient algorithm to process EOG is important to integrate it into point-of-care

devices and human machine interfaces (HMIs) applications. It is also important

to choose a suitable platform to implement the algorithmic design. Therefore,

hardware-software codesign can be the proper solution to verify the EOG signal

processing algorithm. However, these algorithm needs to be hardware-friendly

i.e. the algorithms must be designed in a way to use few resource blocks, con-

sume low power, and offer low time delay.

Field Programmable Gate Array (FPGA) can be a suitable platform to implement

digital signal processing algorithms because of its characteristics: low cost, low

power consumption, re-configurable architecture, small size, and high speed.
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This work aims to codesign hardware-software multichannel FPGA-based com-

plete EOG processors adopting a machine learning approach. The designed pro-

cessors detect eye blinks and various eye movements. The implemented stage

includes: preprocessing, feature extracting, and classifying.

The specific objectives of this thesis are as follows:

1. To develop hardware-friendly algorithms to classify the EOG signals.

2. To design compact systems of EOG processors on FPGA using the devel-

oped algorithms.

1.4 Contribution of the Work

EOG signals provide insights into eye movement patterns. Many existing works

of EOG deal with eye movement detections, and eye conditions and disease de-

tections based on the the detected eye movements. This thesis provides the first

systematic review of EOG hardware implementations to provide an idea on ex-

isiting reasearch opportunities. Digital systems of EOG signals can be helpful for

classifying blinks and eye movements. This thesis provides hardware-software

codesign of the blink detector and the eye movement classifier using EOG sig-

nals. Blink detectors can be readily integrated with human machine interfaces.

The eye movement detector can pave the way for eye e-health as this system will

open the door for other diseases to be detected from eye movements.

1.5 Thesis Outline

The thesis presents the design of the software backend and the hardware frontend

of systems dedicated to electrooculogram (EOG) signal processing. The EOG sig-

nal processors are designed as binary classifier for blink detection and mutliclass

classifier for detecting six different eye movements. The overall thesis organiza-

tion is depicted in Fig. 1.6. This thesis contains a total of six chapters. A brief

description of these chapters is given below.

Chapter 1 describes the background of the EOG signal first. After that, the method

of EOG signal acquisition, and basic eye movements are explained. The problem
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Chapter 1. Introduction

Chapter 2. Systematic Review

Chapter 3. Software Backend

Chapter 4. Hardware Frontend

Chapter 5. Performance Analysis

Backgrounds

System Design, 

Implementations and 

Analysis

Chapter 6. Conclusions and Future Works
Summaries

Fig. 1.6 Structure of the thesis

statement and significance of the study are also discussed.

Chapter 2 reviews the application of EOG signals in various sectors. The previ-

ous works on EOG signals are discussed. A systematic review is presented on

EOG hardware implementations. The systematic review is focused on providing

a structured discussion on solely EOG based point of care systems.

Chapter 3 shows the software backend for the design of the EOG binary classifier

for blink detection and the EOG multiclass classifier for six eye movements de-

tection.

Chapter 4 shows the hardware frontend design of the EOG binary classifier for

blink detection and the EOG multiclass classifier for six eye movements detec-
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tion. It shows the FPGA implementation approach. The system architecture of

hardware design of various subsystems in Xilinx system generator are explained

Chapter 5 represents the performance analysis of the designed processors. It in-

cludes both software and hardware performance and checks their agreements.

Resource utilization and power consumption analysis are given in this chapter.

The comparative study with previous works is also presented.

Finally, Chapter 6 presents the conclusions of the thesis and summarizes the over-

all contribution of this research. Some scopes of possible future works are also

mentioned at the end.
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Chapter 2: Systematic Review

The eyes can be a great tool to assist disabled people with technological devices run by eye

movements. The hardware-implemented platform increases feasibility in this area. Eye

diseases are one of the major contributors to disabling conditions. Negligence in regular

checkups is the key reason for deteriorating eyesight. The high cost of checkups for disease

detection is another reason for not regularly receiving health check-ups. Consequently,

these diseases ultimately turn severe and can take severe form, leading to blindness. A

preventive health checkup can prevent the disease from worsening and save many people

from losing their working ability. Around 2 billion people face vision impairment and

various ocular diseases worldwide. Efficient hardware can provide quick decisions for

emergency medical services, remote medical care, and intensive care. The goal of provid-

ing emergency and fast services can be achieved through point-of-care (POC) systems. In

this chapter, at first, some real-life applications of electrooculogram are outlined. Then, the

advantages of the POC systems are outlined. A systematic review approach is employed

to review the state-of-the-art works on EOG hardware systems. A systematic review is a

rigorous and comprehensive method of summarizing and synthesizing existing research

evidence on a specific research question or topic. This chapter includes the method and

findings of the review.

2.1 Electrooculogram Applications in Real-Life

The eyes are an integral part of the human body. It helps disabled people to com-

municate with the external world by using eye movements [5]-[8]. The assistive

devices developed based on eye movements are great tools to ease their life. Ad-

ditionally, eye diseases also contribute to creating disabling conditions. There

are various diseases such as nystagmus, ocular dysfunction, and dry eyes that

can be detected just by using Electrooculogram (EOG) signals [33]-[37]. These

diseases primarily cause blurriness. In the long run, they can cause blindness
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leading to vision disability. Efficient hardware can provide quick decisions for

eye movement detections. Thus, hardware-implemented platforms are necessary

to be developed for both rehabilitation purposes and point-of-care systems.

2.2 Electrooculogram Point-of-care Systems

Point-of-Care (POC) means the point in time when healthcare services and prod-

ucts are being provided to patients at the time of care [38]. POC systems are

important as they provide some advantages such as early screening leading to

early diagnosis, separating inpatients & out-patients, critical & non-critical pa-

tients, monitoring recovery, and finally providing early recovery to immunity.

Some examples of POC systems are home pregnancy tests, blood glucose moni-

tors, and urine dipsticks etc. Fig. 2.1 outlines the importance of the POC testing
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Fig. 2.1 Importance of point-of-care testing system

system. Obtaining signals from eyes by electrooculography and implementing
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them at the hardware level can pave the way for POC systems for various eye

conditions detection.

2.3 Methodology of Systematic Review

In this study, a systematic review process [39] to find the research trend and the

state of the art of EOG hardare implementations to develop EOG point of care

(POC) systems. The review is conducted following the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) protocol and the Prob-

lem, Intervention, Comparison, and Outcomes (PICO) statement [40, 41]. The

PRISMA flow diagram and the number of publications of each stage are shown

in Fig. 2.2. The focus is given to the works solely based on EOG excluding hybrid

works of EOG. The search string includes classification and hardware as EOG

point of care systems use hardware applications based on classification. Studies

containing hybrid works of EOG and any other signal, non-human subjects (e.g.,

animals), and non-English papers are excluded.

The review process is done mainly in two phases: primary and secondary phases

as shown in Fig. 2.2. These phases are described below.

2.3.1 Primary Phase

In the primary phase, identification and screening of the research articles are

done.

1. Identification

This stage involves investigating related studies based on the search string

in selected databases. The papers are extracted from major science-related

databases, namely ScienceDirect, Springer Link, IEEE Xplore, PubMed, and

Google Scholar.

The search string used is defined as: (EOG AND Classification AND (FPGA
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Fig. 2.2 PRISMA flow diagram for the initial study selection of the systematic review

OR Hardware) NOT Hybrid).

The searches have been done between the 5th–15th of May 2023 and cov-

ered publications in the range of 2018–2023. Selected papers are written

in English and from conferences and journals. A total of 3173 papers have

been collected from this search. Then, the duplicates are removed using the

EndNote tool. Then, 2757 papers were used for screening in the next stage.

2. Screening

The screening depends on the titles and abstracts in the database. Dupli-

cate articles have been first removed and further screening is carried out on

the remaining selected papers. Articles have been excluded if 1) have hy-
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bridization of EOG with any other signal, and 2) have no information about

the hardware implementations. EndNote tool is used to analyze and screen

the papers. To qualify the conformity and correspondence, the abstract-

screened articles are then subjectively screened by authors. After the full-

text screening, 40 papers have been selected.

2.3.2 Secondary Phase

Sanka and Cheung [42] recommended a combination of both the automated search

and a manual search in systematic reviews. Therefore, in the secondary phase,

the references and citations of the 40 selected papers of the primary phase are

checked. After screenings, 7 more relevant papers are added to the initial 40 se-

lected papers. Finally, a total of 47 papers are included for the review.

2.3.3 Research Findings

51% of the studies are journal papers and the rest 49% are conference papers.

EOG studies cover classifying eye movement, eye angle, sleep state, predicting

emotion, and developing wheelchairs, and game exercises as mentioned in sec-

tion 2.1. At first, the studies are categorized based on the data acquisition tech-

niques: dual channel, single channel, and others. Then, based on the detection

or classification techniques can be categorized in the studies: classical detection

approach and machine learning approaches. Then, hardware implementations

are categorized based on the hardware used as reconfigurable (FPGA) and non-

configurable. These categories are briefly described in the subsequent sections.

Among the selected papers, 59% of works study with dual channel data while

29% on single channel. Also, 12% of them worked on other types of data acqui-

sition which includes Eyeglasses [24], EOG sensors [25], Biosensors [43], Optical

sensors [26], Capacitive sensing [44], Smart glasses with EOG sensors [45], Mag-

net[46]. Modified single channel has used two electrodes in a little bit of changed

position [23]. Table 2.1 shows the summary of the EOG acquisition process.
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Table 2.1: A summary of EOG acquisition process

Method References
Rotariu et al. [10], Das et al. [11], Asanza et al. [13],
Fernandez et al. [15], Latifoglu et al. [16],
Kishore Kumar and Narayanam [20],
Chowdhury et al. [21], Borkar et al. [22],

Dual Channel Hou and Smitha [47], Shivaprasad and Vishwanath [48],
Kabir et al. [49], Golparvar and Yapici [50],
Abdel-Samei et al. [51], Archana et al. [52], Lin et al. [53],
Parra et al. [54], Gundugonti and Narayanam (2021) [55],
Anuradha et al. [56], Zou and Zhang [57], Hossieny et al.
[58], Lopez et al. (2018)[59], and Martı́nez-Cerveró et al. [60]

Single Channel Zaeni et al. [19], Daou et al. [43], Archana et al. [52],
(Horizontal) Fan et al. [61], Simoes et al. [62],

Prabha et al. [63], Lopez et al. (2019) [64], Bastes et al. [65]
Single Channel Molina-Cantero et al. [17], and Hayawi and Waleed [66]
(Vertical)

Savastaer and Tepe [23] (Modified), Ryu et al. [24] (Eye-
glasses), Pai et al. [25] (EOG sensors),

Others Masai et al. [26] (Optical sensors), Li et al. (2022)[27] (Con-
tact lens), Daou et al. [43] (Biosensors), Matthies et al. [44]
(Capacitive sensing), Li et al. (2020) [45](Smart glasses), and
Almansouri et al. [46] (Magnet)

2.4 Detection Approaches

After data acquisition, the data needs to be preprocessed for denoising the EOG

signal. The unwanted noises such as baseline wander, and 50/60 Hz power line

interference needs to be eliminated in this stage. Then the data is processed fur-

ther for classification. EOG classifications or detection approaches are found

mainly in two categories:- classical detection approaches and machine learning

approaches.

Classical detection approaches need preprocessing and suitable movement algo-

rithm as shown in Fig. 2.3 (Red box). A basic block diagram of EOG processing

using machine learning and deep learning is shown in Fig. 2.3 (Blue box). The

raw EOG data must go through preprocessing, feature extraction and classifica-

tion stages.
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In literature, 42% of the works are found to adopt classical detection approaches

whereas the rest 58% adopt machine learning approaches. It indicates the recent

trend of EOG signal processing with machine learning approaches.

2.5 Hardware Implementations of EOG

The implementation level of the selected studies has been categorized into two:

FPGA and discrete circuits or micro-controllers.

More than three-fourths (26%) of the works were implemented on FPGA which

involves the process of determining the physical resources of FPGA and utilizing

them. The rest of the works (74%) were implemented on discrete circuits or mi-

crocontrollers as shown in Fig. 2.4.

It is complex to implement systems efficiently on FPGA as it requires some ex-

pertise. Despite the tendency of FPGA to consume more power than a micro-

controller or an ASIC, FPGA requires a smaller board space and shows energy

efficiency than the equivalent discrete circuit. FPGA based implementations also

provide some benefits over others as they provide the flexibility of reconfiguring

the design.
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Fig. 2.4 Ratio of EOG signal implementations in different hardware.

