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Abstract 

Satellite image classification is crucial for various applications, driving 

advancements in Convolution Neural Networks (CNNs). While CNNs have 

proven effective, deep models often encounter overfitting issues as the network's 

depth increases since the model has to learn many parameters. Besides this, 

traditional CNNs have the inherent difficulty in extracting fine-grained details 

and broader patterns simultaneously. To overcome these challenges, this 

research presents a novel approach using an optimized parallel CNN (OPCNet) 

architecture with an SVM classifier to classify satellite images. Each branch 

within the parallel network is designed for specific resolution characteristics, 

spanning from low (emphasizing broader patterns) to high (capturing fine-

grained details), enabling the simultaneous extraction of a comprehensive set of 

features without increasing network depth. The OPCNet incorporates a dilation 

factor to expand the network's receptive field without increasing parameters, and 

a dropout layer is introduced to mitigate overfitting. Evaluation of two public 

datasets (EuroSAT dataset and RSI-CB256 dataset) demonstrates remarkable 

accuracy rates of 97.91% and 99.8%, surpassing previous state-of-the-art models. 

Finally, OPCNet, with less than 1 million parameters, outperforms high-

parameter models by effectively addressing overfitting issues, showcasing 

exceptional performance in satellite image classification. 
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বিমূর্ত 

স্যাটেলাইে ইটেজ শ্রেণীবিভাগ বিবভন্ন অ্যাবিটেশটের জেয গুরুত্বপূণ ণ, েেটভাবলউশে 

বেউরাল শ্রেেওযাটেণ (বস্এেএে) এটেটে অ্গ্রগবি শ্রেখাটে। যবেও বস্এেএে গুবল 

োয ণের প্রোবণি হটযটে, বেন্তু গভীর েটেলগুবল প্রাযশই ওভারবিটেিং স্েস্যার স্ম্মুখীে 

হয োরণ শ্রেেওযাটেণর গভীরিা িদৃ্ধি পায িটল েটেলটেটে অ্টেেগুবল পযারাবেোর 

বশখটি হয। এটে োডাও, ঐবিহযিাহী বস্এেএে-এর এেই স্াটে স্ূক্ষ্ম বিিরণ এিিং িহৃত্তর 

বেেশ ণেগুবল শ্রির েরটি স্হজাি অ্স্ুবিধা রটযটে। এই চ্যাটলঞ্জগুবল োটেটয উঠটি, এই 

গটিষণাটে উপগ্রহ বচ্েগুবলটে শ্রেবণিি েরার জেয এেটে এস্বভএে শ্রেণীবিভাটগর 

স্াটে এেটে লাইেওটযে স্োন্তরাল বস্এেএে(এলবপবস্এেএে) আবেণটেেচ্ার িযিহার 

েটর এেটে অ্বভেি পিবি উপস্থাপে েটর। স্োন্তরাল শ্রেেওযাটেণর েটধয প্রবিটে শাখা 

বেবেণষ্ট শ্ররটজাবলউশে বিবশটষ্টযর জেয বেজাইে েরা হটযটে, বেম্ন (বিস্িৃ্ি পযাোটে ণর 

উপর শ্রজার শ্রেওযা) শ্রেটে উচ্চ (স্ূক্ষ্ম-োোযুক্ত বিিরণ েযাপচ্ার েরা) পয ণন্ত বিস্্িৃি, 

বিবশষ্টযগুবল শ্রেেওযাটেণর গভীরিা ো িাবডটয এেটযাটগ বেষ্কাশে স্েে েটর। 

এলবপবস্এেএে পযারাবেোর ো িাবডটয শ্রেেওযাটেণর গ্রহণটযাগয শ্রেেটে প্রস্াবরি েরার 

জেয এেটে প্রস্ারণ িযাক্টরটে অ্ন্তভভ ণক্ত েটর এিিং অ্বিবরক্ত বিটেিং প্রশবেি েরার জেয 

এেটে ড্রপআউে স্তর প্রিিণে েরা হয। েুটে পািবলে শ্রেোটস্টের েূলযাযে (ইউটরাস্যাে 

শ্রেোটস্ে এিিং  আরএস্আই-বস্বি ২৫৬ শ্রেোটস্ে) ৯৭.৯১% এিিং ৯৯.৮% এর 

উটেখটযাগয বেভভ ণলিার হার প্রেশ ণে েটর, যা পূি ণিিী অ্িযাধুবেে েটেলগুবলটে োবডটয 

যায। অ্িটশটষ, এলবপবস্এেএে, ১ বেবলযটেরও েে পযারাবেোর স্হ, ওভারবিটেিং 

স্েস্যাগুবলটে োয ণেরভাটি স্োধাে েটর, স্যাটেলাইে ইটেজ শ্রেণীবিভাটগ িযবিক্রেী 

েে ণেেিা প্রেশ ণে েটর উচ্চ-পযারাবেোর েটেলগুবলটে োবডটয যায। 
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Chapter 1: INTRODUCTION 1 

Chapter 1: INTRODUCTION 

This chapter explains the overview of recent state of deep learning models in satellite 

image classification. Also, this chapter outlines the background in section 1.1, problem 

statement in section 1.2 of the research and its aim and objectives in section 1.3. Next, 

section 1.4 describes the significance and scope of this research. Finally, section 1.5 

includes an outline of the remaining chapters of the Thesis. 

1.1 BACKGROUND 

Images of Earth gathered by satellites, the unmanned aerial systems are 

referred to as satellite images [1]. The utility of satellite images extends to various 

fields, including land planning [2-4], surveillance [5], monitoring, agriculture [6-

7], marine studies [8-10] and others. In satellite imagery, experts in computer 

vision strategies play a pivotal role in tasks such as image classification, 

interpretation, and object recognition. Satellite image classification, a core 

element in this domain, involves categorizing diverse land cover types, including 

forests, croplands, urban areas, and water bodies [11]. This precise classification 

is indispensable for a wide array of applications, such as natural resource 

management, land use planning, forestry, agricultural oversight, urban 

development planning, regional planning, and strategic disaster management. 

The conventional approaches to satellite image classification rely on traditional 

methods that necessitate manual feature engineering and the application of 

standard machine learning classifiers. However, the manual analysis of this data 

is a costly and labour-intensive process [12], prompting the integration of 

artificial intelligence to automate and refine the classification of satellite imagery.  

In recent years, the fusion of satellite imagery and advanced machine 

learning techniques, particularly Convolutional Neural Networks (CNNs), has 

opened avenues for unprecedented insights and discoveries. CNNs, initially 
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designed for image recognition, exhibit promising capabilities in discerning 

complex patterns within satellite images. CNNs excel in satellite image 

classification by automatically extracting intricate features. Their efficiency, 

adaptability to varying resolutions, and state-of-the-art performance make them 

superior to traditional machine learning models in handling the complexities of 

satellite data. Several experiments have demonstrated CNN's capacity to execute 

land cover classification [13-15] and road extraction from remote sensing imagery 

[16]. In [9], CNN categorizes the utilized and unutilized terrain. Pretrained CNN 

models (Resnet50, GoogleNet, VGG19, and AlexNet) effectively classify satellite 

images [17]. 

Conventional CNNs often incorporate successive convolutional layers, 

stacking them to enhance network depth and facilitate learning numerous 

parameters during training. However, this augmentation in depth leads to 

overfitting, diminishing the network's classification performance—a significant 

drawback associated with CNN models. The net dropout approach [18] was 

employed to minimize overfitting concerns, although it reduces classification 

accuracy by removing significant information. Pre-trained algorithms with 

transfer learning were also devised in this regard [19-21]. Another limitation of 

the deep CNN model is its inability to extract features across multiple resolutions 

simultaneously. This paper presents difficulties in satellite image classification, 

where there is a need to capture low-resolution (broader patterns) and high-

resolution (fine-grained details) features to enhance the robustness of feature 

maps and overall performance. The constraint becomes evident as a single deep 

CNN model struggles to address this diverse requirement effectively. 

The motivation behind this research stems from the need to address the 

challenges associated with overfitting in satellite image classification while 

avoiding the complexity of deepening neural networks. In satellite images, fine-

grained features like intricate architecture, textures, and small-scale elements are 



 

Chapter 1: INTRODUCTION 3 

crucial, while broader pattern features contribute to understanding diverse land 

cover, geographical structures, and overall contextual elements of a region. To 

extract various resolution characteristics from satellite images, a CNN model 

with parallel branches and unique parameters needs to be developed. This 

architecture will allow for the simultaneous extraction of several characteristics, 

addressing the need for accurate representation of features in the classification 

process. Furthermore, the reasons of the research intend to improve network 

efficiency by keeping it lightweight, and to determine the best classifier for 

satellite image classification. The inspiration for this work aligns with the goal of 

achieving effective classification performance while addressing overfitting 

concerns and maintaining a simplified framework. 

1.2 PROBLEM STATEMENT 

When standard CNN models are utilized to classify satellite images, they 

encounter by the following limitations, which could impact their effectiveness in 

extracting relevant features and yielding precise outcomes. 

• Conventional CNN models have a sequential layering design, implying 

layers are stacked on each other. The model's depth and complexity are 

increased by this stacking technique, which also raises in the number of 

trainable parameters. This intricacy could lead to overfitting, causing the 

model to perform severely on new satellite images while obtaining 

excellent training accuracy. 

• Conventional CNNs might encounter difficulty capturing features at 

several resolutions simultaneously. As a result, important information at 

various resolutions goes unnoticed, compromising the model's capacity 

to distinguish tiny features and broader patterns in satellite data. 

• Deep CNNs with large architectures need substantial computing 

resources, processing power, and computational time. 
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1.3 AIMS AND OBJECTIVES 

The main objective of this research is to develop an optimized parallel CNN 

model that can precisely classify the satellite images while reducing the 

limitations of traditional CNN models.  

The objectives of this research are specified as below: 

i. To develop a OPCNet framework for classifying satellite images. 

ii. To overcome the overfitting problem of conventional neural 

networks without increasing the network's depth using feature 

fusion technology of parallel neural networks. 

iii. To select an efficient classifier to classify the satellite images using 

obtained features. 

iv. To perform a comparative analysis on the proposed system to study 

the improvements in efficiency and performance on multiple 

datasets. 

1.4 SCOPE OF THE STUDY 

Traditional CNNs, which use consecutive convolutional layers, are 

susceptible of overfitting, which impairs the model's classification accuracy. 

Another drawback is that it cannot extract features from multiple resolutions at 

the same time. This difficulty is especially acute in satellite image classification, 

where capturing both low-resolution (broader patterns) and high-resolution 

(fine-grained details) features is critical for creating strong feature maps and 

assuring overall performance. The scope of this research extends to satellite 

image classification, offering a fresh solution to the issues encountered in deep 

CNN models. The parallel building of the CNN models enables the extraction of 

information at various resolutions, addressing the specific requirements of 

satellite data, where both broader patterns and fine-grained features are required 

for precise categorization.  
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The scope of this study extends to an assessment of multiple classifiers with 

the goal of determining the most effective one for improving the overall 

performance of satellite image categorization. This research aims to offer novel 

insights applicable to a variety of computer vision applications and neural 

network designs, in addition to tackling overfitting concerns. The potential 

impact extends beyond overcoming specific challenges in satellite image 

classification, paving the way for greater improvements and developments in 

related domains. 

