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1. Introduction

Reinforced concrete deteriorates over time due to various reasons, 

such as corrosion of internal reinforcement, freeze-thaw action, 

chemical attack, overloading and poor construction quality. It is 

considered to be more environmentally and economically preferable

to retrofit structures rather than rebuilding. Retrofitting with steel 

plates on the tension face of a structural member is often utilized, 

but this method has significant drawbacks, primarily due to issues

with corrosion. The use of fiber reinforced polymers (FRPs) for 

the repair and restoration of existing reinforced concrete structures is 

becoming more and more common (Biscaia, 2001; Sen, 2015). 

Advantages such as lightweight, corrosion resistance, high tensile 

strength, reduction of concrete strain, design flexibility are highly 

desirable (Hollaway, 2010; Kotynia et al., 2021). Scientists conducted

a range of experiments to investigate the flexural performance of 

reinforced concrete (RC) beams that had been strengthened using 

FRP systems. A study found that beams that have a low 

reinforcement ratio, bonding thin FRP plates to the tension face 

significantly enhances the flexural strength of beams (Deng, 2001).

However, strengthening reinforced concrete with FRP can lead 

to brittle failure by the plate separating from the beam prematurely

and unpredictably at relatively low magnitude of load relative 

compared to its high rupture strength (Chen and Teng, 2003). This 

phenomenon greatly limits the use of FRP in practical fields. The 

debonding of FRP plate can be classified as (a) Intermediate 

crack (IC) debonding: Starts at the midspan where flexural stress 

is high and moves towards plate end; (b) Plate End (PE) Debonding: 

starts at the plate end by high interfacial stress and propagates 

away from plate end towards midspan (Aram et al., 2008; 

Narayanamurthy et al., 2012). 

Various computational models have been developed by 

researchers to address the issue of debonding at plate end. Primary 

focuses are on factors such as the shear force exerted on concrete 

beams as well as the value of strain at which debonding occurs in 

the FRP. 
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Oehlers strength model showed the calculation of PE debonding 

by considering the combined effect of shear forces and flexural 

forces (John, 1992). A model based on only concrete shear strength

was proposed by Smith and Teng (2002). PE debonding occurs 

in beams having a comparatively low shear span to depth ratio 

(John, 1992; Smith and Teng, 2002). PE debonding phenomenon 

emerges in beams where the bending moment is relatively low, 

leading to shear becoming the dominant factor governing their 

behaviour instead of flexure (Lau et al., 2001). Jansze proposal 

for the strength model of PE debonding, examined the occurrence of 

PE debonding failure at shear crack initiation of RC beams 

(Jansze, 1997). Majority of models rely either on beams shear 

strength or the principles derived from fracture mechanics. An 

empirical shear-based formula was presented by Ahmed et-al 

which is based on available literatures on FRP PE debonding 

models. Model is developed upon beams concrete shear strength 

by accounting for the governing parameters initializing shear 

cracks (El-Sayed et al., 2021). Finite element analysis had been 

put forward in order to understand the intricate relationship among 

the governing parameters of debonding failure (Al-Saawani et al., 

2022). Despite the complex relationship between PE debonding 

and governing parameters of FRP-strengthened RC beams 

addressed, existing models often exhibit appalling robustness 

and moderate computation accuracy. Hence, there requires a crucial 

step to develop a more accurate relationship between debonding 

of PE and every individual parameter. Despite several research 

studies, the mechanisms underlying this type of failure are intricate 

and not yet fully comprehended. Because of this, the majority of 

design guidelines and codes advise taking particular precautions 

to prevent PE debonding. For example, extending the length of 

the FRP plate beyond a certain point does not enhance the bonding 

strength (Chen and Teng, 2001). Many design codes and guidelines

emphasize the importance of anchorage methods at terminating 

point of FRP plate for prevention of PE debonding (Al-Saawani 

et al., 2015, 2023; 440, 2017; Eslami et al., 2019). However, to 

improve the design of end-anchorage mechanism, crucial step is 

to initially ascertain the shear force at which PE debonding takes 

place. Hence, it is necessary to find effective solutions that can 

either prevent or delay debonding failures, or utmost utilization 

of FRP before failure.