2.5.1 FPGA based EOG Implementations

Cano et al. [67] developed an efficient design a convolutional neural network and

implemented it on FPGA device. Fernandez et al. [15] designed a FPGA based

system for the generation of multiple visual stimulus signals and for EOG ac-

quisition. Kumar and narayanam (2020a) [68] developed a denoising filter with

differential evaluation (DE) algorithm with fewer sign power of two which was

verified using Altera DSP Builder. Kumar et al. [69] proposed a modified FIR

filter using Canonical signed digit (CSD) and Kumar and Narayanam (2020b)

[70] proposed a modified FIR filter using canonical signed digit representation

and compressor techniques for denoising the EOG signal. In both works, the

proposed models were implemented and verified on FPGA. Gundugonti and

Narayanam (2021) [55] ]developed an architecture of the discrete Haar wavelet

transform which was synthesized using Cadence RTL compiler. Kishore Kumar

and Narayanam [20] detected the saccades and blinks. They denoised the EOG

signals with transposed direct form FIR filter. The Haar wavelet transform was
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used for decomposition of denoised EOG signal. The modified eye movement de-

tection algorithm was synthesized on FPGA. Gundugonti and Narayanam (2022)

[71] proposed area and power efficient FIR filter structure using common subex-

pression elimination (CSE) algorithm with CSD method which was later verified

in Xilinx-Simulink environment. Asanza et al. [13] used preprocessing and fea-

ture extraction in software level. They developed a custom hardware architecture

for EOG classification model in al FPGA card. Das et al. [11] proposed a reconfig-

urable preprocessing technique using FIR and IIR filters for serial processing of

EOG horizontal and vertical data and implemented it in Xilinx Zynq-7000 FPGA

Table 2.3 summarizes FPGA Implementation of EOG. As it is seen, preprocess-

ing stage is currently being implemented in FPGA. It is noticeable that there is a

scope for extracting the features in a reconfigurable platform. The advantages

and limitations of the reconfigurable processing techniques are summarized in

Table 2.3.

Das et al. [11] proposed a design to implement a fast EOG serial preprocessor

using FIR and IIR filters. The Pearson Correlation Coefficient of 0.99 and a Mean

Root Squared Error in the 10−3 range were found. The on-chip power consump-

tion for this design was 0.271 watts. The limitation was a delay because of serial

processing which was minimized by using a fast counter. Kumar and Narayanam

(2020a); Kishore Kumar and Narayanam [68, 20] used a filter with differential

evolution (DE) algorithm. The mian advantage of this filter was using fewer

sign-power-of-two (SPT) terms to optimize the denoising filter. This hardware

used less area than conventional filters. The limitation of their work was that the

coefficients were best suitable for Application-specific integrated circuit (ASIC)

implementations only. Kumar and Narayanam (2020b) [70] proposed FIR archi-

tecture that uses canonical signed digit-based (CSD) multipliers and 3:2 or 4:2

compressors to achieve greater improvement in power and delay compared to

the conventional shift-add method of multiplication. CSD was used to reduce

the multiplication’s design complexity by representing the filter coefficients in
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CSD format. The final designed filter provided reduced delay but the area and

power are higher than CSD. Kumar et al. [69], and Gundugonti and Narayanam

(2022) [71] used an area and power efficient filter for real-time noise reduction

of EOG using a common sub-expression elimination method. This filter archi-

tecture offered a 148.17% area increment and a 114.45% power increment over

traditional filter architecture. However, the delay is higher than [70]. Meeravali

et al. [72] developed an efficient wavelet-based architecture for denoising EOG

signals. However, it showed shift sensitivity and poor directionality.

2.5.2 Other implementations of EOG

This section gives an overview of the non-configurable implementation of EOG

processing of the selected works. Table 2.4 summarizes the implementation of

discrete circuits and micro-controllers and eyewear. They have some advantages

such as low time requirement for performing the operation, ease of use, simple

troubleshooting and system maintenance, and flexibility due to their small size.

Microcontrollers for the data acquisition stage is prominently seen in state-of-

the art literature [10,16,19,21,22,26,46,48,49,51,52,63,65]. Discrete circuits and mi-

crocontrollers are utilized for data acquisition and processing stages [23,44,50,

54]. Pai et al. [25] used a prototype with EOG sensor. Masai et al. [26] used a

smartwear with sensors. Jins meme smartglasses are found to be used for data

acquisition [45, 73,74].

2.6 State-of-the-Art

The EOG hardware implementations cover a large area. In this section, the perfor-

mance of the state-of-the-art studies that only deal with eye movement detection

is outlined. Table 2.5 summarizes the accuracy of the various techniques used in

the studies.

Rotariu et al. [10] utilized dual channel EOG to develop an electronic medical de-
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Table 2.5: A summary of present state-of-the-art EOG eye movement detection ap-
proaches

Approach Algorithm Accuracy Reference

Threshold 90% Rotariu et al. [10]
Threshold - Borkar et al. [22]
DFT 90% Bastes et al. [65]
DOSbFC 94% Ryu et al. [24]
Threshold 89% Hou & Smitha [47]
Threshold 96% to 98% Chowdhury et al. [21]
Conditional Statement - Prabha et al. [63]
Conditional Statement 83.3% Lopez et al. (2019)[64]
Threshold - Shivaprasad & Vish-

wanath [48]
Classical Threshold Upto 97% Savastaer & Tepe [23]
Detection Haar DWT - Kishore Kumar&

Narayanam [20]
Haar DWT - Gundugonti &

Narayanam [55]
Threshold - Parra et al. [54]
Threshold & others Upto 100% Golparvar & Yapici

[50]
Conditional Statement 98% Anuradha et al. [56]
Conditional Statement 90% Daou et al. [43]
Conditional Statement Upto 89.63% Li et al. (2022) [27]
Threshold - Abdel-Samei et al.

[51]
Threshold 90% Almansouri et al. [46]
Threshold 96.86% Lopez et al. (2018)[59]
CNN 65% Cano et al. [67]
KNN Upto 95.35% Hayawi & Waleed

[66]
Adaptive K-means 89.9%, Molina-Cantero et al.

[17]
MLP 80%,& Kabir et al. [49]
SVM 93%
Peak 93.11% (Healthy), Latifoglu et al.[16]

Machine Detection 85.14% (Patients)
Learning SVM 89.1% Masai et al [26]

CART >95% Zaeni et al. [19]
Real-time detection 87.67% Lin et al. [53]
Cuvic SVM 93.5% Asanza et al.[13]
Deep Learning 90.47% Zou and Zhang [57]
Inception >96.4% Hossieny et al. [58]
SVM 90% Martı́nez-Cerveró et

al. [60]
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vice for disabled patients. This device acquired EOG utilizing a custom-designed

electronic module and processed the EOG in an Arduino Leonardo microproces-

sor board. This device utilized two adaptive thresholds for each channel. Four

types of movement were detected based on the threshold. The average accuracy

obtained was 90%.

Borkar et al. [22] used EOG to control a wheelchair. The wheelchair moved in the

direction of eye movement such as left, right, up, and down. This work employed

a thresholding algorithm.

Bastes et al. [65] developed a wearable single-channel EOG based HCI. EOG sig-

nals were conditioned by a hardware system and processed by software using a

DFT-based algorithm. This design provided 90% accuracy.

Ryu et al. [24] used a new electrode positioning scheme to reduce the discom-

fort of users and removed baseline drift and noise with a differential EOG signal

based on a fixation curve (DOSbFC). The proposed algorithm calculated the dif-

ference values of accumulated EOG signals between the initial eye movement

and fixation time. The accuracies of the band pass filter and wavelet transform

were 61% and 64% respectively. However, an average accuracy of 94% was found

for eye movement detection.

Hou and Smitha [47] developed a low-cost wireless EOG based speller with dual

channel EOG. A threshold algorithm was implemented on the Arduino to clas-

sify up to 10 different types of eye movements. The classified eye movement data

were transmitted to a virtual keyboard. The proposed system showed accuracy

of 89 % and a speed of 6.48 letters per minute.

Chowdhury et al. [21] proposed a threshold approach to control an wheelchair by

directional eye movement information obtained from dual channel EOG signal.

The classification stage incorporated threshold algorithm and was implemented

in At-mega328 microcontroller. The data was acquired for different subjects. The

accuracy of the proposed method was 96% during forward movement and 98%

during stopping the wheelchair.
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Prabha et al. [63] used horizontal EOG signal for movement of the hand for a

paralyzed person. This signal was fed as an input to the microcontroller. A suit-

able program of conditional statements classified the movement. The output of

the microcontroller was fed to the servomotor of the glove to control the hand.

Lopez et al. (2019) [64] utilized horizontal EOG for evaluating ataxic disorders.

The developed system used conditional statements for classification of obtained

data and showed 81.3% sensitivity, 85.7% specificity, and 83.3% accuracy.

Shivaprasad and Vishwanath [48] designed and implemented an EOG signal ac-

quisition system. The new threshold algorithm developed in this work required

much less user training than other classification algorithms. The developed HMI

was able to generate control signals during various eye movements and blinks.

which later were utilized for controlling the electric device model.

Savastaer and Tepe [23] designed and implemented a single-channel EOG am-

plifier circuit. Accuracies for for blink, up, and down are 91%, 94%, and 97%

respectively using threshold.

Kishore Kumar and Narayanam [20] used an efficient Haar wavelet transform

architecture for denoising the raw EOG signal The modified VLSI hardware ar-

chitecture method detected the saccade and blink efficiently. Total on chip power

consumption for all the stages was 225 mW. The number of used look up table

and filp flops were 802 and 417 respectively.

Gundugonti and Narayanam (2021) [55] presented an architecture for saccade

and blink detection. An efficient Haar discrete wavelet transform architecture

using Radix-2r multiplier and 4:2 compressor was implemented. The Haar struc-

ture was synthesized in the Cadence RTL compiler. The proposed architecture

had a delay of 7.09 ns and a power consumption of 2.71 mW.

Parra et al. [54] developed a portable EOG device. The signal acquisition, hard-

ware, and software modules were integrated into a board prototype. The device

was able to determine the direction of eye movements, such as up, down, left or

right, and also blinks utilizing conditional statements. The efficiency of different
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digital filter methods was verified and Coiflet5 for horizontal signals and coiflet4

for vertical signals stood out among all the methods.

Golparvar and Yapici [50] developed a graphene textile-based personal assistive

device. Limitations of conventional wet electrodes were overcome in the device.

The single-channel EOG data was processed using a microcontroller. Thresholds

and other techniques were adopted for the classification of eye movements. Five

different eye movements helped in tracking and operating remote objects. It was

further utilized in a virtual keyboard and navigation of a robot. Typing speed

accuracy up to 100% was achieved.

Anuradha et al. [56] presented a system for controlling electrical lights utilizing

EOG signals. Conditional statements detected the blink using a microcontroller

and are further used in controlling the lights. The overall accuracy of the system

was 98%.

Daou et al. [43] presented a system to control the slide show using only eye

movements. A particular movement in the eye allowed a change in the slide.

Biosensors, electronic circuits as well as a microcontroller were deployed to rec-

ognize eye movement. A wireless signal was sent to the computer in order to

move the presentation up or down. An overall accuracy of more than 90% was

found in this work.

Li et al. (2022) [27] proposed a system named SmartLens to achieve eye activ-

ity sensing using zero-power contact lenses. A dedicated antenna was designed

which fitted in a very small space and worked efficiently in more than 1 m dis-

tance. The accuracy of this work for detecting basic eye movement and blinking

were at 89.63% and 82% respectively.

Abdel-Samei et al. [51] presented an EOG acquisition system based on Arduino

microcontroller. A PCB based acquisition circuit was developed for dual chan-

nel EOG acquisition. Data was transferred from master to slave circuits with

the NRF24L01 - 2.4G wireless transceiver module. The L298N driver circuit was

mounted on a special robotic arm. This work used a threshold algorithm to detect
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eye movements from EOG that were later used for robot control.

Almoansouri et al. [46] presented a magnetic eye tracker built by placing a com-

posite magnet on the eyelid. The system detected down, up, left, or right using a

threshold algorithm with 90% accuracy. Lopez et al. (2018) [59] developed a sys-

tem to control a serious computer game using EOG signal. The designed system

consisted of EOG acquisition circuit, digital processor, and game controller with

eye movements. Fourteen volunteers tested the computer game. This system ob-

tained around 96.86% accuracy using a threshold algorithm.

Cano et al. [67] presented an solution of SpinoCerebellar Ataxia type 2. The

convolutional neural network of the design contained two convolutional layers

(with ReLu nonlinearity and max-pooling) and two fully connected layers. All

parts were integrated into an FPGA device. The achieved accuracy was 65%.

Hayawi and Waleed [66] implemented a driver assistance system utilizing the

vertical acquisition method of EOG signals. An embedded system based on the

ATmega2560 microcontroller on the Arduino was used to implement the EOG

signal acquisition circuit. The system used K Nearest Neighbors classifier (KNN)

and achieved maximum accuracy of 95.345% from 90% training and 10% testing.

Molina-Cantero et al. [17] used an acquisition circuit as in the single channel (ver-

tical) method. A notch filter of 50 Hz was utilized to eliminate line interference.

The adaptive K-means algorithm was used to recognize short or long blinks. The

accuracy achieved for people without disabilities was 97.2% with double blinks,

upto 76.6% for long blink and of 89.9% considering three classes.

Kabir et al. [49] extracted the EOG signal using the dual channel acquisition

method and processed it for controlling cursor movement. Support Vector Ma-

chine (SVM) and Multilayer Perceptron (MLP) were used to classify different eye

movements. The average accuracy of 93% was found across all directions.

Latifoglu et al. [16] designed an electronic circuit to acquire dual channel EOG

and developed a system for diagnosing attention-deficit hyperactivity disorder

(ADHD). An attention test with visual stimulus software was developed. The
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stimulus images on the screen were monitored by eight patients with ADHD and

eight healthy subjects during EOG recording. The accuracy for healthy individu-

als and patients was 93.11% and 85.14% respectively.