1.5 THESIS OUTLINE 

The topics in this thesis is divided into five chapters. The following is a brief 

overview of the chapters:  

• Chapter 1, the introduction chapter, contains research motivation, 

problem statement, objective and thesis organization. Motivation for the 

research, objective for the study and how this thesis paper is organized 

are concisely described in the chapter. 

• Theoretical background in line with literature review associated with 

the study is organized in chapter 2. It will provide a brief overview of 

the theories, formulae and literature required for the audience to grow 

interest in and understand the study. 

• Chapter 3 systematically organizes the methodological framework 

followed in the study. A comprehensive flowchart for the 

methodological framework is illustrated for providing a concise 

understanding on how the study is performed. Details on designing and 

modelling of various algorithms along with design parameters and 

figures are included in the chapter. 

• Chapter 4 includes simulation results, performance analysis, and 

comparative study. Data and output figures are included in this chapter. 
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• Finally, chapter 5 summarizes overall study method, results and 

findings. Challenges and limitations are also discussed. Future 

recommendations and conclusion finish the thesis paper. 
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Chapter 2: LITERATURE REVIEW 

This chapter provides an extensive theoretical foundation, supported by a 

significant amount of literature, to help the reader gain a comprehensive grasp. In Section 

2.1, the details of satellite images are discussed. Section 2.2 then looks into the operational 

concepts of neural networks, which include both artificial and convolutional networks. 

Section 2.3 describes about the Dilated Convolutional Neural Network. The discussion 

extends to pre-trained models such as VGG16, AlexNet, and ResNet50 in Section 2.4. 

Finally, Section 2.5 describes the operating principles of classifiers, including the 

SoftMax, Support Vector Machine (SVM), K-Nearest Neighbour (K-NN), Random 

Forest (RF), and Naive Bayes (NB). Section 2.7 discusses significant works in the field of 

satellite image analysis.  

2.1 SATELLITE IMAGES 

A satellite image is a photograph or visual depiction of the Earth's surface 

taken by satellites orbiting around the earth. These photographs are captured 

utilizing specialized sensors onboard these satellites, which allow them to record 

information across multiple wavelengths of the electromagnetic spectrum. 

Satellite photos offer a bird's-eye perspective on landscapes, towns, oceans, and 

other geographical phenomena. The capacity to capture large geographic areas 

with high spatial resolution enables landscape monitoring, natural disaster 

tracking, and environmental impact assessments. Satellite imagery has become 

an essential tool in the agricultural sector, urban planning, disaster management, 

and environmental monitoring. Notable advances in satellite technology, sensor 

capabilities, and data processing have considerably enhanced the accuracy and 

availability of these images, allowing researchers and officials to derive useful 

information for sustainable development. [22] and [23] highlight the importance 

of satellite imagery in environmental study and its numerous applications in 
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current times. Figure 2.1 shows a typical satellite view of a city. This image was 

obtained from Sporcle, an online site with high-resolution satellite images [24]. 

 

Figure 2.1: Example of Satellite image [24]. 

2.2 NEURAL NETWORKS 

A neural network is a technique used in artificial intelligence that trains 

computers to process data in a manner modelled after the human brain. Deep 

learning is a form of machine learning technique that employs interconnected 

nodes or neurons in a structure with layers similar to the human brain [25]. 

Neural networks can assist computers in making intelligent decisions with 

minimal human intervention. There are various types of neural networks used in 

deep learning, like artificial neural networks (ANN), convolutional neural 

networks (CNN), and so on. Some important neural networks are listed below. 

2.2.1 Artificial neural networks (ANN) 

ANNs are a specialized set of algorithms that follow the neuron structure 

of the human brain and are used in various sorts of classification or pattern 

recognition tasks. This learning can take a varying amount of time depending on 

the complexity of the problem and this is basically how humans learn. ANNs try 

to mimic this high order learning behaviour to find relations in data sets or to 

model unknown transfer functions. The basic unit of computation in an artificial 
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neural network is called a neuron. All the neurons in a neural network are 

arranged in layers. A neural network may contain multiples of different types of 

layers in them. The first or initial layer is called the input layer. This layer contains 

input neurons and any inputs to the neural network are applied through this 

layer. As this is the first layer, no processing is done here and the data is just 

forwarded to the internal layers. The layers between the first or input layer and 

the last or output layers are called hidden layers. Each hidden layer may hold 

varying amounts of neurons in them depending on the application. These 

neurons take weighted inputs from neurons in the previous layer and apply 

biases to them. After the weighted sums are taken and biases are accounted for, 

the outputs from each neuron may pass through an activation function and 

forwarded to the neurons in the succeeding layer. The final layer of a neural 

network is called the output layer. They also do similar computations as the 

neurons in the hidden layers and contain special activation functions that help to 

map the neural network outputs to the desired output format. Figure 2.2 depicts 

the basic structure of ANN [26]. 

 

Figure 2.2: Basic Structure of ANN [26]. 
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2.2.2 Convolutional Neural Networks (CNN) 

A deep feed-forward neural network model known as a convolutional 

neural network is designed specifically for processing grid-like data, such as 

images. They have become a cornerstone in computer vision applications, 

demonstrating exceptional performance in tasks like image classification, object 

detection, and facial recognition and was first introduced by Yann LeCun in 1989 

[27]. CNN has excellent feature extraction capabilities due to the construction of 

many filters, which it employs to extract representative features from input data 

layer by layer. Figure 2.3 depicts the basic structure of CNN [28]. 

 

Figure 2.3: Basic Structure of CNN [27]. 

Convolutional Neural Networks (CNNs) typically consist of two main parts: the 

feature learning part and the classification part. the feature learning part focuses 

on extracting and understanding hierarchical features from the input data, while 

the classification part uses these learned features to make predictions or 

classifications. The combination of these two parts enables CNNs to excel in tasks 

such as image classification, object detection, and other computer vision 

applications. 
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2.2.2.1 Convolutional Layer 

Convolutional layers are the fundamental components of CNNs. These 

layers execute convolution operations on the input image by sliding kernels 

across it. The convolution operation consists of element-wise multiplication of 

the kernel with a local portion of the input, resulting in a feature map that 

highlights patterns and features [29]. An error back propagation method 

determines these weights automatically. Figure 2.4 depicts the calculation 

technique principal schematic diagram of a convolution operation 

 

Figure 2.4: Visualization of the convolutional operation [26]. 

The convolution kernel can be shifted along with the up-down and left-right 

directions in accordance with the stride on the input feature map. The rectangular 

convolutional kernel can be used in the feedforward calculation process to 

traverse every element on the whole input feature map in order to obtain the 

output feature maps of the convolutional layer. A multichannel input feature 

map’s convolution process is as follows: 

𝑿𝒊
𝒌 = ∑ 𝑾𝒍

(𝒄,𝒊)
 𝑪

𝑪=𝟏 ∗  𝑿𝒊−𝟏
𝑪 +  𝑩𝒊

𝒌      (2.1) 

Where  is the convolutional operator; i is the network layer index; k is the 

convolution layer's index number; the kth is the group convolution kernel; C is 

the channel index number; the input feature map of channel c is 𝑿𝒊−𝟏
𝑪 ; The layer's 

convolution kernel's weight is 𝑾𝒍
(𝒄,𝒊)

; 𝑿𝒊
𝒌 is the kth output feature map obtained 
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following convolution of the kth group convolution kernel with the input feature 

map, The bias of the ith layer's kth group filter is 𝑩𝒊
𝒌. 

2.2.2.2 Activation Functions 

Following the convolution operation, the output of the convolution layer is 

subjected to a nonlinear transformation activation function [29]. Nonlinear 

transformations can be obtained using various activation functions. This helps 

the model learn complex relationships and improves the network's capability to 

represent intricate patterns. In a CNN model, activation functions decide 

whether a neuron is activated or not. It determines whether or not the input to 

the work is relevant enough for prediction using mathematical procedures. After 

including the activation function, Equation (2.2) may be rewritten as follows: 

𝑨𝒊
(𝒌)

 = f (∑ 𝑾𝒍
(𝒄,𝒊)

 𝑪
𝑪=𝟏 ∗  𝑿𝒊−𝟏

𝑪 +  𝑩𝒊
𝒌)    (2.2) 

Where f () denotes the activation function and 𝑨𝒊
(𝒌)

 denotes the kth output 

feature map of a nonlinear transformation.  

The Sigmoid, hyperbolic tangent, and ReLU are the most often utilized 

activation functions in CNN. The sigmoid's input value x is −∞ ~ +∞, and the 

sigmoid's output value f (x) is 0–1. The output value f (x) of tanh functions is –

1−1. Although both of these functions are better at nonlinear transformation, they 

also have an issue with gradient fading and saturation. The output change values 

f (x) of the two functions practically equal zero when the input value x's absolute 

value is high. To address this issue, the ReLU activation function only evaluates 

the forward signal. The ReLU activation function only takes into account the 

forward signal, eliminating the influence of the negative signal, and it has an 

excellent fitting ability and sparsity, which considerably improves calculation 

efficiency [45]. Table 2.1 shows the equations and graphs. 
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Table 2.1: Activation functions in a CNN 

Name of the 

function 

Expressions Graphs 

Sigmoid f(x) = 
1

1+𝑒−𝑥
 

 

ReLU f(x) = {
𝑥,   𝑥 ≥ 0
0, 𝑥 < 0

 

 

Tanh f(x) = 
1−𝑒−2𝑥

1+ 𝑒−2𝑥
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2.2.2.3 Pooling Layer 

The Pooling Layer is a critical component of Convolutional Neural 

Networks (CNNs), usually implemented after the Convolutional Layer. Its major 

goal is to downsample the convolved feature maps, thereby reducing their spatial 

dimensions and lowering computational costs [30]. This downsampling aids in 

the extraction of vital information from feature maps while removing 

unnecessary features, hence increasing the network's computational efficiency. It 

serves as a link between the Convolutional Layer and the Fully Connected Layer 

in the network design. 

The Pooling Layer works independently on each feature map produced by 

the Convolutional Layer. It consists of various pooling operations, each of which 

has a different effect on the downsampling process. One frequent method is Max 

Pooling, which selects the largest element inside a predetermined region of the 

feature map. This enables the network to focus on the most important elements. 

Average Pooling calculates the average value of items inside a given segment, 

resulting in a simpler summation of information. Furthermore, Sum Pooling 

calculates the total sum of components in a designated region, which contributes 

to a different downsampling approach. 

 

Figure 2.5: Visualization of the pooling operation. 
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2.2.2.4 Fully Connected Layer 

The Fully Connected (FC) Layer is a vital component in recent neural 

network architectures, considerably improving the model's capacity to learn and 

predict. The FC Layer, which is typically located after the convolutional and 

pooling layers, is critical in synthesizing and integrating high-level features 

derived from the previous layers. This layer connects every neuron in the 

preceding and following layers, resulting in a firmly interconnected structure. 

This architecture allows the network to identify complex relationships, 

interconnections, and patterns in the data. 