At present, Machine Learning is becoming an emerging field 

in the contemporary research world. Köroglu proposed an BPNN

model and concluded that if the intricate connection between the 

bond strength of FRP bars in concrete and the factors influencing 

this bond strength has been identified, model could serve as a 

promising alternative to conventional statistical and experimental 

approaches (Köroglu, 2019). Abuodeh explored the use of Machine 

Learning techniques to identify the behaviour of RC beams 

strengthened with FRP laminates (Abuodeh et al., 2020). BPNN 

possesses inherent capabilities for nonlinear mapping and offers 

improved simulation of complex nonlinear relationships (Yu et al., 

2008; Ma et al., 2021).

Nevertheless, while the gradient descent optimizer is used to 

determine weights and biases in the BPNN, it has limitations. It 

can often result in the model getting trapped in local optima 

problem and slow convergence speed (Choi et al., 2008). Hence, 

there is a need for improvement through the utilization of better 

algorithms. Besides, due to small datasets availability for training a 

machine learning model, it becomes less effective in prediction 

accuracy. Scientists are pondering on how to find an optimal 

solution to this small data sets problem. From the time being, 

optimization algorithm has been used in BP neural network to 

enhance performance and achieve optimality. In 2020, a novel 

optimization algorithm namely Sparrow Search Algorithm (SSA) 

was put forward (Xue and Shen, 2020). This algorithm is used in 

BPNN to overcome local minima issues in prediction models. To 

improve prediction accuracy for calculating debonding strain in 

FRP strengthened beams, a BPNN model was constructed and 

further optimized using SSA (Li et al., 2021), illustrating the potential 

effect of SSA algorithm in optimization problems. However, 

SSA algorithm has some drawbacks in terms of its poor optimization 

accuracy and scanty efficiency in search technique. For example. 

the SSA algorithms' optimization performance is hindered by 

shortcomings in the quality of the initial population generation 

and an imbalance between exploration and exploitation abilities. 

This imbalance results in slow convergence and leads the algorithm 

to get trapped in local optima, resulting in poor optimization 

accuracy. Several techniques and approaches are taken in scholarly 

articles to ameliorate the shortcomings of SSA algorithm. An 

improved SSA based on quantum computations and multi-strategy 

enhancement (QMESSA) which showed excellent results in 

accuracy and convergence of the algorithm was put forward (Wu 

et al., 2023).

Addressing the aforementioned limitations, this study focuses 

on constructing an optimal prediction model using a BPNN with 

enhanced generalization capability and high prediction accuracy. 

A dataset consisting of 128 samples with 13 parameters is used 

for training, validation and testing the BPNN model as well as 

QMESSA optimized BPNN model. The model accounts for all 

the governing parameters that affects the plate end debonding of 

FRP. The proposed model aimed to mitigate the issue of local 

minima by incorporating the QMESSA in the BPNN. QMESSA 

is utilized as weights and biases optimization technique in BPNN. 

The outcomes of this study are expected to provide valuable 

information on how the proposed model predicts PE debonding 

load efficiently by developing a complex non-linear relationship 

among the governing failure parameters and debonding load.

The following characteristics distinguish this paper from 

previous works:

1. A detailed and comprehensive neural network model is 

proposed including the effects of all parameters related to 

plate end debonding.

2. The model incorporates Quantum-computations and Multi-

strategy Enhanced Sparrow Search Algorithm (QMESSA) 

to mitigate the local minima problem in the optimization 

process of back propagation neural network model.

3. QMESSA optimized BPNN model addressed the 

generalization issue with the help of optimal sets of initial 
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weights and biases indicating that, the current model is 

much effective in terms of prediction accuracy.

4. A detailed parametric study has been carried out to identify 

the most influential parameter effecting the plate end 

debonding.