Masai et al. [26] used the eye-based interaction for facial expression recognition.

They developed customized printed circuit boards (PCBs) for sensor units and

microcomputer units. Three eye-based interactions were evaluated with the de-

vice. The average accuracy of detecting seven different eye gestures using SVM

was 89.1%. The horizontal and vertical movements showed 58.8% and 82.4% ac-

curacy respectively.

Zaeni et al. [19] used eye activity command to control the system in the patient

room. A decision tree was designed to detect left gazes, right gazes, blinks, and

double blinks. The decision tree model showed an accuracy of 99.9% and 98.87%,

respectively in training and testing. By ignoring and obeying the no-action in-

struction, the model had an accuracy of 93.47% and 97.72%, respectively.

Lin et al. [53] developed a dual-channel data acquisition system using PCB.

MSP430 F1611 was used as the main controller. The proposed algorithm detected

different eye states and eye movements. The best subject performance achieved

in this work was 96% and the average classification rate was 87.67%.

Asanza et al. [13] utilized dual channel EOG signals. They proposed SVM algo-

rithm for six class classifications and achieved 93.5% accuracy. Then, a custom

hardware architecture was developed for real-time implementation of the EOG

classification model in al FPGA card.

Zou and Zhang [57] proposed a deep learning framework for automatic feature

learning and classification. They also developed an edge computing platform on

the smartphone to execute the deep learning algorithm and visualize the brain vi-

sual dynamics. They achieved a high eye-word recognition rate of up to 90.47%.

Hossieny et al. [58] detect six eye movements (up, down, right, left, double blink-

ing, and center) from dual channel EOG. Three deep learning models: convo-

lution neural network (CNN), visual geometry group (VGG), and inception had
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been examined on filtered EOG signals. The inception model showed the best

average accuracy of 96.4%.

Martı́nez-Cerveró et al. [60] used EOG for classifying four directions of eye

movements. The system was based on open-source ecosystems, the Raspberry Pi

single-board computer, the OpenBCI biosignal acquisition device, and an open-

source Python library. They achieved a 90% accuracy using the SVM classifier.

2.7 Summary

The systematic review of the state-of-the-art verifies the use of EOG signals in

multi-purpose applications. Most of these works are at the software level. Few

works have been done at the hardware level based on EOG signal but they have

some limitations in their studies as described in the literature review. There is

a noticeable limitation in efficient FPGA implementations of machine learning

based EOG signal classifications. Therefore, this thesis aims to develop this type

of system for detecting blink and various eye movements.
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Chapter 3: Software Backend

To design a digital system for processing EOG signals, first, a software backend is needed

to be developed. This chapter discusses the algorithmic design of EOG signal processors

for blink detection and eye movement classification. Section 3.1 describes the background

of software designs of blink detection and eye movement classifications. Section 3.2 shows

the brief methodology of this work. Section 3.3 briefly describes the used two datasets.

Section 3.4, 3.5, 3.6, 3.7 represents the detailed description of the preprocessing, feature

extraction, feature reduction, and classification stages of the software backend. respec-

tively. Finally, Section 3.8 summarizes this chapter.

3.1 Background

Various medical conditions such as strokes, spinal cord injuries, amyotrophic lat-

eral sclerosis (ALS), locked-in syndrome (LIS), etc. render patients paralyzed [17,

75]. Paralyzed people are unable to move the affected parts of the body either

partly or entirely. They face difficulties in performing routine activities and com-

municating with the external world which impacts their quality of life [76]. There-

fore, scientific researches are going on to ease the life of these partially or fully

disabled people by creating an alternative form of communication.

Human-machine interfaces (HMIs) also known as human-computer interfaces

(HCIs), can be helpful in this regard connecting the human body with the exter-

nal environment [75]. Generally, HMIs utilize electro-physiological signals such

as electroencephalogram (EEG), electromyogram (EMG), and electrooculogram

(EOG) [77, 78]. Low power implemented HMIs integrated into portable appli-

cations can facilitate paralyzed people [79]. However, designing HMIs includes

various algorithms in different signal processing stages resulting in complexity
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for hardware realization. Thus, there are scopes for research in efficient hardware

implementations of HMI.

Recently, EOG based HMI has emerged as a promising technology [9,80]. EOG

has the information of eyes representing various eye movements. Eye move-

ments can be considered an essential element used to express the desires, emo-

tional states, and needs of people [81]. Therefore, translating EOG can greatly

help people with major disabilities. The major advantages of EOG include non-

invasive behavior, consistent signal pattern, and low cost [11,82].

EOG contains information of eye movements: blinks, saccades, and fixation. Blink-

ing refers to an act of shutting and opening the eyes very quickly. Saccades are

rapid movements of the eye that change the point of fixation. Fixation refers to

the interval between two saccades. During fixation, the eyeball is fixed to the

focus. The blinking information from EOG is utilized in many healthcare and

technological applications. Some of them includes communication technologies

[17], brain–computer interface (BCI) [83], fatigue detection [84], drowsiness de-

tection [66], computer vision syndrome detection [85] etc.

On the other hand, in many applications of EEG signals, eyeblinks can contami-

nate the original information [86,87]. As the blinks are uncontrollable and invol-

untary activity, they can create EOG artifact. Accurate detection of blinks can be

beneficial in denoising EEG signals in such cases. Therefore, designing an effi-

cient blink detector is necessary.

Blinking and saccade information can be derived from EOG using various al-

gorithms either using machine learning approaches or traditional approaches.

Banerjee et al. [88] detected blinks utilizing RBF Kernel space vector machine

(SVM) algorithm and achieved 95.33% accuracy. Ryu et al. [24] adopted a differ-

ential EOG signal based on a fixation curve (DOSbFC) to remove baseline drift

and noise. They achieved 94.3% accuracy in detecting blinks, horizontal sac-

cades, vertical saccades, and fixation. Molina-Cantero et al. [17] utilized adap-

tive K-means for classifying single blink, double blink, and long blink with 89.9%
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accuracy. Gundugonti and Narayanam [55] detected blink using Haar discrete

wavelet transform architecture using Radix-2r multiplier and 4:2 compressor to

detect blink.

EOG signals can contain information on various eye movements along with blinks.

This information can include up, down, right, left, and no movement. Multi-

class classifications of eye movements are also important as they can be utilized

in various HMI. In literature, a number of works classify EOG that include al-

gorithms such as thresholding [89], support vector machine (SVM) [13, 79], k-

nearest neighbors algorithm (KNN) [66], adaptive k-means [17], classification and

regression tree (CART) [19], multilayer perceptron (MLP) [49,] convolution neu-

ral network (CNN) [67], deep learning neural network (DNN) [57], etc.

In this work, blinks and are detected using linear SVM binary classification. Then,

six eye movements (up, down, normal, right, left, and blink) are detected using

linear SVM multiclass classification.

3.2 Methodology

The goal of this thesis is to develop hardware-friendly algorithms to classify

EOG signals and implement them in hardware. At first, the software simula-

tion is needed to get insights into the algorithm. So, the systems have been

designed in the software backend first. At first, the EOG data needs to be pre-

processed as it is generally contaminated with high-frequency motion artifacts,

power line interference, and baseline wander. The preprocessed data will be sent

through the feature-extraction stage. The selected features after reduction will be

used for classification. In the software design, various classifiers are checked to

achieve better accuracy. As this thesis opts for hardware-software codesigning,

it is needed to choose hardware-friendly features and classifiers i.e. the features

and classifiers that will require a low number of hardware resources and will

consume low power. Then, we can develop an efficient EOG Signal processor for

FPGA implementation using the selected features in the classifier.
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Fig. 3.1 Basic steps of designing FPGA implemented EOG processor

The basic steps of designing an FPGA implemented EOG processor using a ma-

chine learning approach are illustrated in Fig. 3.1. In this thesis, two systems are

developed. The first system is designed for detecting blink that requires a binary

classification of blinks and saccades. The second system detects six different eye

movements: up, down, left, right, blink, and no movement (fixation). utilizing a

multiclass classification of EOG Signals. For both designs, the software backend

is developed first. This chapter discusses the software backend. The upcoming

contents include the used datasets, the preprocessing stage, feature extraction,

and reduction, and then the classification of the designed systems.
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The complete software design for binary and multiclass classification is repre-

sented in a simplified block diagram of Fig. 3.2. Both designs include the basic

stages of data acquisition, preprocessing, feature extraction, reduction, and clas-

sification.
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Fig. 3.2 Simplified block diagram of the complete system at the software level

3.3 Datasets

In this section, the two datasets used in the processor design are described. Dataset

1 is used in binary classification and dataset 2 is used in multiclass classification.

1. Dataset for Binary Classification

In this work, the EOG signal from the eye movement EOG dataset is used

[90]. It contains blink and saccade information on a total of six subjects. The

EOG signals are recorded with a sampling frequency of 256 Hz. The EOG

data consists of horizontal and vertical EOG signals. From this dataset, a

total of 5400 epochs are generated for blink and saccades. These epochs are

used for extraction of features which are later used in binary classification.
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2. Dataset for Multiclass Classification

The public dataset Electromyography (EMG) of the Extraocular Muscles

(EOM) from IEEE Dataport [91] is used in this work. This EOG data consists

of horizontal and vertical EOG signals. This dataset includes data from 10

subjects. All the subjects performed 10 pseudo-random repetitions of each

of the following eye movements during the experiment: Up, Down, Right,

Left, no movement (fixation in the center), and blinking. For each move-

ment total of 100 epochs each of 2s is available. So, in total 600 epochs with

labels are given for six eye movements.

3.4 Preprocessing

Preprocessing is the first stage of EOG processor design. It is necessary to prepare

the data before sending it to the application stage as the raw data suffers from

some unwanted noises. The noises are generally caused by three factors: the

movement of other muscles near the eyeball, the electrical network operating at

50/60 Hz, and the continuous component of the signal.

The frequency range of EOG can be considered in the 0 to 30 Hz range or 0 to 40

Hz range. Therefore, it is desired to keep the frequency component of this range

and eliminate other components. Therefore, filters are used for denoising the raw

EOG signals from both datasets.

Here, the specifications of the filters are selected based on the recommendation of

the dataset provider. However, in this work, it is always possible to reconfigure

the specifications as necessary. Therefore, the filter specifications can be adjusted

depending on the application.

In this work, for binary classification, the raw EOG data is obtained from dataset

1. The EOG signals of this dataset is preprocessed using two finite impulse re-

sponse (FIR) filters: a high pass filter (HPF) with 0.03 Hz cutoff frequency, and

a low pass filter (LPF) with 30 Hz cut-off frequency. The HPF is a constrained-
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Table 3.1: Specifications of filters for Binary and Multiclass classification

Specifications for Dataset 1 Specifications for Dataset 2

High-Pass FIR Low-Pass FIR High-Pass FIR Low-Pass FIR
Type of
Filter

Constrained-
least-squares

Equiripple Constrained-
least-squares

Equiripple

Sampling
Frequency

256 Hz 256Hz 125 Hz 125Hz

Cutoff
Frequency

0.03 Hz - 0.5 Hz -

Passband
Ripple

0.02 - 0.02 -

Stopband
Ripple

0.008 - 0.008 -

Passband
Frequency

- 10 Hz - 30 Hz

Stopband
Frequency

- 30 Hz - 40 Hz

Stopband
Attenuation

- 60 dB - 60 dB

Filter Order 26 25 24 24

least-square filter with an order of 26. Constrained-least-square filter are chosen

as this type of filtering technique is feasible to filter out the baseline wander noise

[92]. The LPF is an equiripple filter with an order of 25. The equiripple method is

chosen as it meets the specifications without overperforming [93]. This method

shows equal ripple in the pass band and stop band. Therefore, in the case of the

lowpass filter, an equiripple filter is adopted.

The orders of the filters are chosen with minimum order to obtain the desired fre-

quency response. Choosing a higher filter order number than the selected ones

will require more resources and thus more power will be consumed. The high

pass filter is capable of baseline drift mitigation [90]. The low pass filter denoised

the raw signal to achieve the useful EOG component which lies below 30 Hz.

Table 3.1 summarizes the specifications of filters for binary classification and mul-

ticlass classification.

For dataset 2, the sampling frequency is 125 Hz. The filters are designed using
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the same type of filters. The cut-off frequency is kept at 0.5 Hz for HPF. The pass-

band and stopband frequencies are 30 Hz and 40 Hz respectively. In this case, the

orders are found 24 to achieve the desired output in the preprocessing stage.

A pilot study was carried out to test the influence of the gender or age of the

subject on the obtained EOG signal[94]. According to the experimental results

of statistical analysis, the raw data did not show any significance in categorizing

male-female or different age groups. Therefore, the filter properties can be kept

the same for different age groups and for a wide range of age groups in the pre-

processing stage.

3.5 Feature Extraction

The choice of features to extract from EOG signals depends on the specific re-

search or application goals. Researchers and engineers often select or develop

features that are most relevant to their particular use case. In general, the fea-

tures extracted from EOG signals can be classified into three categories.