In the traditional CNN architecture, a fully connected layer is used in the 

classification step. In a classic CNN, the fully connected layer, which typically 

consists of two to three layers, makes complete connections with a feedforward 

neural network. The flatten function in a CNN is used to convert the final output 

feature map to a one-dimensional array [31]. This layer extracts additional 

features from the CNN's output data and connects the feature extraction stages 

to the SoftMax classifier. All neurons inside the layers are intimately coupled, 

resulting in a completely integrated network, as described below: 

𝑌𝐹𝐶 =  𝜎 (𝑊𝐹𝐶  .  𝑋𝑓𝑙𝑎𝑡𝑡𝑒𝑛 +  𝐵𝐹𝐶)     (2.3) 

𝑌𝐹𝐶 is the output of the Fully Connected Layer, σ(⋅) represents the activation 

function., 𝑊𝐹𝐶 is the weight matrix for the FC Layer, determining the impact of 

each input. 𝑋𝑓𝑙𝑎𝑡𝑡𝑒𝑛 is the flattened input vector from the preceding layer. 𝐵𝐹𝐶 is 

the bias vector, introducing an offset to the output. 

In this equation (2.3), the FC Layer computes a weighted sum of the input 

features (𝑋𝑓𝑙𝑎𝑡𝑡𝑒𝑛), applies an activation function, and adds a bias term to produce 

the final output (𝑌𝐹𝐶). This process allows the network to learn complex 

relationships and representations from the flattened features, facilitating tasks 

such as classification or regression. 
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2.3 DILATED CONVOLUTIONAL NEURAL NETWORK 

In deep learning, increasing the size and depth of the convolution kernel 

expands the receptive field while also increasing the number of parameters in the 

network. Dilated convolution can widen the receptive field by inserting weights 

of zero in the normal convolution kernel, without increasing the extra network 

parameters. A dilation rate parameter determines the spacing between values in 

the convolutional filter. A dilation rate of 1 corresponds to conventional 

convolution, while rates greater than one cause gaps between kernel values. 

Figure 2.6(a) shows a 1-dilated convolution kernel as same as the traditional 

convolution kernel of 3×3. Figure 2.6(b) shows the dilated convolution kernel, 

which has the same weights as the standard kernel (3x3) in Figure 2.6(b), but the 

receptive field has been increased to 5x5. 

    

(a)                                                          (b) 

Figure 2.6: (a) Normal Convolutional kernel (b) Dilated Convolutional kernel. 

Equation (2.4) defines * the convolution operator, which uses 1-D dilated 

convolution with dilation rate 𝑙 = 1 to combine input picture 𝐹 with kernel 𝑘. This 

one-dimensional convolution is known as a conventional convolutional neural 

network [32]. When the dilation 𝑙 increases, the network is called a dilated 

convolutional neural network. 

(𝑓 ∗ 𝑘)(𝑖) =  ∑ 𝑓(𝑠)𝑘(𝑝)𝑠+𝑝=𝑖      (2.4) 

When a dilation factor called 𝑙 is introduced and by generalizing this factor 

𝑙 that can be defined as, 
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(𝑓 ∗ 𝑙𝑘)(𝑖) =  ∑ 𝑓(𝑠)𝑘(𝑝)𝑠+𝑙𝑝=𝑖       (2.5) 

Here 𝑙 is referred to as the dilation rate of the convolutional neural network. 

2.4 PRETRAINED MODELS 

Pretrained models in deep learning play a pivotal role in leveraging the 

knowledge gained from extensive datasets to boost the performance of specific 

tasks. These models, such as VGG16, AlexNet, and ResNet50, are initially trained 

on large datasets like ImageNet, where they learn to extract high-level features 

from diverse images. This learned knowledge can then be transferred to new, 

related tasks with smaller datasets, enabling more efficient training and often 

yielding better results. The versatility of pretrained models extends across 

various applications, including image classification, object detection, and face 

recognition [33]. By harnessing the learned representations from these 

established models, practitioners can benefit from the wealth of knowledge 

encapsulated in the pretrained weights, saving computational resources and time 

in training new models from scratch. 

2.4.1 VGG 16 

The VGG16 model, developed by the Visual Graphics Group at the 

University of Oxford, stands out in the field of computer vision due to its deep 

and uniform design. VGG16 has 16 layers, including convolutional and fully 

connected layers, and is designed in a sequential and simple manner. VGG16's 

distinct feature is its persistent usage of small-sized convolutional filters, 

primarily 3x3, throughout the network. This method enables the model to 

accurately capture complicated characteristics and patterns in the input data. 

The input layer of the VGG-16 is 224×224 in size [34]. The convolutional 

layers of VGG16 are distinguished by the repetitive use of 3x3 filters, each 

followed by a rectified linear unit (ReLU) activation function. Max pooling layers 

with 2x2 filters are implemented to reduce the spatial dimensions of the feature 
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maps, which improves computational efficiency. The network culminates with 

three fully linked layers, culminating in the final layer that produces the 

classification result. Figure 2.7 shows the VGG16 architecture in detail. 

 

Figure 2.7: Architecture of the VGG16 [34]. 

2.4.2 AlexNet 

AlexNet, an essential deep convolutional neural network, revolutionized 

the field of computer vision and deep learning. Alex Krizhevsky, Ilya Sutskever, 

and Geoffrey Hinton designed this architecture specifically for the ImageNet 

Large Scale Visual Recognition Challenge in 2012 [35]. Five convolutional layers 

make up AlexNet: the first, second, third, and fourth layers, which are followed 

by the pooling layer and the three fully-connected layers in the fifth layer. The 

last fully connected layer comprises 1,000 neurons, aligning with the number of 

classes in the ImageNet dataset. During the back-propagation optimization 

process for the AlexNet architecture, the convolutional kernels are retrieved by 

using the stochastic gradient descent (SGD) technique to optimize the entire cost 

function. The input layer of the AlexNet is 227×227×3. To mitigate overfitting, 
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AlexNet introduces dropout in the fully connected layers during training. Figure 

2.8 shows the AlexNet architecture in detail. 

 

Figure 2.8: Architecture of the AlexNet [35]. 

2.4.3 ResNet-50 

ResNet-50, which stands for Residual Network with 50 layers, is a deep 

convolutional neural network architecture notable for its unique usage of 

residual learning blocks. ResNet-50, developed by Kaiming He, Xiangyu Zhang, 

Shaoqing Ren, and Jian Sun, overcomes the challenges of training very deep 

networks by incorporating residual connections. The architecture is made up of 

50 layers, comprising convolutional, pooling, and fully linked layers [36]. 

ResNet-50's distinguishing feature is the residual block, which has shortcut 

connections that enable the network to skip one or more layers. These skip 

connections allow the model to learn the residual, which is the difference 

between the input and output of a given block. Figure 2.10 depicts the residual 

block of this architecture. The residual building block consists of two 

convolutional layers, two batch normalizations (BN), and two ReLU activation 

functions. The operation of ResNet model is defined as: 

𝑦 = 𝑓 (𝑥𝑖, 𝑊𝑖) + 𝑥       (2.6) 

In the context where input and output vectors of a layer are denoted as x 

and y, respectively, the function 𝑓 (𝑥𝑖, 𝑊𝑖) represents the residual mapping that 

the model aims to learn across multiple convolutional layers and operators. 
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Subsequently, the combination of feature maps occurs in an element-wise 

manner, proceeding channel by channel. The total number of parameters in this 

model is 44,611,648. 

This method solves the vanishing gradient problem and allows for the 

training of extremely deep networks. ResNet-50 has excelled at picture 

classification tasks and has established itself as a benchmark in the field. Its 

influence extends to a variety of computer vision applications, helping to design 

deeper and more effective neural network structures. 

 

Figure 2.9: Architecture of the ResNet-50 [36]. 

 

Figure 2.10: Residual building block of the ResNet50. 
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2.5 CLASSIFIERS 

A classifier plays a pivotal role in the realm of data science, serving as a type 

of machine learning algorithm designed to categorize input data. A classifier is a 

type of machine learning algorithm that categorizes incoming data and plays an 

important role in data science. Classifiers are trained with labelled data, and the 

algorithm learns to correlate certain features with predefined labels. For example, 

in image recognition, a classifier is trained on a dataset with labels for each image. 

Once suitably trained, the classifier may assess new, unlabelled images and 

assign categorization labels to each. Classifier algorithms use complicated 

mathematical and statistical techniques to predict the probability of a given input 

being classified in a specific manner [36].  

Deep learning includes a variety of classifiers, each adapted to a different 

purpose. Examples include the K-Nearest Neighbour (K-NN) method, Softmax 

classifier, Support Vector Machine (SVM), Random Forest (RF), and Naive Bias 

(NB). These classifiers have a variety of strengths and are selected based on the 

data's features and the nature of the classification task. The ability of classifiers 

to make accurate predictions highlights their importance in applications ranging 

from image identification to natural language processing, leading to the growth 

of machine learning and artificial intelligence. 

2.5.1 SoftMax Classifier 

The SoftMax classifier is widely used in machine learning for multiclass 

classification applications. It is particularly popular in neural networks, where it 

is used as the final layer to convert raw scores into probability distributions 

across several classes. The SoftMax function converts input scores to 

probabilities, making it appropriate for circumstances in which an input can 

belong to one of several distinct classes. Mathematically, the SoftMax function 

converts an input vector, often known as scores, into a probability distribution. 

For an input vector z, the SoftMax function (S) is defined as follows: 
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𝑆(𝑧)𝑖 =  
𝑒𝑍𝑖

∑ 𝑒𝑍𝑖
𝑗

       (2.7) 

Here, 𝑆(𝑧)𝑖 represents the ith element of the SoftMax output vector, e is the 

base of the natural logarithm, and the sum in the denominator is taken over all 

elements in the input vector. The SoftMax function exponentiates the input 

scores, effectively amplifying the differences between them, and then normalizes 

the results to produce a probability distribution. 

 The Softmax layer is frequently employed as the output layer in neural 

networks to solve multiclass classification issues. The network computes initial 

scores for each class, which are then fed into the Softmax function to provide class 

probabilities. It takes values between 0 and 1, with 0 representing impossibility 

and 1 representing certainty. The predicted class is usually the one with the 

greatest chance. One important feature of the Softmax function is that it assures 

that the predicted probabilities add to one [37], making it interpretable as a 

probabilistic distribution. The cross-entropy loss is frequently used together with 

the Softmax classifier to calculate the difference between predicted and actual 

distributions during training. 

2.5.2 SVM Classifier 

Support Vector Machine (SVM) is a robust machine learning method that is 

commonly used for both binary and multiclass classification applications. The 

basic idea of SVM is to determine the hyperplane that optimally separates data 

points from distinct classes while maximizing the margin between them [38]. 

This hyperplane is defined by support vectors, which are the data points closest 

to the decision boundary.  

Mathematically, the decision function for an SVM with a linear kernel can 

be expressed as: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (𝑤. 𝑥 + 𝑏)      (2.8) 
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Here, f(x) represents the decision function, w is the weight vector, x is the 

input feature vector, b is the bias term, and sign (⋅) is the sign function indicating 

the predicted class. 

The optimization goal of SVM is to find the values of w and b that maximize 

the margin while satisfying the requirement that the data points are correctly 

classified. The margin represents the distance between the hyperplane and the 

nearest data point from each class. For a linearly separable dataset, the objective 

function of SVM is given by: 

𝑚𝑖𝑛𝑤,𝑏  
1

2
 ||𝑤||2 

Subject to the constraints:  

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1  for all 𝑖      (2.9) 

Here, 𝑦𝑖 is the class label of the i-th data point, and ||𝑤|| denotes the 

Euclidean norm of the weight vector. Polynomial and RBF kernels are two of the 

most often utilized kernel functions for non-linearly separable classes in SVM. 