Remaining structure of this article is outlined as follows. Section

2 demonstrates how BPNN works followed by the introduction 

and display of QMESSA. In section 3 a description of data set 

collection and parameter identification for training and testing 

the model is delineated. Section 4 presents how the proposed 

model has been designed. In section 5, results and discussion of 

the model is substantiated. Section 6 describes the model reliability 

analysis with comparison to existing codes and the shear-based 

model to showcase the robustness of the model and substantiated 

the importance of proposed model in the design process of FRP 

strengthened RC beams. In section 7, correlation analysis of 

parameter is conducted in order to identify the most influential 

parameter affecting PE debonding. Finally, in section 8 conclusions 

are drawn based on the result and comparison of the model.

2. Back Propagation Neural Network and Modified 
Sparrow Search Algorithm

2.1 Back Propagation Neural Network (BPNN)

The BPNN is a typical feed forward neural network with multiple 

layers, consisting of the input layer, hidden layer, and output 

layer. It is trained using the error backpropagation algorithm and 

employs the weight and threshold adjusting method by means of 

gradient descent for each neuron in each layer. The primary 

objective is to reduce errors in the network output until they 

achieve a predetermined level of convergence prior to completing

the full training of the network. The BPNN is capable of nonlinear

aligning between input and target, and possesses self-instructed 

abilities with a straightforward structure. However, a drawback 

of the BPNN is its susceptibility to getting stuck in local minima, 

resulting in poor stability (Bianchini et al., 1994). The fundamental

composition of the BPNN is depicted in Fig. 1. 

2.2 Modified Sparrow Search Algorithm

Quantum computations and multi-strategy enhancement of sparrow

search algorithm (QMESSA) is a unique updated swarm intelligence 

optimization technique. Features of QMESSA algorithm is given 

below:

1. Initial population generation with more randomization and 

diversity by employing circle chaotic mapping combining 

quantum computations and quantum gate mutations.

2. An adaptive T-distribution to help the algorithm jump out 

of local minima.

3. A precision elimination strategy to help creating a balance 

between exploration and exploitation of the algorithm.

Properties of QMESSA help SSA to converge first, avoid the 

local minima, and increase the efficiency and accuracy. Procedural 

steps of QMESSA are illustrated in Fig. 2.

Mathematical formulation of QMESSA is demonstrated below:

Step 1: First, formulation of initial population of sparrows is 

conducted. To enhance the initial population quality of sparrows, 

varied starting population approach method was suggested which

includes improved circle chaotic mapping and quantum theory. 

The first step involves initializing the population using an 

improved circle chaotic mapping technique. The equation follows:

, (1)

, (2)

where xi,j is a matrix which denote the position of sparrows in 

search space, yi+1 is the expression of circle chaotic mapping, up

(upper bounds) and lb (lower bounds) states the limits or boundaries 

of the exploration space. Next step is, during the initialization 

stage, integration of quantum computing principles was considered, 

enabling the generation of additional initial populations using a 

collection of qubits. Suppose the position that has been developed 

by Eq. (1) in terms of sine (xs) or cosine location (xc), then angle 

of rotation () can be developed from the following equation:

, (3)

. (4)

Further, some new population position can be deduced by the 

following equation:

, (5)

. (6)

Added that, to diversify initial population, dynamic quantum 
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Fig. 1. Backpropagation Neural Network (BPNN) Architecture
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rotation gate mutation was considered by the following equation:

, (7)

here, . The updating process is follows:

. (8)

Following a mutation induced by a rotation gate, individual 

positions in a population are determined using Eqs. (1), (5), and 

(6). The initial population is then compared to the mutated 

population, and individuals with superior sine and cosine positions 

are chosen for the final initial population.