1. Time-domain features

Time-domain features extracted from Electrooculography (EOG) signals are

statistical and waveform-based characteristics of the signal that describe

its behavior in the time dimension. These features can provide insights

into eye movements, blinks, and other physiological phenomena. mean,

variance, standard deviation, root mean square, skewness, kurtosis, etc.

are some time-domain features that are used in combination with other

domain-specific features and machine-learning techniques to analyze EOG

signals for various applications.

2. Frequency-domain features

Frequency-domain features are derived from the frequency components of

a signal and are often used in signal processing and analysis to extract in-

formation about the underlying oscillatory patterns and periodicities. Fre-
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quency domain analysis of EOG can reveal characteristics related to eye

movements. Power Spectral Density (PSD), Spectral Entropy, Frequency

Coherence, etc. are some common examples of frequency-domain features.

3. Time-frequency hybrid features

Time-frequency hybrid features combine information from both the time

domain and the frequency domain to capture the temporal variations in fre-

quency content in the signals. These features are particularly useful when

analyzing signals with non-stationary or time-varying characteristics. It

can be useful for detecting dynamic eye movement patterns from EOG sig-

nals. Some common time-frequency hybrid features are short-Time Fourier

Transform (STFT) features, Wavelet Transform features, Time-Frequency

Bandwidth, etc.

The first objective of this thesis is to develop hardware-friendly algorithms for

EOG processing. Therefore, the features considered are intended to be computa-

tionally simpler and less demanding to ensure lower hardware resource utiliza-

tion and power consumption.

Among the three categories of features mentioned above, time-domain features

present the most straightforward calculation option as they do not require heavy

resource-demanding FFT, wavelet, or similar transformation techniques. In prac-

tice, time-domain features are extensively used in engineering and medical re-

search, not only in the hardware domain but also in software counterparts, be-

cause their lower computational complexity leads to faster processing as well.

Here, the preprocessed horizontal and vertical EOG data are utilized for selecting

features. The preprocessed data of six subjects are segmented into small epochs.

These epochs either carry saccade or blink movement. For feature selection, a

number of statistical features have been checked. These features are:

• Mean: Mean is a statistical feature that refers to a measure of central ten-

dency. It is often called the ”average” and is used to describe the typical or

central value in a set of data points. The mean is calculated by adding up
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all the values in a dataset and then dividing that sum by the number of data

points. Mean is the average value of all the samples in a signal. The mean

of a vector x containing N scalar observations, can be found using Equation

(3.1)

x̄ =
1
N

N

∑
i=1

xi (3.1)

• Mean Absolute Deviation: The Mean Absolute Deviation (MAD) provides

a measure of the average distance between data points of a vector and the

mean. It is a useful statistic to understand how spread out the data is. The

Mean Absolute Deviation of a vector x containing N scalar observations,

can be found using Equation (3.2)

xMAD =
1
N

N

∑
i=1
|xi − x̄| (3.2)

• Root Mean Square: Root Mean Square (RMS) is a statistical measure used

to find the average value of a set of values. It is often used in the context

of signal processing, statistics, and mathematics. It is particularly useful for

calculating the root average of a set of values, especially when dealing with

varying magnitudes. The root-mean-square level of a vector x containing N

scalar observations, can be found using Equation (3.3).

xRMS =

√√√√ 1
N

N

∑
i=1
|xi|2 (3.3)

• Standard Deviation: Standard Deviation is a statistical measure of the amount

of variation or dispersion in a set of values. It quantifies how spread out

or how much the values in a data set differ from the mean (average) of

that data set. It informs how much individual data points deviate from the

mean. For a random variable vector x containing N scalar observations, the
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standard deviation is defined as Equation (3.4).

σ =

√√√√ 1
N − 1

N

∑
i=1
|xi − x̄|2 (3.4)

where x̄ is the mean of x as given in Equation (3.1).

• Variance: Variance refers to the measure of the spread between samples in

a dataset. The variance provides insights into the dispersion of the data

points around the mean. A higher variance indicates that the data points

are more spread out from the mean, while a lower variance indicates that

the data points are closer to the mean. Variance is always a non-negative

value. For a random variable vector x containing N scalar observations, the

variance is defined as Equation (3.5).

variance, σ2 =
1

N − 1

N

∑
i=1
|xi − x̄|2 (3.5)

where x̄ is the mean of x as given in Equation (3.1).

• Skewness: Skewness is a measure of the asymmetry of the data around the

sample mean. If skewness is negative, the data are spread out more to the

left of the mean than to the right. If skewness is positive, the data are spread

out more to the right. The skewness of the normal distribution (or any per-

fectly symmetric distribution) is zero. For a random variable vector x con-

taining N scalar observations, the skewness is defined as Equation (3.6). It

is expressed by:

Skewness =
1

(N − 1) ∗ σ3

N

∑
i=1

(xi − x̄)3 (3.6)

where, x̄ is the mean of x as given in Equation (3.1) and σ represents stan-

dard deviation as given in Equation (3.4).

• Kurtosis: Kurtosis is a measure of how much of a variable distribution can
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be found in the tails. It can determine how outlier-prone a distribution is. It

can be defined as Equation (3.7).

Kurtosis =
1

(N − 1) ∗ σ4

N

∑
i=1

(xi − x̄)4 (3.7)

where, x̄ is the mean of x as given in Equation (3.1) and σ represents stan-

dard deviation as given in Equation (3.4).

3.6 Feature Reduction

After calculating these features for both horizontal and vertical EOG signals, the

number of features is reduced using the Maximum Relevance Minimum Redun-

dancy (MRMR) algorithm [95,96]. This algorithm is very popular for classifica-

tion problems. It tends to find an optimal set of mutually and maximally dissim-

ilar features that can represent the response variable effectively [97]. Here, the

Fig. 3.3 Predictor importance score for features in binary classification

redundancy of a feature set is minimized and the relevance of a feature set to the

response variable is maximized. The redundancy can be calculated using mutual

information of features. The relevance can be assessed by the mutual information

of a feature and the response. A detailed description of this algorithm is attached
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Fig. 3.4 Predictor importance score for features in multiclass classification

in Appendix B. The algorithm provides predictor ranks based on the predictor

importance score. Fig. 3.3 and Fig. 3.4 show the predictor importance scores for

features from dataset 1 and 2 respectively. As the binary and multiclass classifi-

cation utilizes dual channel data, the chosen features are root mean square (RMS)

and standard deviation (STD) for both channels considering the predictor impor-

tance score. RMS and STD are statistical measures that provide information about

the dispersion or variability of data. In the case of Electrooculogram signals, the

variability of the signals may contain valuable information that is relevant to the

target eye movement. Additionally, RMS and STD are able to smooth out some of

the noise and focus on the underlying patterns. These can be the possible reasons

for yielding greater score than other features. These features are further utilized

for classification.

3.7 Classification

A classifier in the machine learning approach refers to a type of algorithm or

model that is trained to make predictions or decisions based on input data. Clas-

sifiers are a fundamental component of supervised learning. Supervised learning
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Table 3.2: Software accuracies for different classifiers.

Classification Algorithm Accuracy
Tree 98%

Binary SVM 97.55%
KNN 95%
Tree 88%

Multiclass SVM 97.92%
KNN 90.20%

algorithms learns from labeled training data and is then able to classify new, un-

seen data points into predefined classes. Some common types of classifiers used

in machine learning are: Decision trees, naive Bayes classifiers, k-nearest neigh-

bors (k-NN), support vector machines (SVM), artificial neural networks (ANN),

etc. are some commonly used machine learning algorithms. The decision tree al-

gorithm uses a tree-like model that recursively splits the data into subsets based

on features until a decision is reached. The naive bayes classifiers use a probabilis-

tic classification algorithm that is based on Bayes’ theorem with an assumption of

independence among the features. k-NN is a simple machine learning algorithm

that memorizes the training dataset. Then K-NN makes predictions for new data

points by calculating the distance between this point and all the data points in

the training dataset and selecting the k data points (neighbors) with the small-

est distances to the new data point. ANNs are a class of machine learning models

imitating function of biological neural networks, such as the human brain. ANNs

consist of interconnected artificial neurons divided into input layers, hidden lay-

ers, and output layer. SVM algorithm finds the hyperplane that best separates

different classes of data considering the maximum margin between them.

In this study, the aim is to design EOG processor with hardware-friendly algo-

rithms. At first, tree, SVM, and KNN classifiers are checked at the software level

using the extracted features. The accuracy of different classifiers at the software

level is listed in Table 3.2.

At the software level, the decision tree shows maximum accuracy for binary clas-

sification. The second-best accuracy is achieved using linear SVM.
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However, the tree classifier takes decisions by splitting the root node into branches,

a number of checks, and then terminating as shown in Fig. 3.5. Tree classifiers

with deep or highly branching structures may require high precision for accurate

calculations. Software implementations can use arbitrary precision arithmetic if

needed, which can lead to higher accuracy. FPGAs have limited resources in

terms of logic elements, memory, and processing units. If the tree classifier is too

large or complex to fit within the available resources, compromises may need to

be made in the FPGA implementation, potentially leading to lower accuracy.

Therefore, linear SVM has been chosen for its efficient behavior by providing

the desired accuracy that outperforms other known classifiers [98]. FPGAs can

perform parallel dot product calculations, which are at the core of SVM compu-

tations. This parallelism can significantly accelerate SVM training and inference

processes.

For multiclass classification SVM showed better accuracy than others. Therefore,

it is chosen for implementation of multiclass classifier.

The binary classification and multiclass classification approaches of this study are

described below.
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3.7.1 Binary Classification

Binary classification is a basic task in machine learning and statistical modeling.

The aim of binary classification is to categorize data points into one of two possi-

ble classes. In binary classification, each data point is assigned to one of two ex-

clusive groups based on certain features. The decision boundary is a mathemati-

cal or algorithmic construct that separates the two classes in the feature space.

In this work, as a classification model SVM is chosen that provides a hyperplane
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Fig. 3.6 Boundary between two classes defined by a hyperplane in SVM

to categorize the given data into two classes. SVM is one of the most effective

machine learning algorithms, mostly used for pattern identification. SVM can be

used for data that have an unknown distribution. The SVM model aims to maxi-

mize the margin between classes and at the same time, it minimizes classification

errors. This margin-based approach often results in models that are less prone to

overfitting, leading to better generalization of unseen data. SVMs can deal with

both linearly separable and non-linearly separable data through the use of vari-
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ous kernel functions. Kernel function is the mathematical function used for the

transformation. Commonly used kernels include linear, polynomial, radial basis

function (RBF), and sigmoid kernels.

In this work, the linear kernel is chosen. The selection is guided by the under-

lying data distribution and the results of model evaluation and validation. Fig.

3.6 shows that a hyperplane boundary defined by linear SVM categorizes the

classes. The support vectors represent the data points that are closest to the sep-

arating hyperplane i.e. the points are on the boundary. The Fig. 3.6 illustrates

these definitions, with + indicating data points of class 1, and – indicating data

points of class –1.

The SVM classifier takes the features from the feature extraction stages as input

and provides the class label as output using the equation. The labeling for blink

is given as +1, and for saccade is -1. Theoretically, The SVM binary classification

algorithm uses the scoring function given in Equation (3.8).

f (x) = x′β + b (3.8)

where: x is an observation. The vector β contains the coefficients that define an

orthogonal vector to the hyperplane, i.e. the weight values of the features and b is

the bias term. The classifier output detects the eye movement either as +1 (blink)

or -1 (saccade). The weight and bias values are given in Appendix C.

3.7.2 Multiclass Classification

SVM method can be used for multiclass classification. Theoretically, the SVM is

a binary classification algorithm. The multi-class classification is based on multi-

binary SVMs. One-vs-one and one-vs-all approaches can be adopted to realize

multiclass SVM classification [98].
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Fig. 3.7 One-vs-One approach in multiclass SVM

One-vs-One approach

The one-vs-one approach divides the multiclass classification problem into sev-

eral binary classification problems. A binary classifier is trained for each pair of

classes in the multi-class classification problem. If there are N classes, this results

in N(N-1)/2 binary classifiers.

As shown in Fig. 3.7, for multiclass classification with one-vs-one approach, for

each pair of classes, a binary classifier is designed. When making a prediction for

an unseen input, each binary classifier votes for one of the two classes in the pair.

The class that receives the most votes across all classifiers is then predicted as the

final output. The drawback of this approach is that it can become computation-

ally expensive as the number of classes increases.
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In the one-vs-all technique, a separate binary classifier is trained for each class

in the multi-class classification problem. If there are N classes, this results in N

binary classifiers. When making a prediction for an unseen input, each binary

classifier determines whether the input belongs to its assigned class or not (i.e.,

it’s a one-class vs. all others classification). The classifier with the highest proba-

bility is chosen as the predicted class. A hyperplane is required in the one-vs-all

in order to simultaneously divide all classes from one another. This indicates that

all points are considered, and they are split into two groups: a group for class

points and a group for all other points as shown in Fig. 3.8.

The selection choice between one-vs-one and one-vs-all depends on the specific

problem, the characteristics of the classifiers being used, and computational con-

siderations. The one-vs-all approach trains less number of classifiers than the

one-to-one approach. Hence, the computational time will be faster as well as less

number of resources and power will be utilized for the one-vs-one approach. The
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one-vs-all is more commonly used due to its simplicity and efficiency in practice,

especially for problems with a large number of classes. Therefore, in this work

one-vs-all approach is adopted to minimize the number of binary classifiers to

optimize the hardware design.