The polynomial kernel allows SVM to handle more complex decision boundaries 

by introducing non-linearity. The decision function becomes: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 ((𝑤. 𝑥 + 𝑏)𝑑)   (2.10) 

Here, d is the degree of the polynomial, controlling the level of non-

linearity introduced. The RBF kernel is particularly effective in capturing 

intricate, nonlinear relationships in the data. The decision function is defined as: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖 𝐾(𝑥𝑖,𝑥)𝑁
𝑖=1 + 𝑏)  (2.11) 

Here, N is the number of support vectors, αi are the Lagrange multipliers, yi 

are the class labels of the support vectors, and K (xi, x) is the RBF kernel function. 

The RBF kernel is particularly powerful due to its ability to implicitly map the 

input space into a higher-dimensional space.  
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Figure 2.11: Visualization of the SVM classification processes [38]. 

2.5.3 KNN Classifier 

The k-Nearest Neighbours (KNN) classifier is a non-parametric and simple 

machine learning technique that can be used for classification and regression. The 

basic idea of KNN is based on the assumption that data points with comparable 

attributes belong to the same class or exhibit similar behaviour. KNN classifies a 

data point based on the majority class of its k-nearest neighbours in the feature 

space. The technique calculates the distances between data points, commonly 

using Euclidean distance, and then chooses the k-nearest neighbours based on 

these distances [39]. KNN is simple and flexible, making it straightforward to 

comprehend and use, and it makes no strong assumptions about the underlying 

data distribution. KNN is especially effective for datasets with clear class 

boundaries, and it is widely used in a variety of fields, including image 

recognition, pattern recognition, and recommendation systems. 

2.5.4 RF Classifier 

The Random Forest (RF) classifier is a versatile machine learning method 

well-known for its performance in classification problems. RF, as an ensemble 
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learning method, generates a large number of decision trees during the training 

phase. Each tree is created by selecting a random subset of characteristics and 

data points, resulting in variation among the trees [39]. The ultimate classification 

is determined by a majority vote or average, with each tree contributing to the 

decision-making process. This ensemble technique improves the model's 

generalization capabilities while reducing overfitting, making RF especially 

adaptable to noisy or complicated datasets. Furthermore, RF gives useful 

information about feature importance, assisting in the identification of major 

contributors to the classification process. Because of its versatility, high accuracy, 

and capacity to handle enormous datasets, the Random Forest classifier is used 

in a variety of sectors, including finance, healthcare, and image identification. 

2.5.5 Naïve Bayes Classifier 

The Naive Bayes classifier is a probabilistic machine learning technique that 

is commonly used for classification applications, including natural language 

processing and document categorization. It is based on Bayes' theorem, which 

assesses the likelihood of a hypothesis given prior knowledge [39]. Despite its 

seemingly "naive" assumption of feature independence, Naive Bayes frequently 

performs excellently with high-dimensional datasets. Given a collection of 

features, the classifier estimates the likelihood of each class and assigns the input 

data to the class with the highest probability. Naïve Bayes is computationally 

efficient, making it ideal for real-time applications. The Naive Bayes classifier is 

a common choice for text classification problems due to its simplicity, speed, and 

success in circumstances when the independence requirement is met. 

2.6 RELATED WORKS ON SATELLITE IMAGE CLASSIFICATION 

The classification of imagery from satellites according to object attributes or 

semantic meaning is the process of categorizing them. Different categorization 

techniques exist, one based on low-resolution characteristics (broader patterns) 

and the other on high-resolution features (finer details) [41]. As seen in the 
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method covered in [42], which used texture with LBP for classification, the first 

category uses low-resolution characteristics and simple texture or shape features. 

Mid-resolution feature techniques work well for increasingly complex pictures 

and structures [43]. Remarkably, as compared to other methods, high-resolution 

feature methods are exceptionally successful at handling the complexity of 

imagery. 

Several deep-learning methods have recently been used to classify satellite 

photos, and CNN has become a popular algorithm in this field. CNNs were used 

for ship detection by Mehran et al. [44], who trained Inception-ResNet and other 

current models on the Image-Net dataset beforehand. With the Dataset-RSI-

CB256, Li et al. [45] concentrated on inadequate identifying interpretation in 

satellite imagery categorization and modified it for deep learning assessment. 

Gargees et al. [46] used the Dataset-RSI-CB256 to analyze scenery changes via 

profound visual aspects for change identification. A unique Deep Convolutional 

Neural Network (CNN) with an attention mechanism designed for scenario 

categorization in remote sensing was developed by Alhichri et al. [47]. This 

creative method computes a new feature map by providing the original feature 

map weights. The pre-trained EfcientNet-B3 CNN was improved using the 

attention mechanism to create the CNN, known as EfcientNet-B3-Attn-2. 

SatImNet is an accessible dataset with high compliance standards developed by 

Syrris et al. [48]. They also used the EuroSAT dataset to build a CNN for satellite 

imagery categorization. Notable for its flexible design, Yamashkin et al. [49] 

presented the GeoSystemNet model for high-resolution satellite image 

categorization. Testing the model on the EuroSAT dataset yielded a 95.30% 

success rate. The "greedy DropSample" training method was introduced by N. 

Yang et al. [50] to speed up CNN optimization for image classification. Samples 

that provide the most significant gradients are given priority using this strategy. 

However, given the lack of particular training samples, the training process may 
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display bias in network activations, resulting in the exclusion of samples with 

more minor losses. Interestingly, the created DropSample method does not 

consider class similarity. 

The stacked layer architecture of traditional and pre-trained CNN models 

leads to overfitting because of an overwhelming number of learnable parameters, 

even if they perform exceptionally well in categorizing satellite images. Parallel 

CNN designs have been developed to solve this problem, enabling the 

simultaneous extraction of several discriminative features without deepening the 

network. This is accomplished by using various kernel sizes in each branch of the 

parallel structure and then fusing the features to create a robust feature vector. 

Atik [40] developed a transfer learning-based parallel convolutional network for 

satellite image classification. The study improves feature mapping by utilizing 

pre-trained knowledge from the transferred network within convolutional 

branches. The imbalanced class distribution is addressed using an offline 

augmentation technique, which generally improves network performance. 

Another study [51] developed REMSNet (Relation-Enhanced Multiscale 

Convolutional Network) for urban land cover classification. Leveraging 

DenseNet's connectivity reduces parameters while maintaining performance. 

Inception modules address fixed receptive fields, and relation-enhanced blocks 

capture global context, enhancing feature representation. The decoding stage 

incorporates parallel multi-kernel deconvolution modules and spatial paths to 

aggregate features at various scales. 
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Chapter 3: MATERIALS AND METHODOLOGY 

This chapter discusses detail methodology and materials used in the research. 

Section 3.1 gives an overall description of the methodology which will be described in brief 

in the following sections. Section 3.2 describes the datasets used in the study, while 

Section 3.3 explains data pre-processing techniques. In Section 3.4, the proposed model 

architecture as a feature extractor is briefly discussed. Section 3.5 introduces the SVM 

classifier for categorizing extracted features from satellite images.  

3.1 OVERVIEW OF METHODOLOGY 

Conventional deep CNN models experience overfitting due to more layers 

and more learnable parameters. Furthermore, precise satellite imagery 

categorization requires extracting tiny details and larger patterns from the 

pictures. The simultaneous extraction, which is difficult for conventional CNNs, 

is made more accessible using a parallel structure in CNN models. This paper 

introduces OPCNet (Optimized Parallel CNN), a specialized satellite image 

categorization model.  

The proposed framework developed for categorizing satellite images in this 

study is illustrated in Figure 3.1. The first stage entails gathering two publicly 

available satellite image databases. Essential pre-processing operations are then 

performed to reduce complexity and improve image characteristics. Next, a 

optimized Parallel Convolutional Neural Network (OPCNet) model is developed 

to extract several features at once. Three branches, each with a different size 

convolutional kernel (3*3, 5*5, 7*7), comprise this OPCNet model. The proposed 

OPCNet employs up to three convolutional layers in one branch, with fewer in 

others. The model has less than 1 million parameters, much less than the prior 

models. In order to improve nonlinear properties and expedite model 

convergence, ReLU is used as the activation function following each convolution 
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layer. After that, the features taken out of the convolution kernels of different 

sizes are combined to create a robust feature map. A dilatation factor is also 

included to increase the receptive field without increasing the total number of 

parameters in the proposed network. Finally, using the final feature map, satellite 

shots are categorized more accurately using the SVM classifier, alleviating the 

limitations caused by conventional CNNs. 

 

Figure 3.1: A proposed framework for satellite imagery classification. 

Algorithm 1 describes the suggested model's sequential flow. Detailed 

explanations of each component within the framework are provided in the 

subsequent sections. 

Algorithm 1: Proposed OPCNet-SVM model Algorithm 

    Input: Two different public datasets of Satellite Imagery of size𝑾×𝑯 and 

class labels Y. 

    Output: Trained OPCNet-SVM model for satellite imagery classification. 

    Processing:  

1. for epoch = 1, 2, …, Nepochs do 

2. for image = 1, 2, …., K do 

3 Imageresized              Resize (image, Set 𝑾 = 64, 𝑯 = 64) 

4. Imageenchanced              Sharpen (Imageenchanced = imsharpen (Imageresized)) 

   Lightweight Parallel Convolutional Neural Network: 

5. Input image layer takes Imageenchanced and send those to the initial 

convolution layer.  
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6. Divide the network into three parallel branches with convolution kernel 

size 3*3 for high resolution details, 5*5 for mid resolution details and 7*7 

for low resolution details.  

7. Compute Batch Normalization 𝒙 =  
ϒ(𝒙−𝝁)

𝝈
+  𝜷, here 𝑥 is input, μ is mean, 

σ is standard deviation of batch and ϒ and β are the shift and scale 

parameter.  

8. Compute ReLU activation function, 𝒇(𝒙) =  {
𝒙      𝒇𝒐𝒓 𝒙 ≥ 𝟎
𝟎       𝒇𝒐𝒓 𝒙 < 0

 

9. Apply max-pool plan, 𝒁𝒔 to different feature maps 𝑶𝒔, 𝑶𝒔+𝟏,……,𝑶𝒔+𝒌−𝟏 

which takes maximum over the 𝑶𝒔 and maps it individually as 

represented in 𝒁𝒔,𝒊,𝒋=𝐦𝐚𝐱(𝑶𝒔,𝒊,𝒋,𝑶𝒔+𝟏,𝒊,𝒋,……,𝑶𝒔+𝒌−𝟏,𝒊,𝒋). 

10. Add dilation factor, 𝒐𝒖𝒕𝒊,𝒋 =  ∑ 𝒌𝒆𝒓𝒏𝒆𝒍𝒌,𝒍 ∗ 𝒊𝒏(𝒊+𝒌∗𝒅𝒊𝒍𝒂𝒕𝒊𝒐𝒏,𝒋+𝒍∗𝒅𝒊𝒍𝒂𝒕𝒊𝒐𝒏)𝒌,𝒍 to 

thelow and mid resolution feature path. 

11. Combine feature maps from the three branches. 

12. Apply sgdm optimizer to minimize error rate. 

13. Pass the combined feature map through a fully connected layer preceded 

by dropout layer. 