Step 2: The fitness values of individuals in the final initial 

population are computed. The positions of the best and worst-

performing sparrows are sorted based on fitness. The finder, 

representing the sparrow initiating the search for food, possesses 

the highest fitness and acts as the primary explorer for the group, 

communicating food source locations to joiners. Finders, with a 

broader search capability, play a pivotal role in the exploration 

process compared to joiners. The location update formula of 

finders, joiners, and vigilantes to search for food is given in the 

literature (Xue and Shen, 2020). The algorithm employs an adaptable 

T-distribution factor in the location update formulas of finders, 

joiners, and vigilantes to enhance search strategy. This factor 

promotes exploratory phases in initial iterations, aiding in escaping

local optima. As iterations progress, the mutation factor gradually

shifts focus towards exploitation, maintaining a balance between 

exploration and exploitation. This prevents premature confinement

to local optima, ensuring accelerated convergence in later stages. 

The adaptive T-distribution variation factor is given below:

, (9)

, (10)

. (11)

Here, t denotes the present iteration, itermax states iterations of 

maximum number, tc is a critical point at the time of iteration 

process, a is a value which depends on tc, m is a scaling factor 

which is taken as a value of 10.

Hence, the enhanced strategy was implemented to facilitate 

iterative updating, corresponding location update formulas of 

finders, joiners, and vigilantes are as follows:

Following the equation of a finder to update position:

(12)

Xi,j denotes sparrow location details in the jth dimension. 

Additionally, the algorithm uses α, a randomly chosen number 

ranging in between 0 to 1, R2, a preliminary alert threshold lies in 

between 0 and 1, ST, a safety threshold value between 0.5 and 1, 

and L, a 1 × d matrix comprising entirely of elements equal to 1. 

When R2, > ST, indicates the absence of nearby predators, allowing 

the sparrow to explore its surroundings extensively. However, if 
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Fig. 2. Flow Chart of QMESSA Algorithm
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R2, ≤  ST, all sparrows must look for safe locations to forage. 

and  are random constants ranges from [1.5, 2.5] and [4, 12] 

respectively, r1, r2, r3 are random numbers within the range of 0 to 1.

Next, the position update of a joiner is as follows:

(13)

where Xp states the optimal location where finder is positioned, 

Xworst indicates present global worst position, A is a matrix 

consisting of a single row and d columns.

Position update formula of a vigilante given below:

(14)

where Xbest is optimal current global position. K falls randomly 

within the range of -1 to 1. fi represents a single sparrow fitness at 

present, while fw and fg indicate the worst fitness value and 

current global optimum fitness, respectively. Additionally,  is a 

small constant. If fi > fg, then the sparrows are in a precarious 

position near the population boundary and are at risk of being 

attacked. If fi = fg, sparrows occupy a central position within the 

population and need to seek safety by flying towards other sparrows.

Step 3: Individuals with the lowest fitness scores are removed 

after a series of iterations. A strategy for precise elimination is 

implemented, generating new individuals to replace them, outlined 

as follows:

, (15)

, (16)

where ub and lb states the upper and lower bounds of search 

space, Rr indicates the dynamic radius of search space. Rest 

meanings of the symbol in the formula remains same as above.

Step 4: A novel boundary control approach is proposed, utilizing 

the positional data of optimal and suboptimal individuals to 

regulate the search boundary. This can be expressed as:

, (17)

where  and  refer to the globally optimal and globally 

suboptimal results in ith iteration, respectively, r is randomly 

chosen number ranged in between [0,1]. The approach randomly 

places individuals outside the specified boundary near those with 

higher fitness. In successive iterations, these individuals explore 

their surroundings using improved positions, enhancing SSAs 

exploitation capability.

Step 5: The algorithm seeks the current optimal value by 

comparing it to the previous generation optimal value. If the 

current value surpasses the previous one, the algorithm updates 

the finest value. It iterates until the criterion is met, ultimately 

identifying the globally best fitness value and its location.