The SVM classifier takes the features as input and provides the class label as out-

put using the equation. Here, 80 percent data is used for training and 20 percent

data is used for testing the SVM classifier. All parameters of the SVM models for

binary classification and multiclass classification are given in Appendix C.

3.8 Summary

In this chapter software backend designs for binary and multiclass classification

of EOG signals are explained step by step. These designs will be implemented in

hardware in the upcoming chapter.
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Chapter 4: Hardware Frontend

The software simulation of the Chapter 3 is needed to be translated in hardware for the

digital implementation. This chapter describes the hardware frontend designs of each step

for developing EOG processors. Section 4.1 contains a brief description of the background

of EOG hardware implementations. As EOG is a dual-channel signal, it is important to

get insights on the processing approaches of multichannel data. Section 4.2 describes the

processing approaches in hardware. Section 4.3 discusses the methodology and design

steps of the hardware frontend. Finally, Section 4.4 provides the summary of this chapter.

4.1 Background

Digital design can be defined as the process of designing electronic circuits, sys-

tems, or devices that have specific purposes to address needs in the field of con-

cern. For digital desigining, hardware-software codesign play a vital role in ver-

ifying the performance. The codesign is an approach to design complex sys-

tems that integrates both hardware and software components from the outset to

achieve optimal system performance, functionality, and efficiency. This approach

recognizes that some tasks are better suited for hardware acceleration, while oth-

ers are best implemented in software, and seeks to find the right balance between

the two.

A digital blink detector can be considered as an EOG based point-of-care sys-

tems as it can be utilized in the diagnosis of diseases by monitoring the blink

rate. These designs provide cost-effectiveness, quick monitoring, remote health-

care facilities, etc. [99]. Digital blink detectors can detect blinks in real time. These

detected blinks can also be utilized in various applications in addition to disease

detection. The applications may include drowsiness monitoring of drivers which
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can save them from major road accidents, and fatigue detection in smart office

workstations.

EOG-based digital systems can be designed using multiclass eye movements also.

Software-based improvement is going on to classify eye movements from EOG

over the past decade [14]. Hardware-based works of EOG are being given fo-

cus now. EOG can be implemented in non-reconfigurable hardware using PCB,

micro-controllers, Arduino [51, 100], and also in re-configurable structures like

Field Programmable Gate Array (FPGA) [11, 67]. FPGAs are integrated circuit

(IC) that can be reconfigured for any assigned task. Therefore, they can be the

proper solution for pragmatic embedded system design utilizing hardware re-

sources effectively with low power consumption [101,102].

A popular approach to digital design is the application specific integrated circuit

(ASIC). It is also known as an application specific processor or application specific

integrated processor. ASIC refers to an integrated chip designed for a particular

application [103]. These designs are seen in many advanced technologies and

electronic devices. Application specific processors can be designed using field

programmable gate arrays (FPGA). FPGA has advantages such as reconfigurable

design capability, low latency, and low power [30,104]. FPGA allows custom-

made circuit designing scheme. It is possible to speed up data processing using

parallel architecture and minimize resource utilization using serial architecture.

ASIC design in FPGA fixes the functionality and reduces the number of compo-

nents used. Therefore, these compact design provides the benefits of low cost,

high performance, and power efficiency.

ZedBoard is a low-cost development board manufactured by Digilent. This board

employs Xilinx Artix-7 FPGAs coupled with a dual-core ARM Cortex-A9 proces-

sor [30]. The ZedBoard has a broad range of applications, such as digital sig-

nal processing (DSP), image processing, industrial automation, etc. This FPGA

system-on-a-chip (SoC) based board enables the designers to accelerate the cus-

tom DSP algorithm, as it is possible to program Zedboard whenever necessary
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[31]. In this thesis, Zedboard is used for implementing the EOG processor of the

blink detection system. The second design of the multiclass eye movement clas-

sifier uses Zynq UltraScale+ as this design needs more resources than the binary

classifier. ZedBoard and Zyng UltraScale+ are used as the processing unit for

hardware implementation. The programming is done using System Generator, a

design tool for the implementation of DSP algorithms in Xilinx devices.

4.2 Processing Approaches

In this work, two-channel EOG signals are used for the analysis. Theses two

channel provides EOG horizontal signal and EOG vertical signal. The hardware

frontend can be designed using two different approaches for multichannel sig-

nals. They are: serial processing, and parallel processing. A brief description of

the approaches along with their advantages and disadvantages is given below.

1. Serial processing

In serial processing, each EOG channel is processed one after the other, and

the analysis for one channel is completed before moving on to the next.

This approach is sequential and may be appropriate when the channels are

largely independent of each other or when the computational resources are

limited. The main two advantages of the serial processing approach include

simplicity and interpretability. It is considered simple as it is straightfor-

ward to implement, especially for simple analyses. Each channel can be

easily interpreted independently. However, serial processing is inherently

slower because tasks are executed one after the other. Therefore, serial pro-

cessing needs longer processing times for computationally intensive tasks.

As a result, it often requires devices to remain active for longer periods mak-

ing the energy consumption high. In addition, if one task encounters an

error or fails, it can disrupt the entire process, potentially causing a system

failure.
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2. Parallel processing

In parallel processing, all EOG channels are processed simultaneously or in

parallel. This approach leverages the inter-channel relationships and can

be more computationally efficient for tasks that require a joint analysis of

all channels. For computationally intensive tasks, parallel processing can

be more efficient, especially on multi-core or distributed computing plat-

forms. However, implementing parallel processing with a large number

of processing elements may not be feasible as FPGAs have limited hard-

ware resources. In addition, high-performance FPGAs capable of parallel

processing can be expensive, especially for large-scale projects that require

multiple FPGAs.

The choice between serial and parallel processing depends on the specific re-

search goals, computational resources, and the nature of the EOG data. Some

tasks may benefit from a combination of both approaches, where certain prepro-

cessing or feature extraction steps are performed in parallel, while others are done

serially. The decision should be guided by the problem’s complexity and the need

for inter-channel information integration.

4.3 Methodology

Hardware-based designs require optimization for feasibility and low-cost imple-

mentation. Therefore, the system needs to be designed using a mathematically

less complex software backend. The mathematical validation and primary sim-

ulation of this work are designed using MATLAB. The preprocessing stage uses

digital filters with a minimum order to obtain the desired signal quality [11]. The

statistical features are chosen based on correlation. The support vector machine

(SVM) classification scheme is feasible for this work as it uses fewer resources

than other classifiers. Then, the system is designed using the Xilinx system gen-

erator. The hardware design of the whole system consists of three main subsys-
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tems: preprocessing, feature extraction, and classification.

The reconfigurable system is designed with a combination of serial-parallel pro-

cessing for hardware optimization. At first, the horizontal and vertical EOG sig-

nals are taken as parallel input. The horizontal EOG is pre-processed, and then

the vertical data is pre-processed serially. Then, both signals are normalized in

parallel to speed up the whole operation. The preprocessed horizontal and ver-

tical EOG signal features are extracted serially using one unit. A fast counter is

used to minimize the operation time for serial processing.
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Fig. 4.1 Block diagram of the FPGA implemented system for Binary classification

The EOG processor for binary classification design is realized in hardware using

ZedBoard. It is a low-cost development board that uses Xilinx Artix-7 FPGAs [30].

The software co-simulation is performed using Xilinx System Generator(XSG) in

MATLAB Simulink Platform. The block diagram of the FPGA-implemented sys-

tem binary classification system is depicted in Fig. 4.1. It takes horizontal EOG

signal and vertical EOG signal as input and provides blink/saccade information

after processing.

The complete hardware design of the EOG processor for multiclass classification

is realized in hardware using Zynq UtraScale+. The FPGA implemented system

is presented in a simplified block diagram in Fig 4.2. It also takes two-channel

EOG signals as input and identifies one of the six eye movements.

The FPGA-implemented systems for EOG classification contain three subsystems.
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Fig. 4.2 Block diagram of the FPGA implemented system for Multiclass classification

• Preprocessing Subsystem

• Feature Extraction Subsystem

• Classification Subsystem

The main difference between the two designs is in the classification subsystem.

The binary classifier needs only SVM classifier, whereas the multiclass classifier

needs five SVM classifiers and one comparating logic.

FPGA designs can be done using both serial processing (pipelining quality) and

parallel processing (parallelism quality). The designs of this thesis utilize a hy-

brid of pipelining and parallelism to achieve optimal performance [105]. The

selection of design approaches for the above-mentioned subsystems is summa-

rized in Table 4.1.
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4.3.1 Preprocessing Subsystem
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Fig. 4.3 Block diagram of the preprocessing subsystem

Fig. 4.3 depicts the block diagram of the preprocessing subsystem. It consists

of a control unit (red) and a filter unit (black). The control unit takes horizontal

data EOG h(i) and vertical data EOG v(i) as input and passes sequentially to the

filter unit using a multiplexer, Mux 1. The output of the control unit Mux out(i)

is given as input for the filter unit. The control unit block has two up counters:

Counter Slow and Counter Fast. These counters work at 256 Hz and 2.56 MHz

respectively. The random-access memory (RAM) block stores the vertical data

while horizontal data is preprocessed in the filter unit. The vertical data stored

in the RAM is passed sequentially. Multiplexer 2 generates addresses for the

memory block, RAM. The filter unit contains two filters designed using Matlab

FDATool. The first filter is a high pass FIR constrained-least-squares filter with a

0.03 Hz cutoff frequency. The second filter is a low pass FIR equiripple filter with

a 30 Hz cut-off frequency. The order of the filters is set as 26 and 25 respectively as

mentioned in the Section 3.4. For processing the data for multiclass classification,

the counters work at 125 Hz and 1.25 MHz respectively. In this case, the filter unit

consists of a high pass FIR constrained-least-squares filter with a 0.5 Hz cutoff
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frequency and low pass FIR equiripple filter with a 40 Hz cut-off frequency. The

order of the filters is set as 24 for both filters as mentioned in the Section 3.4. The

preprocessing subsystem provides Pre out(i) as output.

4.3.2 Feature Extraction Subsystem

RMS_H

RMS_V

Mean

we

EOG_v(i)

bn

Low-pass Equiripple FIR Filter

Pre_out(i)

d1

sel

d0 out

Z
-1

∑ ∑ 

b1

∑ 

Z
-1

b0 b2

Z
-1

∑ 

FIR_HPF_out(i)

High-pass Constrained-least-
squares FIR Filter

d1

sel

d0 out

we

addr

data out

[++]

a≤b

a

b

n

not

[++]

EOG_h(i)

Counter_Fast

Counter_Slow

Memory

Mux 1

Mux 2

Relational

Relational

Constant

bn

Z
-1

∑ ∑ 

b1

∑ 

Z
-1

b2

Z
-1

∑ 

Control Unit 1

M
u

x
_

o
u

t(
i)

Filter Unit

d1

sel

d0 out

a>b

d1

sel

d0 out
a>b

a=b

a=b

delay

wea

addra

dina A

B

web

addrb

dinb

÷ 

÷ 
delay

a

b

a

b

[++]

n

Counter_Slow

a

b

a

b

[++]

n1

Memory

Mux 1

Mux 2

Counter_Fast

d

en

q

d

en

q

Pre_out(i)

adr1

adr1

adr2

we

we'

n_out (1)

n_out(2)

d1

sel

d0

out

n2
a≥ b

b

a

N_Pre_out(i)

N_Pre_out(i) b

rst
+=b ÷ 

N

Ctrl (1)

Ctrl_mean(i)

|a| × b

rst
+=b ÷ 

N

cast a
√

a

d

en

q

Register

d

en

q

Register

en (1)

en (2)

RMS

d1

sel

d0 out
  d

en

q

Register

d

en

q

M_en (1)

M_en (2)

Mean_H

Mean_V

Sel (1)

b
a - b

a

× b

rst
+=b ÷ 

N

cast

d

en

q

Register

d

en

q

en (1)

en (2)

STD_H

STD_V

STD

RMS_H

× 
W1

STD_H

× 
W3

RMS_V

× 
W2

STD_V

× 
W4

b

a + ba

b
a + ba

b
a + ba

b
a + ba

Bias

Class

STD_H

RMS_V

STD_V

Weights

Classifier 1

Classifier 2

Classifier 3

Classifier 4

Classifier 5

Biases

Comparating

Logic

Classified 

eye 

movement

cast

|a|

÷ 

Classifier 1

RMS_H

Ctrl_std(i)

Ctrl_std(i)

Fig. 4.4 Normalization of the preprocessed EOG signals

The Pre out(i) signal from the preprocessing subsystem is normalized before send-

ing it to the feature extraction stage. The normalization process is done as shown

in Fig.4.4. The normalization process is designed using the parallel technique

to speed up the operation. It takes Pre out(i) of the preprocessing subsystem as

input. This signal contains preprocessed horizontal and vertical EOG signals se-

rially. So, generating addresses based on their position the data are stored in the

dual-port RAM. In this case, control Unit 2 of Fig. 4.1 creates the address for the

memory block using counters. Constants n, n1, and n2 represent the number of

observations. These values are compared with the counter value at a given in-

stant to create control signals that further enable registers as per the requirement
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Fig. 4.5 Block diagram of the RMS calculator in feature extraction subsystem

and select the type of signal, either horizontal (do) or vertical (d1) to be passed.