14. Compute network’s output: 𝒛𝒐𝒖𝒕 =  𝑾𝒐𝒖𝒕* 𝒂𝒇𝒄 + 𝒃𝒐𝒖𝒕;    𝒂𝒐𝒖𝒕 =  𝝈(𝒛𝒐𝒖𝒕) 

15. Compute the loss between predicted and true class labels:  

L(ϴ) = −
𝟏

𝑩
∑ ∑ 𝒚𝒊𝒋 𝐥𝐨𝐠(𝒂𝒐𝒖𝒕𝒊𝒋)𝑪

𝒋=𝟏
𝑩
𝒊=𝟏 , where C is the no. of classes, 𝑦𝑖𝑗is the 

true class labels and 𝑎𝑜𝑢𝑡𝑖𝑗 is the predicted probability for sample i and 

class j. 

16. Update weights (W) and bias (b) using back propagation, 

𝑾(𝒍) ←  𝑾(𝒍) −  α 
𝝏𝑳(𝜭)

𝝏𝑾(𝒍)
,   𝒃(𝒍)   ←  𝒃(𝒍) −  α 

𝝏𝑳(𝜭)

𝝏𝒃(𝒍)
 

17.          Train the OPCNet model with SVM classifier. 

18.          Calculate the test accuracy for the OPCNet-SVM model.  

19.          Calculate error rate e(t). 

20        end 

21.    end 

3.2 DATASET DESCRIPTION 

The RSI-CB256 and EuroSAT datasets are the two unique datasets 

employed in this study to analyze the suggested OPCNet model. Figure 3.4 

demonstrates the distribution of categories for both datasets. 
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3.2.1 RSI-CB256 Dataset 

The publicly available Satellite Image Classification dataset RSI-CB256, 

provided in [52], has four separate types derived from sensors and Google map 

views. There are four categories titled "cloudy (1500)," "desert (1131)," "green area 

(1500)," and "water (1500)," with 5631 images in total. The size of every image in 

the collection is 256 x 256 pixels. Every image has the *.jpg extension. Figure. 3.2 

show sample photos from the dataset. 

 

Figure 3.2: Samples from the Dataset-RSI-CB256 of satellite images [52]. 

3.2.2 EuroSAT Dataset 

The German Aerospace Center (DLR) developed the EuroSAT dataset as 

a portion of the BigEarthNet project, which attempts to offer an ample standard 

dataset for categorizing satellite imagery. This benchmarking dataset [53], which 

includes 27,000 shots distributed over ten classes collected from 34 different 

European states, is utilized in this study. Each class has 2,000-3,000 pictures, each 
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of which is 64 × 64 pixels in size. EuroSAT dataset is based on images from the 

Sentinel-2 satellite. The classifications include industrial, permanent crops, 

annual crops, pasture, forests, herbaceous vegetation, highways, rivers, 

residential and sea lakes. Figure 3.3 shows a few illustrations from the collection. 

 
 

Figure 3.3: Samples from the EuroSAT Dataset of satellite images [53]. 

 
(a)           (b) 

Figure 3.4: Doughnut chart for category distribution of (a)RSI-CB256 (b) EuroSAT 

Datasets. 
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3.3 PREPROCESSING 

Image pre-processing is essential in various domains, such as computer 

vision and medical imaging, to assure accuracy, improve pattern identification, 

and enhance subsequent image analysis. In satellite image classification, image 

pre-processing is an essential step that improves the precision and efficiency of 

subsequent research. In this case, resizing and sharpening are two vital steps. 

They are described below: 

3.3.1 Image Resizing 

Resizing images in satellite image pre-processing is an essential first step 

that reduces computing complexity, standardizes input dimensions, and 

maintains critical spatial characteristics. A compromise between computing 

efficiency and information preservation is achieved by rescaling the satellite 

images to 64x64 pixels. This method enhances the discernible clarity of distinct 

features, which makes it very useful for analysing satellite images where slight 

variations might represent significant facts. The following equation (3.1) is used 

to resize the satellite images for further analysis. 

𝑿𝒓𝒆𝒔𝒊𝒛𝒆𝒅(𝒊, 𝒋) = 𝑿 (
𝒊

𝟒
,

𝒋

𝟒
)      (3.1) 

Here, 𝑋𝑟𝑒𝑠𝑖𝑧𝑒𝑑(𝑖, 𝑗) is the resized satellite image, 𝑋(𝑖, 𝑗) is the original satellite 

image, and 𝑠𝑖, 𝑠𝑗 are the scaling factors for the horizontal and vertical dimensions, 

respectively. 

3.3.2 Image Sharpening 

In satellite image analysis, sharpening is an essential pre-processing 

method. In satellite imaging, even the most minor appearances (buildings, 

vehicles, or individual trees) could indicate significant information. Sharpening 

the satellite images makes distinguishing small changes in the landscape, 

buildings, or natural features easier. This is important because it can highlight 
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essential structures and patterns, which can later help with the categorization 

process. The Laplacian operator is one often used for image sharpening. The 

resized satellite images from the previous stage are sharpened using the 

following formula (3.2) with the Laplacian operator. 

𝑿𝒔𝒉𝒂𝒓𝒑𝒆𝒏𝒆𝒅(𝒊, 𝒋) = 𝑿𝒓𝒆𝒔𝒊𝒛𝒆𝒅(𝒊, 𝒋) +  𝜶 ∗  𝜵𝟐𝑿𝒓𝒆𝒔𝒊𝒛𝒆𝒅(𝒊, 𝒋)    (3.2) 

Here, 𝑋𝑠ℎ𝑎𝑟𝑝𝑒𝑛𝑒𝑑(𝑖, 𝑗) is the sharpened satellite image. α is the enhancement 

factor. 𝛻2𝑋𝑟𝑒𝑠𝑖𝑧𝑒𝑑(𝑖, 𝑗)represents the Laplacian of the resized satellite image, 

which highlights rapid intensity changes (edges). Figure 3.5 demonstrates the 

samples of preprocessed satellite images. 
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Figure 3.5: Pre-processed samples of Satellite images. 

Following image processing, we divide our datasets into training and test 

sets using an 8:2 ratio. This ratio is critical for model training and assessment to 
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be effective. Allocating 80% of the data to the training set allows the model to 

learn complicated patterns, while the remaining 20% in the test set serves as an 

independent standard for evaluating the model's ability to generalize to new, 

previously unknown data. 

3.4 PROPOSED OPCNET ARCHITECTURE 

Satellite images exhibit a wide range of characteristics, including broad 

patterns, global spatial features, as well as complex texture patterns and intricate 

details. For precise classification of these satellite images, different kernel sizes, 

notably 3x3, 5x5, and 7x7, are necessary to extract those features efficiently from 

the images. However, typical deep CNN models with a single branch face 

considerable challenges in obtaining these various properties simultaneously. To 

address these challenges, this study proposed OPCNet model that aims to extract 

features simultaneously over a range of resolutions (low to high) while 

decreasing layers and parameters, boosting processing speed for detailed and 

broader pattern extraction. Smaller kernels (3x3) are better at revealing fine-

grained details and high-resolution characteristics, but larger kernels (7x7) are 

better at acquiring broader patterns in low-resolution features. The key concept 

is that each branch of a parallel network concentrates on extracting information 

at distinct levels of abstraction, allowing the network to understand tiny details 

as well as broad patterns at the same time, which can increase classification 

accuracy. This model, distinguished by its lightweight design compared to 

existing state-of-the-art models, will be known to as the Lightweight Parallel 

CNN (LPCNN) for subsequent study. 

The architecture of the LPCNN model begins with an input layer for 3-

channel input from 64x64 pixels imagery in which the sharpened image is taken 

as input. The first convolution (ConV) layer has 16 output filters, each with a 5x5 

kernel, followed by Batch normalization and ReLU function. The following 

equations (3.3) to (3.5) can be used to compute the output of these layers. 
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     𝑿𝒄𝒐𝒏𝒗(𝒊, 𝒋) =  ∑ ∑ 𝑿𝒔𝒉𝒂𝒓𝒑𝒆𝒏𝒆𝒅(𝒊 + 𝒎, 𝒋 + 𝒏)𝑵−𝟏
𝒏=𝟎 . 𝑾𝒄𝒐𝒏𝒗(𝒎, 𝒏) + 𝒃𝒄𝒐𝒏𝒗

𝑴−𝟏
𝒎=𝟎      (3.3) 

𝑿𝒃𝒏 =  𝜸𝒃𝒏.
𝑿𝒄𝒐𝒏𝒗− 𝝁𝒃𝒏

√𝝈𝒃𝒏
𝟐 +𝜺

+  𝜷𝒃𝒏       (3.4) 

𝑿𝒓𝒆𝒍𝒖 = 𝒎𝒂𝒙(𝟎, 𝑿𝒃𝒏)      (3.5) 

Where, 𝑋𝑐𝑜𝑛𝑣, 𝑋𝑏𝑛, 𝑋𝑟𝑒𝑙𝑢are the outputs of the convolutional layer, batch 

normalization layer, ReLU function. 𝑊𝑐𝑜𝑛𝑣(𝑚, 𝑛) is the kernel element at position 

(m,n), M and N are the dimensions of the kernel where M = 5, N = 5. 𝑏𝑐𝑜𝑛𝑣 is the 

bias term. 𝛾𝑏𝑛, 𝛽𝑏𝑛 are the scaling factor, shifting factor, 𝜇𝑏𝑛, 𝜎𝑏𝑛are mean and 

variance of input and 𝜀 is the stability constant.   

 

Figure 3.6: The proposed lightweight parallel convolutional neural network. 

Following that, the model splits into three branches, each dedicated to 

extracting features from different resolutions. The details are given below: 

3.4.1 Branch 1 (3x3 Kernel Size): Extracting Detail Feature 

Satellite images have textured patterns, tiny objects like residences and 

roads, and edges of land covers. With a 3x3 kernel size, the network's first parallel 
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branch aims to extract those more detailed features from satellite images. This 

kernel size is good at capturing tiny structures (buildings, vehicles or even 

individual trees), subtle characteristics, and complex patterns in the images. This 

branch can efficiently acquire intricate urban infrastructure, tiny structures, fine-

scale land use changes, and texture patterns. This adds to an in-depth 

understanding of the satellite-captured sceneries. This branch takes the 𝑋𝑟𝑒𝑙𝑢 as 

input and performs the convolution operation with 3x3 kernel size on it as per 

following equation (3.6): 

𝒀𝒄𝒐𝒏𝒗𝟏(𝒊, 𝒋) =  ∑ ∑ 𝑿𝒓𝒆𝒍𝒖(𝒊 + 𝒎, 𝒋 + 𝒏)𝟐
𝒏=𝟎 . 𝑾𝒄𝒐𝒏𝒗𝟏(𝒎, 𝒏) + 𝒃𝒄𝒐𝒏𝒗𝟏

𝟐
𝒎=𝟎          (3.6) 

In the proposed LPCNN model, a Batch Normalization (BN) layer and a 

ReLU layer are introduced after each convolution layer. ReLU is utilized to 

augment non-linear features, while BN standardizes each layer's input. The 

outputs of these layers are calculated through the following equations (3.7) and 

(3.8): 

𝒀𝒃𝒏𝟏 =  𝜸𝒃𝒏𝟏.
𝒀𝒄𝒐𝒏𝒗𝟏− 𝝁𝒃𝒏𝟏

√𝝈𝒃𝒏𝟏
𝟐 +𝜺

+  𝜷𝒃𝒏𝟏     (3.7) 