3. Description of Experimental Data and Parameter 
Identification

For training and validation of a neural network, a substantial 

amount of data is required. An extensive literature review was 

carried out to create a comprehensive dataset of experimental test 

results on reinforced concrete (RC) beams strengthened with 

FRP plates, which eventually fail in plate end debonding. 128 

experimental test results are collected from the article (El-Sayed 

et al., 2021) for building the neural network model. The database 

consists of 114 beams tested with four-point bending systems 

and 14 beams tested with three-point bending systems. Beams 

that are included in the database, had to meet specific criteria that 

follows: a) failure had to occur through PE debonding, either by 

interfacial debonding or CCS.; b) every specimen were rectangular 

sections of conventionally reinforced beams with simple support; c) 

the FRP were not under any anchorage system; d) beams were 

tested using either a three-point or four-point bending system.

The beams have a wide range of geometric properties. From 

Fig. 3, we can get that the test beams varied in width from 100 − 
400 mm and has a height range of 100 − 450 mm. Clear span 

length is in between 812 − 3,800 mm, and the shear span/depth 

ratios varied from 2.29 − 6.25. Steel Continued reinforcement 

ratio in the tension zone was between 0.32% and 2.12%. Material 

properties also showed a wide range. Some beams (43) were 

strengthened with pultruded plates of FRP, while others were 

reinforced with FRP sheets of wet lay-up. FRP width varied 

from 30 − 360 mm. Thickness of dry fibers for wet lay-up FRP 

sheets ranged in between 0.11 − 0.176 mm. Pultruded FRP plates 

total thickness is in between 0.82 − 4.76 mm. Modulus of elasticity 

of FRP materials ranged from 10.3 − 400 GPa. The ratio of the 

length of the plated section beyond the point load to the shear 

span of the beam ranged from 0.25 − 1.00. Additionally, beams 

compressive strength varied from 19.2 − 66.4 MPa. 

4. Model Design

The parameters affecting the plate end debonding most are 

considered for designing the model. Model design and simulation 

works were conducted using MATLAB (2018) programming 

language. Design of BPNN model and how the QMESSA 

algorithm has been implemented in BPNN model for predicting 

plate end debonding load are explained as follows:

1. Thirteen input parameters are considered as input layer of 

the designed BPNN. As a result, there are thirteen input 

neurons in input layer of BPNN. They are–width (b), depth 

(d), compressive strength . Then, properties of steel 

reinforcement – yield strength (fy), shear reinforcement (fyv), 

shear reinforcement ratio (sv), FRP reinforcement property 

– modulus of elasticity (Efrp), ultimate strength (ffu), thickness 
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(tfrp), width (bfrp), Loading configuration – clear span of 

beam (L), shear span (a), FRP curtailment length (Lup). 

2. One output layer with one hidden neuron is used for the 

debonding failure load (Pu,exp). 

3. One hidden layer is used in BPNN. Number of hidden 

neurons is determined through an empirical equation:

 . (18)

4. Here, L is the hidden neurons number in hidden layer; m is 

input layer neurons number; n is neuron in output layer; ‘a’ 

is a number taken in between 1 to 10. With a number of 

trials and considering overfitting and underfitting problem 

L is selected as 10. A topology is drawn in the Fig. 4.

Dimensions (d) of BPNN that need to be optimized by 

QMESSA is calculated by the following equation:
L m n+ a+=

Fig. 3. Range of the Parameters: (a) b, (b) d, (c) , (d) fy, (e) fyv, (f) sv, (g) Efrp, (h) ffufc′
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 , (19)

where u is input neurons number, v is hidden neurons 

number, and w is output neuron number. Here, d means the 

total weights and biases of the BPNN. QMESSA algorithm 

has been utilized to optimize these weights and biases of 

BPNN. Next, with the help of optimized weights and 

biases BPNN starts the training process. 