This normalization block compares the value of the input signal at any instant

with the value of its previous instant using delay and comparator blocks. If the

new observation has a higher value than the previous observation it is passed

and stored in the register otherwise the previous observation is unaltered in the

register. So, after the given time the maximum value of the preprocessed EOGh

and EOGv are found. Then the original preprocessed data stored in the memory

block is divided by these maximum values returning parallel normalized EOG

signals (n out(1), and n out(2)). These signals are later made sequential using a

multiplexer resulting in the normalized preprocessed EOG signal, N Pre out(i).

Then, two features: root mean square (RMS) and standard deviation (STD) are

extracted.

Fig. 4.5 demonstrates the internal formation of the RMS calculator. The RMS fea-

tures can be implemented using Equation (4.1).

RMS =

√√√√ 1
N

N

∑
i=1
|(N Pre out(i)|2 (4.1)

Here, N Pre out(i) represents a normalized preprocessed EOG epoch. N is the

number of observations in Pre out(i). In the RMS calculator block, the prepro-
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Fig. 4.6 Block diagram of the STD calculator in feature extraction subsystem

cessed EOG epoch, Pre out(i) is squared. Then, the average of the squared term

is calculated consecutively using a multiplier, an accumulator, and a divisor cir-

cuit. The RMS is obtained by the square root of this average squared term. The

RMS H and RMS V are calculated in a serial manner and stored in the register.

The control signal Ctrl rms(i) helps in maintaining coherence in the process.

Fig. 4.6 illustrates the internal formation of the STD calculator. The STD features

of all data are extracted using Equation (4.2).

STD =

√√√√ 1
N − 1

N

∑
i=1
|N Pre out(i)− µ)|2 (4.2)

Here, µ represents the mean. For the hardware implementation, considering the

absolute value of epoch amplitude, the mean can be calculated using Equation

(4.3).

Mean, µ =
1
N

N

∑
i=1
|(N Pre out(i)| (4.3)
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In the STD calculator block, the mean,µ is determined first. the absolute value

of each preprocessed EOG epoch observation is accumulated and divided by the

total number of observations to determine the mean,µ. Subtraction of the mean

from Pre out(i) provides deviation. Then, the average of the squared deviation is

calculated consecutively using a multiplier, an accumulator, and a divisor circuit.

The STD is obtained by the square root of this average squared deviation. The

STD H and STD V are determined in a serial manner. These values are stored in

two registers. Here, the control signal, Ctrl std(i) maintains the coherency of the

operation.

4.3.3 Classification Subsystem

The classification subsystem takes the features as input and decide the output

class of eye movement.
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Fig. 4.7 Block diagram of the Binary Classifier

Fig. 4.7 shows the FPGA implementation of SVM classifier. It can be translated
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in hardware using Equation (4.4).

f (x) = x′w + b (4.4)

where, x contains the features. The vector w contains the coefficients or weights

that define an orthogonal vector to the hyperplane, and b is the bias term. In

this case, x contains four features. w contains the weights W1-W4 and b is the

constant bias. In the classifier block, at first, the features are multiplied by the

weights. Then, weighted features are added with bias and results f(x).

Then, the f(x) value is passed through the signum function. The function here

simply gives the sign for the given values of f(x) using Equation (4.5).

class =
f (x)
| f (x)| (4.5)

The signum function is realized using a divisor circuit. The output of this classi-

fier subsystem of Figure 4.7 is class. For an f(x) value greater than zero, the value

of the class is +1 (blink), and for an f(x) value lesser than zero, the value of the

class is -1 (saccade).

Multiclass Classifier

The multiclass classifier subsystem uses a total of five SVM binary classifiers in-

stead of six classifiers to optimize hardware resources. The required circuit for

the individual SVM classifier is designed as Fig. 4.7. Five classifiers of similar

structures are designed.The output of the five classifiers is combined to provide

six class classifications using comparing logic of Algorithm 1 as shown in Fig. 4.8.

The Algorithm 1 represents the comparing logic for obtaining the final classified

eye movement. It takes C1 - C5 as input and returns ’out’ as output. Here, C1 to

C5 represent the output of the corresponding classifiers, and out represents the

final output of the multiclass classifier. It compares individual classes gradually

from class one to five. If class 1 is positive it is decided as the final class. Other-
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Fig. 4.8 Block Diagram of the Multiclass Classifier

Algorithm 1: The logic of comparator
Input: C1, C2, C3, C4, C5
Output: out

1: if (C1 = 1) then
2: out=1
3: else
4: if (C2 = 1) then
5: out=2
6: else
7: if (C3 = 1) then
8: out=3
9: else

10: if (C4 = 1) then
11: out=4
12: else
13: if (C5 = 1) then
14: out=5
15: else
16: out=6
17: end if
18: end if
19: end if
20: end if
21: end if
22: return out
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wise, it checks for the next class and so on. Finally, if no class among classes one

to five is found true, then it selects class six as output.

4.4 Summary

In this chapter, two compact EOG signal processors are designed. The complete

hardware backend for the blink detection and eye movement classification are

shown. The designs have taken the hybrid serial-parallel approach to optimize

resource utilization and minimize the delay.
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Chapter 5: Performance Analysis

This section demonstrates the comparison between the software and hardware results.

Then, the resource utilization and power consumption for the implemented prototype are

shown. Comparative study with previous studies are also presented.

5.1 Performance analysis of Binary Classification

For evaluating the performance of binary classification, at first, the software hard-

ware output of preprocessing stage, feature extraction stage and classification

stage are shown. Then, the power consumption and resource utilization is out-

lined. Finally, the efficacy is proved with the comparative study.

5.1.1 Results

The magnitude response of the high-pass filter in hardware is shown in Fig. 5.1
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Fig. 5.1 Magnitude Response of High-pass filter in hardware

Here, the obtained cut-off frequency is 0.03 Hz for high-pass filter which is suffi-

cient for baseline wander mitigation [90].

The magnitude response of the low-pass filter in hardware is shown in Fig. 5.2.

The obtained cut-off frequency of the low-pass filter is below 30 Hz which is suf-

ficient for further EOG applications [106].
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Fig. 5.2 Magnitude Response of Low-pass filter

Fig. 5.3 Comparison of raw input and preprocessed Horizontal data

In the preprocessing stage, the software-hardware co-simulation has been per-

formed for 1 min. The designed preprocessor has been tested with 6 subjects.

Considering delay of 0.1 sec, input and superimposed software-hardware results

for only subject S1 are shown in Fig 5.3 and 5.4.
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Fig. 5.4 Comparison of raw input and preprocessed Vertical Data

The frequency response of input and preprocessed output of both software and

hardware output for the same subject are shown in Fig. 5.5 and 5.6.
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Fig. 5.5 Comparison of the frequency response of input and hardware output for
Horizontal Data

Fig. 5.6 Comparison of the frequency response of input and hardware output for
Vertical Data

For further statistical comparison, correlation and root squared error (RSE)[102]

between the hardware-software outputs are calculated. Correlation is found from

Chapter: 5: Performance Analysis 75



the Pearson Correlation Coefficient, r as given in (5.1). Then, RSE is calculated as

given in (5.2).

r =
1

n− 1
(

∑X ∑Y (X− X)(Y−Y)
SXSY

) (5.1)

RSE =
√
(X−Y)2 (5.2)

Here, n denotes the total number of paired data. X and Y are the simulation

and hardware outputs respectively. The averages of these corresponding data

are presented by X and Y respectively. SX and SY denote the corresponding stan-

dard deviations.

Table 5.1: The Pearson Correlation Coefficient in preprocessing stage of Binary Classifi-
cation

Subjects Horizontal Data Vertical Data
S1 0.9991 0.9847
S2 0.9973 0.9873
S3 0.9997 0.9911
S4 0.9962 0.9927
S5 0.9982 0.9919
S6 0.9996 0.9921

Average 0.9984 0.99

Table 5.1 represents the pearson correlation coefficients for 6 subjects. For this

design, all the median values are higher than 0.99. On average, r = 0.9984 for

horizontal EOG and r = 0.99 for vertical EOG. Generally, this coefficient stays

within 0 to 1. Closeness of this parameter to 1 means better correlation i.e. higher

accuracy. So, a remarkable agreement is ensured between the software model and

designed FPGA hardware model.

The RSE between software-hardware results for horizontal and vertical EOG are

calculated to show the agreement of the model with hardware-software codesign.
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Fig. 5.7 RSE of preprocessed horizontal EOG data
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Fig. 5.8 RSE of preprocessed vertical EOG data

Boxplots of Fig.5.7 and Fig. 5.8 show the RSE for horizontal EOG signal and Ver-

tical EOG signal respectively. Here, mean RSE values for all six subjects are in the

10−3 range. These values are close to 0. Therefore, the hardware model is further

validated.
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Fig. 5.9 depicts the confusion matrix of the binary classifier. The number of true

positive (TP), false positive (FP), true negative (TN), and false negative (FN) cases

are 744, 27, 309, and 0 respectively. Confusion Matrix

744 0

27 309T
ru

e 
C

la
ss

Predicted Class

1

-1

1 -1

Fig. 5.9 Confusion matrix for binary classification in software

Here, TP represents the cases where blink is detected as blink, FN represents the

cases where the blink is detected as saccade, TN represents the cases where sac-

cade is detected as saccade, and FP represents the cases where Saccade is detected

as blink. A number of parameters such as accuracy, precision, recall, and F1 score

are calculated to verify and analyze the system performance of the proposed clas-

sifier.

Accuracy is a measurement statistic that compares the proportion of accurate pre-

dictions made by a model to total predictions. It can be determined by Equation

(5.3).

Accuracy =
TN + TP

TN + TP + FN + FP
∗ 100 (5.3)

Sensitivity means how well a machine learning model can identify positive ex-

amples. It is also known as Recall. It can be expressed by Equation (5.4).

Sensitivity =
TP

TP + FN
∗ 100 (5.4)

Specificity refers to how an algorithm or model can forecast a true negative for

each possible category. It is defined by Equation (5.5).

Speci f icity =
TN

TN + FP
∗ 100 (5.5)
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Precision represents the quality of a positive prediction made by the mode It is

defined by Equation (5.6).

Precision =
TP

TP + FP
∗ 100 (5.6)

The F1 score can be calculated as the harmonic mean of the precision and recall

scores as given in Equation (5.7).

F1 score =
TP

TP + 0.5 ∗ (FP + FN)
∗ 100 (5.7)

The accuracy, sensitivity, specificity, precision, and F1 score for software design

are 97.5%, 100%, 91.64%, 96.5%, and 98.22% respectively.
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Fig. 5.10 Confusion matrix for binary classification in hardware

The proposed model is implemented on Xilinx Artix-7 FPGA. The accuracy of

the implemented EOG processor is 95% using the confusion matrix shown in

Fig. 5.10. Verification of the classifier stage is done by the software-hardware

agreement. Therefore, root mean square and the Pearson correlation coefficient

are calculated [102]. The root mean square value is found in 10−3 range and the

Pearson correlation coefficient is 0.98. These values represent that the hardware

design for binary classification agrees with the software model.

Table 5.2 shows the FPGA resource utilization for this design. Usage of Look Up

Table (LUT), LUT-Random-Access Memory (LUTRAM), Flip-Flops (FF), Blocked

Random-Access Memory (BRAM), Digital Signal Processing (DSP), Bonded In-
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Table 5.2: FPGA resource utilization in ZedBoard for binary classification

Resource Utilization Available Percentage Utilization
LUT 19684 53200 37%

LUTRAM 696 17400 4%
FF 4256 106400 4%

BRAM 1 140 1%
DSP 119 220 54%
IO 92 200 46%

BUFG 1 32 3%

Table 5.3: FPGA power consumption in Zedboard for binary classification

Logic Operation Power Consumption
Clocks 0.029 W (4%)
Signals 0.306 W (45%)

Dynamic (86%) Logic 0.241 W (35%)
BRAM 0.007 W (1%)

DSP 0.076 W (11%)
IO 0.025 W (4%)

Device Static (14%) PL Static 0.0116 W
Total On-Chip power 0.8 W

put/Output blocks (IO) and Global Buffer (BUFG) are 37%, 4%, 4%, 1%, 54%,

46%, and 3% respectively.

Power consumption in Zedboard consists of major two components. These are

static power, PS and dynamic power, PD [107].

Static power or standby power refers to the total amount of power the device

consumes when it is powered up but not actively performing any operation. This

is caused mainly by the leakage current between power supply and ground.

Dynamic power or active power refers to the total amount of power the device

consumes when it is actively operating. The dynamic power mainly causes due

to signal transitions happening in the transistors [108]. The dynamic power con-

sumption can be expressed as the following equation.

PD = ∑
i

C2
i .Vi. fi (5.8)

Here, Ci , Vi , and fi refer to capacitance, the voltage swing, and clock frequency
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of the resource i, respectively. It can be said that, the summation of the dynamic

power of each resource leads to the total dynamic power. FPGA allows flexibility

in programming. Hence, the individual designs affect the dynamic power.

As shown in Table 5.3 the designed prototype uses a total of 0.8 W power only.