𝒀𝒓𝒆𝒍𝒖𝟏 = 𝒎𝒂𝒙(𝟎, 𝒀𝒃𝒏𝟏)        (3.8) 

Where the symbols have the same meaning as previously stated for the 

respective layer. A max-pooling layer is immediately applied after the activated 

convolution layer in each branch. This process effectively reduces parameter 

volume and extracts the local maximum value from the input feature. The output 

of the pooling layer is then determined by: 

𝒀𝒑𝒐𝒐𝒍𝟏(𝒊, 𝒋) =  𝒎𝒂𝒙𝒎,𝒏𝒀𝒓𝒆𝒍𝒖𝟏(𝒑𝒐𝒐𝒍𝒔𝒊𝒛𝒆. 𝒊 + 𝒎, 𝒑𝒐𝒐𝒍𝒔𝒊𝒛𝒆. 𝒋 + 𝒏)   (3.9) 

3.4.2 Branch 2 (5x5 Kernel Size): Capturing Intermediate Structures 

Satellite images also yield moderate-sized objects (for example, buildings 

and agricultural fields), terrain patterns, wider vegetation regions, and 
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significant textural characteristics. With a 5x5 kernel size, the second parallel 

branch extracts those intermediate-level structures and characteristics from 

satellite images. This branch is good at classifying medium-sized structures in 

the context of satellite images, such as more significant buildings, fields of crops, 

and bodies of water. It is possible to extract features, including intricate geometric 

forms, medium-sized vegetation clusters, and road types. With an intermediate 

level of detail, this branch improves the model's capacity to identify various 

aspects of land cover. Similarly to Branch 1, the outcomes of each layer in this 

branch are determined using the following consecutive equations (3.10) to (3.13): 

𝒀𝒅𝒊𝒍𝒂𝒕𝒆𝒅𝒄𝒐𝒏𝒗𝟐
(𝒊, 𝒋) =  ∑ ∑ 𝑿𝒓𝒆𝒍𝒖(𝒊 + 𝒓. 𝒎, 𝒋 + 𝒓. 𝒏)𝟒

𝒏=𝟎 . 𝑾𝒄𝒐𝒏𝒗𝟐(𝒎, 𝒏) + 𝒃𝒄𝒐𝒏𝒗𝟐
𝟒
𝒎=𝟎   

(3.10) 

𝒀𝒃𝒏𝟐 =  𝜸𝒃𝒏𝟐.
𝒀𝒅𝒊𝒍𝒂𝒕𝒆𝒅_𝒄𝒐𝒏𝒗𝟐− 𝝁𝒃𝒏𝟐

√𝝈𝒃𝒏𝟐
𝟐 +𝜺

+ 𝜷𝒃𝒏𝟐   (3.11) 

𝒀𝒓𝒆𝒍𝒖𝟐 = 𝒎𝒂𝒙(𝟎, 𝒀𝒃𝒏𝟐)    (3.12) 

         𝒀𝒑𝒐𝒐𝒍𝟐(𝒊, 𝒋) =  𝒎𝒂𝒙𝒎,𝒏𝒀𝒓𝒆𝒍𝒖𝟐(𝒑𝒐𝒐𝒍𝒔𝒊𝒛𝒆. 𝒊 + 𝒎, 𝒑𝒐𝒐𝒍𝒔𝒊𝒛𝒆. 𝒋 + 𝒏) (3.13) 

𝑌𝑑𝑖𝑙𝑎𝑡𝑒𝑑_𝑐𝑜𝑛𝑣2, 𝑌𝑏𝑛2, 𝑌𝑟𝑒𝑙𝑢2, and𝑌𝑝𝑜𝑜𝑙2 represent the outputs of the last dilated 

convolution layer, batch normalization layer, max pooling layer, and ReLU 

activation function, respectively, while other symbols indicate their standard 

meanings. 

To broaden the receptive field of kernels, a dilation factor has been 

incorporated into the convolution layer of this branch of the parallel network. 

Dilated convolution is a technique that expands the convolution field without 

increasing the number of network parameters by adding zero-weight 

components to the standard convolution kernel. 
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3.4.3 Branch 3 (7x7 Kernel Size): Grasping Broad Patterns 

In order to extract broad patterns and large-scale characteristics found in 

satellite pictures, the third parallel branch uses a bigger 7x7 kernel size. This 

branch best identifies global spatial relationships and vast land cover features. 

This branch of the model allows it to effectively represent elements such as 

vegetation density, significant metropolitan areas, important water systems, 

large-scale landform changes, and climate patterns. Similarly to the prior 

branches, the outcomes of each layer in this branch are determined using the 

following consecutive equations (3.14) to (3.17): 

𝒀𝒅𝒊𝒍𝒂𝒕𝒆𝒅𝒄𝒐𝒏𝒗𝟑
(𝒊, 𝒋) =  ∑ ∑ 𝑿𝒓𝒆𝒍𝒖(𝒊 + 𝒓. 𝒎, 𝒋 + 𝒓. 𝒏)

𝑵−𝟏

𝒏=𝟎
. 𝑾𝒄𝒐𝒏𝒗𝟑(𝒎, 𝒏) + 𝒃𝒄𝒐𝒏𝒗𝟑

𝑴−𝟏

𝒎=𝟎
 

(3.14) 

𝒀𝒃𝒏𝟑 =  𝜸𝒃𝒏𝟑.
𝒀𝒅𝒊𝒍𝒂𝒕𝒆𝒅_𝒄𝒐𝒏𝒗𝟑− 𝝁𝒃𝒏𝟑

√𝝈𝒃𝒏𝟑
𝟐 +𝜺

+ 𝜷𝒃𝒏𝟑    (3.15) 

𝒀𝒓𝒆𝒍𝒖𝟑 = 𝒎𝒂𝒙(𝟎, 𝒀𝒃𝒏𝟑)    (3.16) 

𝒀𝒑𝒐𝒐𝒍𝟑(𝒊, 𝒋) =  𝒎𝒂𝒙𝒎,𝒏𝒀𝒓𝒆𝒍𝒖𝟑(𝒑𝒐𝒐𝒍𝒔𝒊𝒛𝒆. 𝒊 + 𝒎, 𝒑𝒐𝒐𝒍𝒔𝒊𝒛𝒆. 𝒋 + 𝒏)  (3.17) 

𝑌𝑑𝑖𝑙𝑎𝑡𝑒𝑑_𝑐𝑜𝑛𝑣3, 𝑌𝑏𝑛3, 𝑌𝑟𝑒𝑙𝑢3, and𝑌𝑝𝑜𝑜𝑙3 represent the outputs of the last dilated 

convolution layer, batch normalization layer, max pooling layer, and ReLU 

activation function, respectively, while other symbols indicate their standard 

meanings. The extracted features from these three branches are visualized in 

Figure 3.7(a), 3.7(b), and 3.7(c) respectively. 

Following the extraction of more minor details and broader patterns via 

parallel branches, these features are combined using equation (3.18) in the 

concatenation layer, also shown in Figure 3.7(d). 

𝒀𝒄𝒐𝒏𝒄𝒂𝒕𝒆 = 𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒆 (𝒀𝒑𝒐𝒐𝒍𝟏, 𝒀𝒑𝒐𝒐𝒍𝟐, 𝒀𝒑𝒐𝒐𝒍𝟑)  (3.18) 
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The values of stride are adjusted to match the dimensions of the features 

from the three branches. The formula for the output size (𝑌pool) of a pooling layer 

is: 

𝒀𝒑𝒐𝒐𝒍 =
𝒀𝒓𝒆𝒍𝒖

𝑺
     (3.19) 

For branch 1, the input size = 32x32; stride, S = [4, 4]. The following 

equation can be designed as:  

𝒀𝒑𝒐𝒐𝒍𝟏 =
𝟑𝟐

𝟒
     (3.20) 

For branch 2, the input size = 16x16; stride, S = [2, 2]. The equation can be 

designed as:  

𝒀𝒑𝒐𝒐𝒍𝟐 =
𝟏𝟔

𝟐
     (3.21) 

For branch 3, the input size = 8x8; stride, S = [1, 1]. The equation can be 

designed as: 

𝒀𝒑𝒐𝒐𝒍𝟐 =
𝟖

𝟏
     (3.22) 

Now, all three branches have same dimension of feature map which is 8x8. 

Following that, two fully connected (FC) layers are used, and the features are 

gathered from the final FC layer. 

𝒀𝒇𝒄 = 𝑹𝒆𝑳𝑼 (𝑾𝒇𝒄 . 𝑭𝒍𝒂𝒕𝒕𝒆𝒏(𝒀𝒄𝒐𝒏𝒄𝒂𝒕𝒆) +  𝒃𝒇𝒄)   (3.23) 

A dropout layer with a 0.5 probability is deliberately positioned between 

these two FC layers to reduce overfitting and speed up the training process. 

Dropout skips 50% of all nodes randomly, contributing to a more lightweight 

model. Table 3.1 provides a complete overview of the LPCNN model. 
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(a)                                                                  (b) 

  
(c)                                                                 (d) 

Figure 3.7: (a) High resolution (finer detailed) features with kernel size 3x3, (b) Mid 

resolution features with kernel size 5x5, (c) Low resolution (broader pattern) features 

with kernel size 7x7, and (d) Final feature map after concatenation layer. 

 

Table 3.1: Details of the proposed LPCNN model. 

Layer 

No. 

Layer Name No. of 

Kernel 

Kernel 

Size 

Stride Dilation 

Factor 

Activation Learnable 

1. Image Input - - - - 64*64*3 0 

2. Conv_1 16 5×5 [1 1] [1 1] 64*64*16 1216 

3. Batchnorm_1 - - - - 64*64*16 32 

4. Relu_1 - - - - 64*64*16 0 
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5. Conv_1_1 128 3×3 [2 2] [1 1] 32*32*128 18560 

6. Batchnorm_2 - - - - 32*32*128 256 

7. Relu_2 - - - - 32*32*128 0 

8. Maxpool_1_1 - 3×3 [2 2] - 16*16*128 0 

9. Conv_1_2 64 5×5 [1 1] [2 2] 16*16*64 204864 

10. Batchnorm_3 - - - - 16*16*64 128 

11. Relu_3 - - - - 16*16*64 0 

12. Maxpool_1_2 - 3×3 [2 2] - 8*8*64 0 

13. Conv_1_3 32 7×7 [1 1] [4 4] 8*8*32 100384 

14. Batchnorm_4 - - - - 8*8*32 64 

15. Relu_4 - - - - 8*8*32 0 

16. Maxpool_1_3 - 2×2 [1 1] - 8*8*32 0 

17. Conv_2_1 64 3×3 [2 2] [1 1] 32*32*64 9280 

18. Batchnorm_5 - - - - 32*32*64 128 

19. Relu_5 - - - - 32*32*64 0 

20. Maxpool_1_4 - 3×3 [2 2] - 16*16*64 0 

21. Conv_2_2 32 5×5 [1 1] [2 2] 16*16*32 51232 

22. Batchnorm_6 - - - - 16*16*32 64 

23. Relu_6 - - - - 16*16*32 0 

24. Maxpool_1_5 - 2×2 [2 2] - 8*8*32 0 

25. Conv_3_1 32 3×3 [2 2] [1 1] 32*32*32 4640 

26. Batchnorm_7 - - - - 32*32*32 64 

27. Relu_7 - - - - 32*32*32 0 

28. Maxpool1_6 - 2×2 [4 4] - 8*8*32 0 

29. concat - - - - 8*24*32 0 

30. fc_1 - - - - 1*1*100 614500 

31. dropout - - - - 1*1*100 0 

32. fc - - - - 1*1*4 404 

 Total = 

834,404 
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3.5 SVM CLASSIFIER 

Integrating the OPCNet with a Support Vector Machine (SVM) is an 

advanced method for classifying satellite images. The parallel architecture 

greatly improves the model's ability to discern tiny details to identify more 

general patterns within images, which is intended to extract features 

simultaneously at different resolutions. The SVM classifier then uses the 

effectively extracted features to improve its resilience in navigating concatenated 

feature space. By combining the advantages of both models, this dynamic union 

offers a potent method for comprehensive and accurate satellite image 

categorization. 