Parameters of the QMESSA are initialized. For the purpose 

of applying the QMESSA algorithm in BPNN, values of 

d u v× v v w× w+ + +=

Fig. 3. (continued): (h) ffu, (i) tfrp, (j) bfrp, (k) L, (l) a, (m) Lup

Fig. 4. Topology of the Designed Model

Table 1. Parameter Initialization of QMESSA-BPNN Model

Parameter Value Description

Size of population 70 -

Primary location [-2,2] Originated arbitrarily

 Finders number 20% -

Safety threshold 0.8 -

 Dimension of sparrow 151 -

Upper and lower limits of Sparrow position -2 ~ 2 -

Maximum iterations of QMESSA 500 -
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different parameters are given in the Table 1. How the 

QMESSA algorithm is implemented in the BPNN is 

illustrated clearly in Fig. 5.

5. In the QMESSA algorithm function of fitness is shown in 

equation 20 and it can be used to measure population fitness 

by recording the optimal fitness value as well as optimal 

position globally, ranking the fitness values, updating the 

positions of finders, joiners, vigilantes, and calculating 

each of their fitness values separately. An individual fitness 

value improves with decreasing fitness value.

 (20)

Here yi is the target output and  is the predicted output.

6. Update sparrow position by means of current fitness value 

if a value lower than the present fitness value emerges.

7. When the value of fitness is at its lowest point or has gone 

through all possible iterations, optimization is said to be 

complete. If not, go back to step V.

8. The BPNN weights and biases are given the sparrow 

position with the lowest value of fitness, allowing the best 

weights and biases to be obtained. After that, training 

process of BPNN starts.

9. For training the neural network ‘trainlm’ training function 

is applied in the network. LM of ‘trainlm’ training function 

stands for Levenberg-Marquardt algorithm. Properties of 

training parameters are given in the Table 2.

10. 128 experimental samples as stated in previous section are 

randomly divided into training (70%), validation (15%), 

and testing (15%) sets for neural network analysis.

11. For evaluating model generalization ability and prediction 

accuracy, mean squared error (MSE) and perfection to 

fit (Regression- ‘R’) are calculated and compared. 

 (21)

Here zi is the target output and  is the predicted output from 

the model. Target output is the experimental value (debonding 

failure load). Predicted output is what the QMESSA-BPNN model 

is predicting (debonding failure load). MSE is calculated and 

minimized at each iteration of BPNN until it reaches to a 

specified value as declared. 

5. Results & Discussions

The graphical representations provided in Figs. 6 and 8, clearly 

illustrate that the QMESSA optimized BPNN model achieves 

higher regression coefficient values compared to the BPNN model 

across the training, validation, and testing datasets. Specifically, 

the QMESSA-BPNN model demonstrates regression coefficients of 

0.994, 0.996, and 0.985, while the BPNN model yields regression

coefficients of 0.997, 0.977, and 0.817 for the respective datasets. 

Fitness i 1=

n
yi ŷi–∑=

ŷi

MSE
1

n
--- i 1=

n
zi ẑi–( )2

∑=

ẑi

Fig. 5. Flow Diagram of QMESSA Optimized BPNN Model

Table 2. Properties of Training Parameters

Training Parameters Property

Training function ‘trainlm’

Activation function (hidden layer) ‘tansig’

Activation function (output layer) ‘purelin’

Maximum epoch 1000

Learning rate 0.01

Maximum validation check 6

Performance (MSE) goal 0

Minimum Gradient 1e-07
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Besides, in Fig. 9 it is seen that MSE is significantly reduced in 

test data set for the QMESSA-BPNN model (230.42) with respect

to BPNN model (512.53), illustrating the enhanced accuracy of 

the model. It is noteworthy that both models exhibit satisfactory 

performance on the training set in terms of regression value on 

training stage. However, the BPNN model exhibits an overfitting 

issue, as evidenced by the substantially lower regression coefficient

on the test data. This occurrence can be attributed to the extensive

training of the BPNN model, leading to an overly complex model 

that hinders to generalize effectively beyond the training data. It 

is evident that the BPNN model exhibits substantially higher 

deviation in predicting result from experimental result in both the 

validation and test datasets compared to the QMESSA-BPNN 

model. Another reason is because of local minima problem during 

the training process. To explain broadly, the optimization algorithm

(‘trainlm’) failed to reach the global minima. 