Dynamic power consumption of 0.684 W (86%) is utilized in Clocks (0.029 W),

Signals (0.306 W), Logic (0.241W), BRAM (0.007W), DSP (0.076W), and I/O (0.025

W). The static power consumption is 0.116 watts (14%).

5.1.2 Comparative Study

Table 5.4 compares this work and state-of-the-art works of EOG based blink de-

tection. Banerjee et al. [88] achieved 95.33% accuracy in blink detection with RBF

kernel SVM. Ryu et al. [24] achieved 94.3% accuracy in detecting blinks, horizon-

tal saccades, vertical saccades, and fixation with differential EOG signal based on

a fixation curve (DOSbFC) method for baseline drift and noise removal. Molina-

Cantero et al. [17] achieved 89.9% accuracy with adaptive K-means for classify-

ing single blink, double blink, and long blink. Gundugonti and Narayanam used

thresholding for blink and saccade detection and implemented in FPGA [89].

The proposed design has better accuracy than all state-of-the-art works. This

work demonstrates a machine learning based ASIC implementation of EOG pro-

cessor incorporating preprocessing, feature extraction, and classification stages

for blink detection.
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5.2 Performance analysis of Multiclass Classification

In this section, the performance of the designed EOG processor for the multiclass

classification is evaluated. Results from the software system and hardware sys-

tem are shown. Then, the hardware resource utilization and power consumption

will be discussed, and finally, a comparative study will be presented to validate

the efficacy of the designed system.

5.2.1 Results

The raw data is preprocessed using filters in preprocessing stage. Fig. 5.11 and

Fig. 5.12 shows magnitude response of the high pass and low pass filters respec-

tively.
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Fig. 5.11 Manitude response of high pass filter
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Fig. 5.12 Manitude response of low pass filter

Chapter: 5: Performance Analysis 83



Fig. 5.13 shows raw input and preprocessed output of horizontal EOG signal.

Fig. 5.14 shows raw input and preprocessed output of vertical EOG signal.
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Fig. 5.13 Raw and preprocessed horizontal EOG signal
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Fig. 5.14 Raw and preprocessed vertical EOG signal

The correlation coefficient value is calculated considering the associated de-

lay in hardware after the preprocessing stage. The dissimilarities in the figures of

raw and preprocessed signals are due to the delay added in the hardware after

filtering. However, they maintain high correlation coefficients.The Pearson core-

lation coefficient between the software and hardware results after preprocessing
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stage for all subjects is shown in Table 5.5. The average value lies around 0.97.

This proves the software hardware agreement of the design.

Table 5.5: The Pearson Correlation Coefficient in preprocessing stage of Multiclass Clas-
sification

Subjects Horizontal Data Vertical Data
S1 0.9891 0.9973
S2 0.9493 0.9873
S3 0.9972 0.9411
S4 0.9762 0.9327
S5 0.9524 0.9614
S6 0.9796 0.9421
S7 0.9897 0.9737
S8 0.9672 0.9877
S9 0.9872 0.9719
S10 0.9897 0.9721

Average 0.9777 0.9667

After preprocessing stage, features are extracted from the preprocessed signals.

Fig. 5.15 represents total of four features: RMS value of horizontal EOG sig-

nal (RMSH), STD value of horizontal EOG signal (STDH), RMS value of vertical

EOG signal (RMSV), and STD value of vertical EOG signal (STDV) used in this

work. Here, epochs 1-100 represent no movements, samples 101-200 represent

down movement, epochs 201-300 represent left movements, epochs 301-400 rep-

resent blink, and epochs 401-500 represent right movement, and epochs 501-600

represent up movement.

The Root Squared Error, and the Pearson Correlation Coefficient are calculated to

check the hardware and software agreement. Fig. 5.16 shows the boxplot of cor-

responding root squared errors, all notably close to 0. This supports the validity

of the hardware design. The correlation coefficient for all categories varies be-

tween 0 to 1. A value closer to 1 indicates a higher accuracy. In this work, all the

median values are greater than 0.91 indicating a significant agreement between
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the software and hardware models.

In this design, six classes are considered for multiclass classification. The classi-

fier is developed based on the SVM classifier. The comparator output gives the
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Fig. 5.17 Confusion matrix for multiclass classification in software

final result to detect the eye movement class. The dataset is split into 80:20 ratios

for training and testing. The confusion matrix for this classifier is shown in Fig.

5.17. The true positive predictions are marked in blue and wrong predictions are

marked in gold. Here, class 1 represents no movement, class 2 represents down

movement, class 3 represents left movement, class 4 represents blink, class 5 rep-

resents right movement, class 6 represents up movement. Among the different

classes, the developed system can predict all the 20 no movement and 20 down

movement test data accurately. In the case of left eye movement, it can predict

18 test data accurately. For blink and right movements, the correct predicted test

data are 18, and 17 respectively. The designed model can detect 19 up eye move-

ment data correctly.

There are various factors that contribute to a range of levels of accuracy in differ-

ent eye movements, including highlighted elements, learning context, complex

background, low relevance of images and texts, learner differences, awareness

of experimental settings, self-conception, and prior knowledge [116]. Individual

software accuracy for the above-mentioned six classes is listed in Table 5.6. The
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average software accuracy is found 97.52%. The accuracy, sensitivity, specificity,

precision, and F1-score of all classes are summarized in Table 5.6.

Table 5.6: Performance analysis of Multiclass classifier

Movement Accuracy Sensitivity Specificity Precision F1-score

No movement 100% 100% 100% 100% 100%
Down 100% 100% 100% 100% 100%
Left 97.5% 90% 98.01% 94.73% 92.30%

Blink 98.33% 90% 98.03% 100% 94.73%
Right 95.83% 85% 97.02% 89.47% 87.17%

Up 95.83% 95% 98.96% 82.60% 88.37%
Average 97.92% 93.33% 98.67% 94.47% 93.76%
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Fig. 5.18 Confusion matrix for multiclass classification in hardware.

The designed EOG processor is implemented in Zynq UltraScale+ ZCU106. Fig.

5.18 shows the confusion matrix for the hardware classifier. The confusion ma-

trix of software and hardware shows differences. The possible reasons can be

precision and memory constraints in hardware. The real-time data is floating
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type. Hardware implementations use fixed-point for reduced precision arith-

metic while calculations are performed. This leads to loss of information and

rounding errors. This may affect the accuracy of the model, especially for class 3.

Additionally, hardware-implemented systems face the issue of limited memory

resources compared to software implementations. In the case of class 3, the model

or data size may exceed these limits, which may lead to reduced accuracy. The

individual classes’ accuracies for the proposed design’s SVM classifier are listed

in Table 5.7. The average accuracy for six classes is 95.56%.

Table 5.7: Comparison of testing accuracy of multiclass classifier in software and hard-
ware

Movement Software accuracy Hardware accuracy

No movement 100% 100%
Down 100% 100%
Left 97.5% 91.67%

Blink 98.83% 98.33%
Right 95.83% 90.83%

Up 95.83% 92.5%
Average 97.92% 95.56%

Table 5.8: FPGA resource utilization in Zynq UltraScale+ for multiclass classification.

Resource Utilization Available Percentage Utilization
LUT 40207 230400 17.45%

LUTRAM 736 101760 0.72%
FF 7657 460800 1.66%

BRAM 2 312 0.64%
DSP 232 1782 13.43%
IO 75 360 20.83%

BUFG 1 544 0.18%

Table 5.8 presents hardware resource utilization for the prototype. Here, LUT,

LUTRAM, FF, BRAM, DSP, IO, and BUFG denote Look Up Table, LUT-Random-

Access Memory, Flip-Flops, Blocked Random-Access Memory, Digital Signal Pro-
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cessing, Bonded Input/Output blocks,and Global Buffer respectively. The de-

sign utilizes 17.45% LUT, 0.72% LUTRAM, 1.66% FF, 0.64% BRAM, 13.43% DSP,

20.83% IO, and 0.18% BUFG. Total system delay associated in this design is 18.4

µs only, which is inherently introduced by the FIR filter of preprocessing unit

[117].

The on-chip power consumption in Zynq Ultrascale+ FPGA for this design is

1.446 watts. The power is consumed as dynamic power and static power. The to-

tal consumption of dynamic power is 0.850 watts (59%) and static power is 0.596

watts (41%). Dynamic power is utilized in Clocks (0.033 W), Signals (0.374W),

Logic (0.336W), BRAM (0.004W), DSP(0.102W), and I/O (0.001 W) as shown in

Table 5.9. Static power is utilized in PL static (0.583 W) and PS static (0.013W).

Table 5.9: FPGA power consumption in Zynq UltraScale+. for multiclass classification

Logic Operation Power Consumption
Clocks 0.033 W (4%)
Signals 0.374 W (44%)

Dynamic (59%) Logic 0.336 W (40%)
BRAM 0.004 W (1%)

DSP 0.102 W (11%)
IO 0.001 W (0%)

Device Static (41%) PL Static 0.583 W (98%)
PS Static 0.013 W (2%)

Total On-Chip power 1.446 W

5.2.2 Comparative Study

Table 5.10 summarizes a comparative study between this work and state-of-the-

art reconfigurable EOG eye movement classification techniques. J. F. Wu et al. [79]

implemented preprocessing and classification stages. Cano et.al [67] and Asanza

et. al [13] implemented only the classification stages. The proposed work shows

higher accuracy than all previous works. To the best of my knowledge, this is the

first work incorporating hardware implementation of all processing stages for

EOG. Thus this work provides a complete EOG processor to classify eye move-

ments.
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5.3 Summary

In this chapter, the results and performance of the designed systems are shown.

The first design detects the saccades and blinks efficiently with software and

hardware accuracies of 97.5% and 95% respectively. The on-chip power con-

sumption for this design is only 0.8 watts. Experimental results demonstrate the

efficacy of the designed EOG processor in terms of classification accuracy, im-

plementation complexity, and power consumption. Then, the design of the EOG

signal processor for multiclass classification is evaluated. It classify six different

movements of eyes- No Movement, Down, Left, Blink, Right, and Up from Dual

channel EOG Signals. The software design provides 97.92% accuracy using only

two features. The implemented prototype offers 95.56% accuracy. It uses a total

of 1.446 watts of on-chip power. Experimental results and comparative studies

demonstrate the efficacy of the designed EOG processor.
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Chapter 6: Conclusions

Eye diseases are one of the major contributors to disabling conditions. These diseases can

ultimately turn severe and can lead to blindness. Eye movement analysis can work as a

key factor in the diagnosis of eye diseases. Electrooculoculography is one of the suitable

techniques to provide eye movement information through electrooculogram (EOG) signal.

The reasons are: EOG signal acquisition is cheap, non-invasive, and presents almost no

adverse health effects. Implementing machine learning algorithms with traditional signal

processing techniques is opening new domains in the EOG research field. Hence, EOG

signal analysis is now widely used in human-machine interfaces, wheelchair control, sleep

stage study, etc. However, high-performance dual-channel EOG processing needs fast

computation. Conventional microprocessors can face burdens in computing during real-

time EOG siganl processing. FPGA-based reconfigurable architecture presents the perfect

solution for time-critical energy-efficient dual-channel EOG signals. An in-depth analy-

sis of the software backend and hardware implementation of two novel FPGA-based EOG

signal processors is discussed throughout this thesis. In this final chapter, the contribu-

tion and significance of this research work are summed up. At first, an overview of the

work is presented by giving a summary of the designed prototypes and key findings. This

chapter ends by mentioning the limitations of this research along with a few potential

future research opportunities.

6.1 General Summary

EOG is an electrophysiological signal that provides insights into eye movements.

The eye movement detected from the EOG signals can be very useful in human-

machine interface applications and in detecting diseases that are related to eye

movements. This work provides a systematic review of EOG point-of-care sys-
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tems based on EOG hardware implementations. Two novel research works are

described in the previous chapters of this thesis. These works give insights and

jointly advance the development of eye movement detectors using machine learn-

ing approaches. The software framework behind the proposed methods is pre-

sented, leading to optimized hardware implementation using FPGA. In short,

this research utilized the advantages of reconfigurable architectures to develop

high-performance domain-specific processors for EOG signal processing.

6.2 Key Findings

The key findings of this thesis can be outlined as:

• A systematic review is done for Electrooculogram (EOG) Point of care (POC)

systems. It includes all hardware implementations of classifications work

solely done on EOG signals in the last five years. The present scenario of

data acquisition techniques, preprocessing techniques, features used, and

various algorithms for EOG processing are outlined. This review finds the

research gap for the development of POC systems solely using EOG. To the

best of my knowledge, this is the first systematic review work of EOG based

POC systems.

• An application-specific EOG processor intended to detect blinks is designed.

The EOG signals are preprocessed using FIR filters of minimum order. Sta-

tistical features are extracted and then used for classification. The designed

architecture detects the saccades and blinks efficiently with software and

hardware accuracies of 97.5%. As the aim of this thesis, the software back-

end design is used to implement a hardware-based system for detecting the

blinks. FPGA is chosen for its advantage over other hardware-based plat-

forms. Xilinx system generator has been used for the design procedure and

Zedboard zynq 7000 board has been employed primarily for implementa-

tion. The implemented prototype shows 95% accuracy. Hardware resource
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utilization for different units and power consumption are presented. The

on-chip power consumption for this design is only 0.8 watts. Experimental

results demonstrate the designed EOG processor offers intended character-

istics in terms of classification accuracy, implementation complexity, and

power consumption. The comparative study confirmed the efficacy of the

designed EOG processor for blink detection using a binary SVM classifier.