In this work, the SoftMax layer of the OPCNet model is replaced with the 

SVM classifier. SVM works by determining which hyperplane best divides 

various classes of satellite images in the feature space. The aim is to maximize the 

margin between different classes of satellite imagery. The MATLAB multiclass 

SVM classifier is used in this proposed approach. The SVM parameters list for 

the suggested classification is in Table 3.2. A linear kernel is utilized in the SVM 

model, which is presented as follows: 

𝑲(𝒀𝒇𝒄, 𝒀𝑺𝑽𝒊) =  𝒀𝑺𝑽𝒊
𝑻 𝒀𝒇𝒄       (3.20) 

The optimal hyperplane in SVM is calculated as: 

𝑺𝑽𝑴(𝒀𝒇𝒄) = ∑ 𝜽𝒊𝒚𝒊𝑲(𝒀𝒇𝒄, 𝒀𝑺𝑽𝒊) +𝑺
𝒊=𝟏 𝒃𝒔𝒗𝒎      (3.21) 

So, for linear SVM's decision function for satellite imagery classification may be 

simplified as follows: 

𝑺𝑽𝑴(𝒀𝒇𝒄) = 𝒔𝒊𝒈𝒏(∑ 𝜽𝒊𝒚𝒊𝒀𝑺𝑽𝒊
𝑻 𝒀𝒇𝒄 + 𝒃𝒔𝒗𝒎

𝑺
𝒊=𝟏 )  (3.22) 

Here, 𝑆𝑉𝑀(𝑌𝑓𝑐) is the decision function which returns +1 if the input Yfc 

belongs to the labeled satellite image category and -1 if it belongs to other 
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category, S is the number of support vectors, 𝑥𝑖 are the support vectors, 𝜃𝑖 are the 

Lagrange multipliers, 𝑦𝑖is the class label, 𝐾(𝑌𝑓𝑐, 𝑌𝑆𝑉𝑖) is the kernel function that 

computes the similarity between 𝑌𝑓𝑐 and 𝑌𝑆𝑉𝑖, 𝑏𝑠𝑣𝑚 is the bias term for the SVM 

classifier. 

Table 3.2: SVM classifier parameter 

PARAMETERS VALUES 

SVM Type Multiclass SVM classifier 

SVM Model One-vs-all 

Solver Linear Kernel 
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Chapter 4: RESULT AND ANALYSIS 

Section 4.1 specifies the evaluation parameters for the proposed system, and Section 

4.2 validates its lightweight design. The performance of several classification algorithms 

is compared in Section 4.3. Section 4.4 demonstrates how this method reduces overfitting 

in satellite image classification. Section 4.5 provides a simple parameter analysis for the 

proposed system. Finally, Section 4.6 compares the proposed system to similar works in 

the field.  

4.1 EVALUATION MEASUREMENT OF PROPOSED SYSTEM 

Several performance metrics, such as accuracy, precision, recall, and F1 

score were used to evaluate the performance of the proposed framework. 

Equations (4.1) to (4.4) can be used to define the metrics: 

Accuracy  =  
𝑻𝑷 +𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
      (4.1) 

Precision  =  
𝑻𝑷 

𝑻𝑷 +  𝑭𝑷 
                  (4.2) 

   Recall  =  
𝑻𝑷 

𝑻𝑵 + 𝑭𝑷 
       (4.3) 

F1 score  =   
𝟐∗ (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝒓𝒆𝒄𝒂𝒍𝒍)

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍
     (4.4) 

Where the true positive, true negatives, false positives, and false negatives 

are symbolized as TP, TN, FP, FN respectively. True positive indicated that actual 

classes are predicted as those ones. 

 The proposed system's performance was assessed using various image 

dimensions for the RSI-CB256 dataset. Table 4.1 presents the results of the 

proposed method with different image dimensions. When the image dimensions 

are small, the proposed model's accuracy is also minimal. As image size 

increased, accuracy gradually improved. The proposed method in 64×64 image 

achieved 99.8% accuracy on the RSI-CB256 dataset. However, as the matrix size 
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increases, the accuracy decreases below the previous value.  To record 

specialized features, the matrix size must be appropriate. 

Table 4.1: Comparison result for different image dimensions. 

Image Dimension Training Accuracy Test Accuracy 

24 x 24 96.40 % 94.87 % 

32 x 32 98.45 % 97.20 % 

64 x 64 99.89 % 99.8 % 

128 x 128 99.20 % 98.89 %  

256 x 256 97.45 % 96.65 % 

 

The proposed OPCNet model was developed and executed using MATLAB 

2021 software. The training and testing processes occurred on a computer 

running a 64-bit Windows 10 Pro operating system. The hardware specifications 

include an Intel(R) Core (TM) i7-8550U CPU @ 1.80GHz and 8 GB of RAM. 

4.2 VALIDATION OF LIGHTWEIGHT DESIGN 

In satellite image categorization, the most widely used models frequently 

use transfer learning and intricate architectures like DenseNet121, which has 121 

layers, or VGG16, which has 138.3 million parameters. On the other hand, our 

proposed model takes a more minimalistic approach. It has seven convolution 

layers, of which six are parallelized in two separate steps, making four 

convolution layers. The model's lightweight architecture is highlighted because 

its total parameter count is less than one million. This model works well with 

low-resolution shots and requires a 64x64 image size. Table 4.2 displays that the 

proposed model has the fewest layers and parameters. Table 4.3 shows that the 

proposed model requires less time than some existing pretrained models. These 

findings justify the use of the term "lightweight" for the suggested model. 
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Table 4.2: Simplicity Comparison of the proposed model to the state of art models. 

Model Name No. of Layers No. of Parameters 

(million) 

EfficientNet [12] - 66 

AlexNet [54] 8 61 

VGG16 [39] 16 138.3 

InceptionV3 [49] 48 23.8 

ResNet50 [55] 50 25.6 

ResNet101 [49] 101 44.7 

DenseNet121 [49] 121 8 

Proposed model 4 ≤ 1 

 

Table 4.3: Processing time of the proposed PCNN model to the state of art models. 

Model Name RSI-CB256 Dataset EuroSAT Dataset 

AlexNet 324.51 s 3774.58 s 

VGG16 488.25 s 5209.28 s 

ResNet50 1227.200 s 15639.18 s 

Proposed Model 408.82 s 2458.95 s 

4.3 PERFORMANCE ANALYSIS AND COMPARISON OF DIFFERENT 

CLASSIFIERS 

The OPCNet model was utilized to classify satellite images as a compelling 

feature extractor. The process involved utilizing a Support Vector Machine 

(SVM) classifier to identify and classify the extracted features from the satellite 

images. The SVM classifier was used in place of the SoftMax layer, a significant 

modification that improved the classification process' accuracy. A comparison 
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study using several important Machine Learning (ML) classifiers, including 

SVM, K-Nearest Neighbor (KNN), Random Forest (RF), and Naïve- Baise (NB), 

is presented in Table 4.4 to ensure a complete evaluation of classification 

performance. SVM was discovered to be the outstanding performer among these 

classifiers, displaying superior results and supporting its usefulness in dealing 

with the complexities of satellite image information. This highlights the 

importance of the hybrid OPCNet-SVM strategy, which not only acts as an 

effective feature extraction mechanism but also integrates with SVM to obtain 

excellent outcomes for classification. 

Table 4.4: Comparative analysis of performance matrices for different classifiers. 

 Model Accuracy Error Precision Recall F1- 

Score 

 

 

RSI-CB256 

Dataset 

OPCNet 99.02 0.0098 99.06 99 99.03 

OPCNet-

SVM 

99.8 0.002 99.67 99.64 99.655 

OPCNet-

KNN 

99.29 0.0071 99.34 99.25 99.295 

OPCNet-

RF 

99.23 0.0077 99.17 99.2 99.185 

OPCNet-

NB 

98.85 0.0115 98.93 98.75 98.84 

 

 

EuroSAT 

Dataset 

OPCNet 94.6 0.054 92.19 88.86 90.494 

OPCNet-

SVM 

97.91 0.0209 95.81 94.76 95.282 

OPCNet-

KNN 

94.79 0.0521 93.75 93.7 93.725 

OPCNet-

RF 

92.3 0.077 90.79 89.88 90.333 

OPCNet-

NB 

91.85 0.0815 90.39 89.75 90.069 

4.4 REDUCTION OF OVERFITTING PROBLEM 

Overfitting occurs when a model gets highly good at capturing the intricate 

details of the training data, limiting its capacity to generalize efficiently to new, 
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previously unknown data. This problem becomes more evident as the network's 

depth increases as layers increase, resulting in outstanding performance on the 

training set but a significant loss on the testing set. The leading cause of 

overfitting is the significant difference between training and testing accuracy, 

where training one is far more than testing one and vice versa in terms of error. 

Overfitting = Training Accuracy ≫ Test Accuracy    (4.5) 

The proposed OPCNet presented in this study is highlighted for its minimal 

number of layers and parameters. The model has included a dropout layer to 

handle the overfitting issues. A comparison of the training and testing accuracies 

of Deep CNN models (AlexNet, VGG-16, and ResNet-50), OPCNet, and OPCNet 

with SVM classifiers (OPCNet-SVM) is shown in Figure 4.1. Notably, for both 

datasets, the Deep CNN model shows a significant difference in test and training 

accuracies, indicating the overfitting problem. On the other hand, the OPCNet 

model's use leads to a significant decrease in the difference between test and 

training accuracy. Because the OPCNet model has fewer parameters and can 

merge various resolution features to build a robust feature map. The accuracy 

has increased when the OPCNet model and SVM classifier are combined for both 

datasets. 
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(a) 

 

(b) 

Figure 4.1: Training and testing accuracies for (a) RSI-CB256 dataset, and (b) EuroSAT 

dataset. 
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4.5 PARAMETER ANALYSIS OF THE PROPOSED SYSTEM 

This subsection explores the effects of the proposed OPCNet-SVM model's 

parameters—dataset training-testing ratio, learning rate and batch size, dropout 

rate—during SGDM optimizer. Both the RSI-CB256 and EuroSAT datasets are 

utilized for the analysis of the parameters. 

Tables 4.5 and 4.6 show the classification results of the proposed model over 

various training and test data splits for the RSI-CB256 and EuroSAT datasets, 

respectively. The model's learning performance deteriorates when trained with 

minimal data, as seen by the tables. Notably, training and test accuracy improve 

as the amount of training data increases. This is due to the model's better ability 

to detect varied patterns and variances in data with a more extensive training 

dataset, resulting in higher prediction accuracy on unknown test data. However, 

a massive amount of training data and a scarcity of test data might result in 

overfitting or introduce bias in the results. Figure 4.2 depicts the effect of the 

varying data ratios on accuracies for both datasets. A training-test data split of an 

80-20 ratio has shown to be best in optimizing overall accuracy. This split offers 

a reasonable trade-off that guarantees efficient learning while preserving 

processing time on both datasets. 

Table 4.5: Classification metrices on RSI-CB256 Dataset for different training-test data 

split. 

Parameter 10/90 20/80 30/70 40/60 50/50 60/40 70/30 80/20 90/10 

Overall 

Accuracy 

89.36 88.99 95.99 97.54 96.63 98.8 98.88 99.8 98.29 

Training 

Accuracy 

90.23 89.08 96.68 98.98 98.15 99.44 99.37 99.89 99.72 

Precision 90.120 89.349 95.682 97.63 97.062 98.88 98.952 99.67 97.345 

Recall 89.637 89.394 95.842 97.372 96.242 98.765 98.82 99.64 99.28 

F1-score 89.486 88.575 95.751 97.475 96.52 98.82 98.882 99.654 98.307 

Time (s) 137.26 284.21 388.87 405.25 940.38 632.78 529.23 408.82 364.59 
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Table 4.6: Classification metrices on EuroSAT Dataset for different training-test data 

split. 

Paramete

r 

10/90 20/80 30/70 40/60 50/50 60/40 70/30 80/20 90/10 

Overall 

Accuracy 

81.25 81.047 87.24 90.78 91.698 94.58 96.88 97.91 97.01 

Training 

Accuracy 

85.71

8 

84.626 91.846 94.031 93.242 95.66 97.468 98.28 98.97 

Precision 83.43 83.11 89.57 92.485 92.55 93.22 94.58 95.81 95.42 

Recall 84.25 83.42 88.55 92.44 92.99 91.25 95.64 94.76 92.58 

F1-score 83.83

8 

83.265 89.057 92.462 92.769 92.224 95.107 95.282 93.979 

Time (s) 823.5

7 

1705.3

1 

2333.2

6 

2431.5

4 

5642.3

1 

3796.7

2 

3175.4

3 

2458.9

5 

2187.5

8 
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(b) 

Figure 4.2: Training and test accuracy on different training-test data split for (a) RSI-

CB256 dataset (b) EuroSAT dataset. 

Figures 4.3(a) and 4.3(b) illustrate the effects of learning rate α on training, 

test accuracy, and also on time. It is evident that an excessively high or low value 

of α can result in a decline in performance, while a slightly higher learning rate 

can successfully shorten the training time. When was set to 0.01, the suggested 

OPCNet model produced the best outcomes in the shortest amount of time. 
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(b) 

Figure 4.3: Training and test accuracy on various learning rate, α for (a) RSI-CB256 

dataset (b) EuroSAT dataset. 

 

The effect of batch size on training and test accuracy, as well as processing 

time, is represented in Figures 4.4(a) and 4.4(b). Smaller batches make more 

frequent weight updates possible, which hastens convergence and enhances 

generalization. Larger batches, on the other hand, provide a more precise 

gradient estimate but can impede convergence and lead to overfitting. With 

larger batch sizes, there is a noticeable rise in overall processing time. Also, it 

shows better training accuracy but frequently leads to poorer test accuracy, 

indicating potential overfitting. For the suggested model, an ideal batch size of 

32 is chosen in order to attain a balance between processing time and accuracy. 
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(a) 

 

(b) 

Figure 4.4: Training and test accuracy on various batch size for (a) RSI-CB256 dataset 

(b) EuroSAT dataset. 

Figures 4.5(a) and 4.5(b) illustrate the effects of learning rate α on training, 

test accuracy. If the dropout rate is too low, the network may still overfit to the 

training data. If the dropout rate is too high (close to 1), the network might 

struggle to learn meaningful representations. High dropout rates can lead to 

underfitting. Dropout rate is in the range of 0.2 to 0.5, strikes a balance between 
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introducing regularization to prevent overfitting and allowing the network to 

learn useful representations 

 

(a) 

 

(b) 

Figure 4.5: Training and test accuracy on various dropout rate, α for (a) RSI-CB256 

dataset (b) EuroSAT dataset. 

The hyperparameters of the OPCNet model have been carefully adjusted 

to optimize its performance. The specific values for these hyperparameters can 

be found in Table 4.7. 
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Table 4.7: Hyperparameters of the proposed OPCNet model.  

Parameter Value 

Mini Batch Size 32 

Initial learning rate 0.001 

Optimization sgdm 

Max Epoch 50 

 

4.6 COMPARISON WITH RELATED WORKS 

Efficiency in the suggested classification approach is demonstrated through 

comparison with state-of-the-art techniques. In order to classify high-resolution 

satellite images, Yamashkin et al. [49] developed the GeoSystemNet model, 

which demonstrated an impressive 95.30% success rate on the EuroSAT dataset. 

M. Ye et al. [56] employed a VGG-16-based transfer learning model for satellite 

image categorization on a similar dataset, with notable results. However, because 

of too many layers and parameters in their models, both techniques suffer from 

overfitting. The RSI-CB256 dataset has gained significant popularity for satellite 

imagery classification in recent years. Researchers such as Atik [40] and Bihari 

[57] utilized this dataset, employing Parallel CNN and other Deep CNN models 

to categorize satellite images and achieve noteworthy results. The comparison 

with various methodologies in Table 4.8 demonstrates the proposed technique's 

improved classification accuracy. This not only confirms its effectiveness but also 

mitigates the drawbacks associated with traditional CNN models. 
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Table 4.8: Comparison with related works in Satellite Imagery Classification 

Reference Model Name Year Dataset Accuracy 

Yamashkin et al.  

[49] 

GeosystemNet 2020 EuroSAT 95.30% 

S. Akshay et al. [13] CNN 2020 EuroSAT 89.00% 

M. Ye et al. [56] VGG-16 2021 EuroSAT 95% 

Proposed model Optimized Parallel 

CNN- SVM 

2024 EuroSAT 97.91% 

Atik [40] Parallel CNN 2023 RSI-CB256 97.84% 

S. Tehsin et al. [12] EfficientNet B7 2023 RSI-CB256 99.64% 

Bihari et al. [57] Deep CNN 2023 RSI-CB256 98.96% 

Proposed model Optimized Parallel 

CNN- SVM 

2024 RSI-

CB256 

99.8% 
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Chapter 5: CONCLUSIONS 

This chapter explores the conclusion and suggests directions for further research. Section 

5.1 provides an overview of the thesis and interprets the results leading to a general 

conclusion. Section 5.2 highlights the difficulties associated with the development of a 

method for classifying satellite images. Section 5.3 provides suggestions for further 

research in this field. 

5.1 CONCLUSION 

This paper introduces a novel approach employing a Optimized Parallel 

CNN (OPCNet) architecture with an SVM classifier to tackle challenges in 

satellite image classification, particularly addressing overfitting and enabling the 

simultaneous extraction of fine-grained details and broader patterns. In the 

proposed framework, the OPCNet algorithm acts as an effective feature 

extractor, accompanied by the SVM classifier for those feature categorization. It 

provides a significant advantage in the classification of satellite images. The 

OPCNET model's unique strengths, along with SVM's generalization capabilities, 

have a synergistic effect that significantly improves the accuracy and efficacy of 

satellite image classification tasks. 

Satellite images have a wide variety of resolution features, which are 

important for precise classification. Traditional deep CNN models, on the 

contrary, struggle to extract these fine and broader details simultaneously. To 

resolve this issue, our proposed lightweight parallel CNN model is effectively 

designed to capture and integrate features at a variety of resolutions, from low to 

high, into a unified single feature map across all network branches. This novel 

approach allows the model to fully capture the fine details and broader 

patterns present in satellite images. This method has resulted in much better 

accuracy. The model gets a high accuracy rate of 97.91% on the EuroSAT 
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database, demonstrating its ability to distinguish between various satellite 

scenes. Furthermore, it achieves an amazing 99.8% accuracy rate on the RSI-

CB256 database, demonstrating its strong performance across a wide range of 

satellite imagery.  Its capacity to integrate low- to high-resolution characteristics 

demonstrates its ability to capture complex information, highlighting its 

potential for future advances in satellite image classification. 

The suggested model's lightweight architecture provides a significant 

advantage, establishing it as a distinct model in the field of satellite image 

classification. The Optimized Parallel CNN (OPCNet) model is highly efficient, 

with only four layers and fewer than one million parameters. This parameter and 

layer count is significantly reduced as compared to current state-of-the-art 

models. The model's lightweight architecture results in faster processing and 

training times, representing a major improvement in computational efficiency. 

This reduced design not only helps with resource optimization, but it also 

emphasizes the model's practical feasibility, making it an appealing option for 

situations where computing efficiency is critical. 

A significant problem often observed in classic CNNs models is overfitting, 

which occurs due to the enormous number of parameters to be trained in deep 

learning models. Overfitting occurs when a model performs extraordinarily well 

on training data but fails to generalize effectively to unknown data, hence 

affecting overall performance. Our suggested approach strategically addresses 

the overfitting problem by creating a framework with fewer layers and a 

significantly lower parameter count. This approach shows a significant resistance 

to overfitting, demonstrating the model's improved capacity to generalize 

beyond the training dataset. Furthermore, the use of a dilation factor aids in 

increasing the network's receptive field without introducing additional 

parameters. Furthermore, the inclusion of a dropout mechanism plays an 

important role in addressing overfitting concerns. As a whole, these factors 
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contribute to the robustness of the proposed technique, demonstrating its success 

in overcoming the overfitting issues inherent to classic CNNs models. 

5.2 LIMITATION AND CHALLENGES OF THE STUDY 

Deep learning methods with parallel structures have been widely employed 

for satellite image classification due to their significant advantages. However, 

these algorithms have some limitations and obstacles for classifying satellite 

images, as described below:  

• MATLAB does not accept TIFF format images by default, limiting 

program compatibility. Therefore, it was necessary to convert photos 

from TIFF to JPG format. 

• Training deep learning models is a time-consuming and expensive 

procedure. The most advanced models need weeks of training on high-

performance GPU workstations. In addition, training the model 

requires a significant amount of memory. 

• The model's performance gets influenced by the different resolutions of 

satellite imagery. Lower resolution images (EuroSAT dataset) may lack 

fine features, influencing the classification performance of satellite 

images. 

5.3 RECOMMENDATION FOR FURTHER STUDY 

• This research can be expanded to more datasets and real-world 

scenarios, contributing to a better understanding of the performance of 

satellite image classification algorithms. 

• This research can be extended to investigate advanced deep learning 

architectures such as transformer models and attention mechanisms, 

which can improve feature extraction and pattern recognition in satellite 

images for better image classification. 



 

Chapter 5: CONCLUSIONS 62 

• A potential way of future research for this research would be to 

concentrate on the identification of specific objects in satellite images. 

The current thesis focused on broader aspects of satellite image analysis 

such as classification. Addressing specific object identification could 

have been beyond the scope of the current research. However, as a 

potential avenue for future research, the identification of specific objects 

in satellite images presents an intriguing direction. To address this, 

efforts could involve gathering datasets tailored to the objects of interest, 

developing specialized algorithms, and integrating multimodal data 

sources. By systematically addressing these aspects, future research can 

advance the field's understanding of object identification in satellite 

imagery. 
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