The achieved results shows better accuracy than state-of-the-art hardware

implemented blink detectors.

• A proof-of-concept complete digital system to classify six different eye move-

ments (up, down, normal, right, left, and blink) is designed. The prototype

design utilizes a combination of serial-parallel techniques for hardware op-

timization. This design achieves an average software accuracy of 97.92%.

Zynq Ultrascale+ FPGA board has been employed for the multiclass classi-

fication of eye movements. The implemented design offers 95.56% accuracy

utilizing the SVM classifier. The statistical analysis proves the software-

hardware agreement. Experimental results show that the hardware system

offers satisfactory classification accuracy, and power consumption perfor-

mance. The comparative study confirmed the efficacy of the designed EOG

processor for six different eye movements using a multiclass SVM classifier.

To the best of my knowledge, there is no previous machine learning-based

compact EOG processor that includes all machine learning stages to classify

six class eye movements. Therefore, it is the first of its kind in this regard.

Although these works have their stand-alone characteristics, they ultimately work

towards the common goal of developing domain-specific EOG signal processors

using reconfigurable computation.
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6.3 Limitation of the study

There are a few limitations of this work. They are mentioned below.

• The accuracy of the blink detector and eye movement detector can be im-

proved further.

• The Binary classification design uses 0.8 W and the hardware design uses

1.446 W. To intrgrate this proof-of-concept designs in HMI application power

consumption needs to be reduced.

6.4 Future Research Directions and Opportunities

The designed systems can be utilized and improved for future studies. There

are scopes to develop wearable devices, wheelchair controls, smart healthcare

systems, security systems, and point-of-care systems using FPGA-based designs.

There is a scope for research in each stage of the processor design, preprocessing,

feature extraction, and classification; especially for extracting hardware-friendly

features. Proper selection of preprocessors, features, and classifiers can optimize

the resources and associated costs.

The eye movement classification approaches of this work can be utilized to iden-

tify the two most common forms of abnormal eye movements termed nystag-

mus and strabismus. Nystagmus refers to an eye disease when both eyes move

together in short erratic patterns. Strabismus is a disorder that results in mis-

aligned eye movements due to poor eye-muscle coordination. Further research

is needed to ensure the integration of compact EOG processors into clinical di-

agnostics, wheelchair control, smart cars, IOT-based systems, and security sys-

tems. One FPGA chip can be programmed for multiple signal-processing tasks

as it provides reconfigurable architecture. VLSI realizations of the FPGA-based

prototypes can result in a future reduction of hardware complexity and power

consumption.
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[14] A. Suiçmez, C. Tepe, and M. S. Odabas, “An Overview of Classification

of Electrooculography (EOG) Signals by Machine Learning Methods.” Gazi

University Journal of Science Part C: Design and Technology, 10 (2), 330-338.

doi: 10.29109/gujsc.1130972.

[15] A. Benitez Fernandez, B. N. Socarrás Hernández, J. M. Herrera Rodrı́guez,

B. da Silva, and C. R. Vázquez-Seisdedos, “Novel FPGA-Based Visual Stim-

ulation Method for Eye Movement Analysis,” Electronics, vol. 11, no. 3, p.

303, Jan. 2022, doi: 10.3390/electronics11030303.
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Appendices

Appendix A: Description of the Dataset

Eye Movement EOG Data is used for binary classification in this work. A brief

description of the dataset is given below.

1. Experimental Paradigm

This dataset comprises electrooculography (EOG) data recorded from six

healthy participants (2 males and 4 females; mean age 24.7 3.1 years), hav-

ing normal or corrected-to- normal vision. The adopted eye movement data

acquisition protocol was approved by the University Research Ethics Com-

mittee (UREC) at the University of Malta and before each recording session,

each subject provided their informed consent. Subjects were seated 60 cm

away from a 24-inch LCD monitor, with their head held immobile using an

ophthalmic chin and forehead rests.

Subjects were asked to fixate their point of gaze (POG) on a highlighted cue

on the screen. Specifically, a number of 4 s trials as shown in Fig. A1 were

recorded, wherein the subject was asked to perform a saccade originating

from the centre of the screen to a random target location in the first 1 s. This

was followed by the corresponding return movement towards the centre of

the screen in the next 1 s, and a blink in the last 2 s of each trial. A total of 300

such trials were recorded for each subject, in three separate sessions, specif-

ically with 100 trials being recorded in each session. Intermittent breaks

were provided in between sessions.

The corresponding eye movements were recorded using a standard EOG

setup. The electrode configuration adopted is shown in Figure A2 where

two electrodes were placed adjacent to the lateral canthi while another pair
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Fig. A1 Timing scheme of one trial

Fig. A2 EOG Electrode configuration of Dataset 1

was placed above and under the right eye, as shown. A ground (‘G’) and

a reference (‘R’) electrode were also attached on the forehead and on the

mastoid behind the left ear respectively. The EOG signals were recorded

using the g.tec g.USBamp bio-signal amplifier (g.tec medical engineering

GmbH, Austria) with a sampling frequency, Fs = 256 Hz. The recorded data

was filtered using a bandpass filter between 0-30 Hz and a 50 Hz notch fil-

ter. The EOG potential differences between the horizontally-aligned and

vertically-aligned electrodes were then computed to yield what is generally

referred to as the horizontal and vertical EOG signal components respec-

tively. EOGh(t) and EOGv(t) respectively.

2. Data Format The data is provided in MATLAB (*.mat) format. The data

recorded for each subject X is provided in separate folders named SX. In

each folder, the following files are provided:

• EOG.mat: This stores the recorded horizontal and vertical EOG com-
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ponent data. Specifically, the first row comprises the horizontal EOG

component, whereas the second row comprises the vertical EOG com-

ponent.

• ControlSignal.mat: This file stores a control signal, of the same size

as EOG.mat, where each sample contains a value, ‘1’, ‘2’ or ‘3’, which

identifies whether that particular sample corresponds to a forward sac-

cade (‘1’), return saccade (‘2’) or blink (‘3’).

• TargetAngles.mat: This file contains the horizontal (1st column) and

vertical (2nd column) absolute target gaze angles for each saccade, in

degrees.

Electromyography of the Extraocular Muscles (EOM) dataset is used for multi-

class classification in this work. A brief description of the dataset is given below.

1. Experimental Paradigm

The electrodes are sensors capable of reading EMG signals or ocular myo-

electric activity during eye movements. For this purpose, two vertical elec-

trodes and two horizontal electrodes were used, with a reference electrode

on the forehead as shown in Fig. A3. 10 subjects performed 10 pseudo-

random repetitions of each of the following eye movements during the ex-

periment: Up, Down, Right, Left, no movement (fixation in the center), and

blinking.

The signal captured by the electrodes passes to an amplification stage through

the AD620 or instrumentation amplifier which is a differential amplifier that

eliminates much of the noise. After this stage, the signal is filtered with a

pass band, which has been designed to allow the passage of signals that are

in the range of frequencies of the muscular movement of the sight, which

is between 0 and 40 Hz. The implementation of low-pass and high-pass

filters is carried out with a working frequency of 0.2 Hz and 40 Hz respec-

tively, this creates a frequency window that allows reception and reading of
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Fig. A3 EOG Electrode configuration of Dataset 2

the movements of the eye muscles. It is important to highlight that a con-

ditioning circuit was implemented for vertical movement and another for

horizontal movement. After conditioning, the signal goes to the ADC port

of the FPGA card for its acquisition. For data reading, a sampling frequency

of 120 Hz was used for approximately 2 seconds, which by Nyquist’s sam-

pling theory is always 2.5 times the maximum of the signal to be acquired

in this case the movement of the sight it is between 0 and 40 Hz.

The EMG signals were recorded with a data acquisition equipment with a

resolution of 10 bits, that is the reason why the data is in the range of 0 - 1024.

1024 being five volts of direct current. The EMG signals were recorded with

a data acquisition equipment with a resolution of 10 bits, that is the reason

why the data is in the range of 0 - 1024. 1024 being five volts of direct cur-

rent. The activities carried out by each of the 10 subjects were: Up, Down,

Right, Left, no movement (fixation in the center), and blinking.

2. Data Format

The tasks of the subjects were separated by folders as detailed below:
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• CN - Normal Behavior

• MD - Downward Movement

• ML - Movement to the left

• MP - Blink

• MR - Right movement

• MU - Upward Movement

Each folder contains 100 .CSV files, corresponding to the 10 tasks performed

by each of the 10 subjects. These files were numbered randomly in each of

the folders. Each file contains two columns corresponding to horizontal

and vertical movement. In addition, each file contains 250 endpoints corre-

sponding to a sampling of 120 data per second during the approximately 2

seconds of task completion.
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Appendix B: MRMR Algorithm

The Minimum Redundancy Maximum Relevance (MRMR) Algorithm considers

both feature relevancy with class label and feature redundancy among the se-

lected features. Its formula is as follows:

J (xk) = I (xk; y)− 1
|S| ∑

xj∈S
I
(
xj; xk

)
(B1)

where J (xk) is the evaluation index, xk is the candidate feature and S is the subset

of the selected features. The MRMR algorithm is given below in Algorithm B1.

Algorithm B1: The MRMR Algorithm
Input: The traning dataset D with original feature set F = { f1, f2 . . . fn}, class

label Y and the required feature dimension T
Output: The selected subset feature ST

1: ST ← ϕ
2: for fi in F do
3: MIi = I ( fi; y)
4: f ← max(MI);
5: ST ∪ f ;
6: F = F− f
7: end for
8: for i← 2 to T do
9: for each fi in F do

10: J ( fi) = MIi − 1
|S| ∑ f j∈S I ( fk; fi);

11: end for
12: select fs from J ( fi) with the largest value;
13: ST = ST ∪ fS;
14: F = F− fS;
15: end for
16: return ST
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Appendix C: Parameters of SVM Models

Table C1: Parameters of Binary Classifier of EOG Signal Processor for Blink Detection

Parameters Binary Classifier
W1 -7.5897
W2 -5.7514
W3 -12.7913
W4 -1.61449
Bias 7.3467

Kernel Function Linear
Support Vectors 906 X 4 double

Table C2: Parameters of Multiclass Classifier of EOG Signal Processor for Multiclass Eye
Movement Detection

Parameters Class 1 Class 2 Class 3 Class 4 Class 5
W1 3.9123 6.4921 -4.2848 -2.9808 -1.7829
W2 5.4526 -5.8858 3.8359 1.0393 -2.1163
W3 -3.6949 -3.8014 1.8832 -1.9304 4.4051
W4 -4.4760 3.3457 -3.4405 7.0979 -2.7122
Bias -6.899 -1.2857 -0.8653 -0.2961 2.0947

Kernel
Function

Linear Linear Linear Linear Linear

Support
Vectors

130 X 4
double

154 X 4
double

162 X 4
double

163 X 4
double

119 X 4
double
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Appendix D: Overview of the selected modules

ZedBoard™ is a low-cost development board for the Xilinx Zynq®-7000 SoC. This

board contains everything necessary to create a Linux, Android, Windows® or

other OS/RTOS-based design. Additionally, several expansion connectors ex-

pose the processing system and programmable logic I/Os for easy user access.

Take advantage of the Zynq-7000 SoC’s tightly coupled ARM® processing sys-

tem and 7 series programmable logic to create unique and powerful designs with

the ZedBoard.

Fig. D4 Overview of ZedBoard Zynq Evaluation and Development Kit
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The ZCU106 Evaluation Kit enables designers to jumpstart designs for video con-

ferencing, surveillance, Advanced Driver Assisted Systems (ADAS) and stream-

ing and encoding applications. This kit features a Zynq™ UltraScale+™ MPSoC

EV device and supports all major peripherals and interfaces, enabling develop-

ment for a wide range of applications. The included ZU7EV device is equipped

with a quad-core Arm® Cortex®-A53 applications processor, dual-core Cortex-

R5 real-time processor, Mali™-400 MP2 graphics processing unit, 4KP60 capable

H.264/H.265 video codec, and 16nm FinFET+ programmable logic.

Fig. D6 Overview of Zynq Ultrascale+ ZCU106 Evaluation Platform
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Appendix E: Design in Xilinx System Generator

Fig. E1 Dual channel EOG data is taken in parallel

Fig. E2 Filter Unit of EOG Signal Processor

Fig. E3 Normalization Unit of EOG Signal Processor
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Fig. E4 RMS Extractor of EOG Signal Processor

Fig. E5 Mean Extractor of EOG Signal Processor

Fig. E6 STD Extractor of EOG Signal Processor
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Fig. E7 Binary SVM classifier of EOG Signal Processor

Fig. E8 Control and Memory Unit of EOG Signal Processor
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Fig. E10 Summary of implemented Binary EOG signal processor in ZedBoard

Fig. E11 Multiclass Classifier with Comparing Logic
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Fig. E12 Comparator used in Multiclass Classifier of EOG Processor
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Fig. E13 Compact EOG Signal Processor for Multiclass Classification

Fig. E14 Summary of implemented Multiclass EOG signal processor in Zynq
Ultrascale+
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Appendix E: Similarity Index Report
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