A comparison among the models is given in the Table 3.

Consequently, the inability of BPNN model to accurately predict

output when provided with new sets of data is clearly seen. In 

contrast, the QMESSA-BPNN model successfully resolves the 

overfitting issue, as indicated by its higher regression coefficient 

value of 0.985 in the test datasets. In addition, the dynamic property 

of QMESSA helped to achieve a higher regression result on test 

dataset as compared to SSA. SSA-BPNN model achieved a 

Fig. 6. Result of BPNN Model: (a) Performance, (b) Regression Fig. 7. Result of SSA-BPNN Model: (a) Performance, (b) Regression
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regression score of 0.96 on test datasets as shown in Fig. 7. 

Besides, QMESSA-BPNN model converges within 5 epochs 

compared to SSA-BPNN model (26 epochs). Reasons for these 

phenomena are because of initial quality population of sparrows 

ensured by chaotic mapping and quantum computations, enhanced 

search strategy of sparrows which accomplished to increase the 

exploration and exploitation ability of the algorithm, elimination 

strategy to accelerate the convergence. All these dynamic 

adaptability power of quantum mechanics and multiple strategy 

incorporated in SSA helped it to further jump out of the local 

minima, optimized the search space, and increased the generalization 

ability while being implemented in BPNN. As a result, the 

QMESSA-BPNN model demonstrates considerable improvement 

in terms of its generalization ability and prediction accuracy. 

Finally, results from above emphasize the superior performance 

of the QMESSA-BPNN model with its ability to generalization, 

providing a distinct advantage over the SSA-BPNN, and BPNN 

model. The reason that all the models achieved high MSE is 

because of extreme outliers’ presence in datasets. As a result, 

summation of squared error increases.

6. Reliability Evaluation of Codes

Numerous models had been developed to forecast the occurrence 

of debonding failure at PE in RC beams strengthened with FRPs. 

The models primarily rely either on fracture mechanics principles or 

shear strength of beams. To conduct a comprehensive analysis of 

the efficacy of the QMESSA-BPNN model, a comparison was 

made between the QMESSA-BPNN model and various existing 

international codes as well as with a shear-based model. After 

performing the training and validation of the QMESSA-BPNN 

model an object of the model has been created in the workspace 

of MATLAB. Using the model object, debonding load is calculated 

by giving the input values of 13 parameters in the model object. 

In addition, it only takes the value of 13 input parameters (described 

in section 3) to predict the output debonding load from the model 

object. 

Fig. 8. Result of QMESSA-BPNN Model: (a) Performance, (b) Regression

Fig. 9. Performance of the Models (MSE)

Table 3. Comparison among BPNN, SSA-BPNN, and QMESSA-BPNN Models

Comparison among

Models

Regression Best Validation 

Performance (MSE)

Test Dataset Performance

(MSE)Training Validation Testing

BPNN 0.99718 0.97732 0.81694 268.78 512.53

SSA-BPNN 0.99607 0.96309 0.96057 97.03 248.58

QMESSA-BPNN 0.99389 0.99565 0.98508 94.35 230.42
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In 2020 an empirical shear-based formula was put forward for 

prediction of debonding failure at PE for FRP beams, based on 

the existing models available in the literature and factors governing 

the debonding failure criteria (El-Sayed et al., 2021). The proposed 

shear force at PE region that initiates debonding can be expressed as:

. (22)

v is a factor for shear reinforcement ratio (v). This is expressed in:

. (23)

L is a factor that accounts for the influence of ratio of the 

FRPs unplated length (Lup) to the beams shear span (a). The 

equation follows:

. (24)

deq is the equivalent effective depth expressed as:

. (25)

eq is the equivalent reinforcement ratio stated as:

, (26)

where  is the compressive strength of concrete; a is denoted as 

shear span; Es and As are the internal modulus of elasticity and 

Vdb end, vL2.17 fc′eq

deq

a
------

⎝ ⎠
⎛ ⎞

1 3⁄

bdeq=

v 2.15 v( )0.06=

L 0.57
Lup

a
-------

⎝ ⎠
⎛ ⎞

0.34–

1.0≤=

deq

AsEsd AfrpEfrph+

AsEs AfrpEfrp+
---------------------------------------=

eq

As Afrp

Efrp

Es

--------+⎝ ⎠
⎛ ⎞

bdeq( )
--------------------------------=

fc′

Fig. 10. Predicted Results versus Experimental Results: (a) QMESSA-BPNN, (b) ACI 440.2R, (c) AS 5100.8, (d) Shear Model, (e) TR 55, (f) Fib Bulletin 14
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steel area; Efrp and Afrp are external elasticity modulus, FRP area 

respectively; b represents the beam width, d denotes the effective 

depth of tension steel, and h is the total depth of the beam.

ACI 440.2R code sets a maximum threshold for factored 

shear force at end point of the plate to mitigate the debonding 

risk at plate end.

, (27)

where Vc is the beam sections concrete shear strength as established

by the ACI 318 code (Wight et al., 2010; 440, 2017).

The approach taken in the AS 5100.8 is identical to the 

methodology found in the Concrete Society (TR 55) from 2012 

and ACI 440.2R. This involves suggesting a maximum threshold 

for the shear force that is exerted at the region of plate end:

, (28)

where Vu is theoretical shear strength (Vu) for the beam section, 

which is calculated from AS 5100.5 standard (Standards Australia, 

2017).

The Concrete Society Technical Report 55 (TR55) from 2012 

suggests a maximum threshold considering shear force applied at 

plate terminating region to prevent PE debonding. 

, (29)

where VRd is beams shear strength, and is determined following 

the guidelines outlined in Eurocode 2 at Section 6.2 (European 

Committee for Standardization, 2004).

The concept introduced by Blaschko in 1997, as outlined in 

fib Bulletin 14 from 2001, relies on shear strength of concrete 

within the beam. The approach follows, prevention of PE debonding 

involves limiting the shear force exerted at the PE region to the 

beam shear cracking strength, as expressed in the following 

manner:

, (30)

where represents the concrete compressive strength (characteristic), 

which is determined from Eurocode 2 (European Committee for 

Standardization, 2004).

Figure 10 displays the calculated values obtained from the 

code models, empirical shear-based model and the predicted value 

generated by QMESSA-BPNN model. 128 sets of experimental 

data have been utilized for making the prediction comparison 

among the model, codes and shear-based model. It is evident from 

the figure that the code-based model calculations exhibit a relatively 

discrete distribution, whereas QMESSA-BPNN outperforms ACI, 

TR55, AS 5100.8, Fib Bulletin and empirical shear-based model in 

terms of model fit and accuracy. The coefficient of determination 

(R2) of QMESSA-BPNN model is 97.5% indicating a low 

dispersion of data set and high accountability capacity of variance 

by the prediction model.

Furthermore, Table 4 provides a thorough examination of the 

predictive precision and dependability of the model formulated 

in this research and comparison with national codes. The coefficient

of variation for all the code models exceeds 18% whereas it is 

17.7% in the empirical shear-based model.

Consequently, application in practice is difficult due to high 

variance. However, QMESSA-BPNN model demonstrates a 

lower coefficient of variation at only 11.62%. In comparison to 

the code models, QMESSA-BPNN model exhibits significant 

reduced variability. Notably, the ACI, TR55, AS 5100.8, Fib Bulletin 

code models as well as the shear model are highly conservative. 

Approximately 100%, 94.5%, 35.94%, 79.7%, and 54% of all 

specimens have significantly overestimated predicted values 

according to these models. On the other hand, the QMESSA-BPNN 

model significantly reduced this conservativeness with a value of 

14.1% indicating the effectiveness in prediction accuracy.

7. Correlation Analysis of Parameters

The impact of various parameters on the debonding load can be 

determined through the weights that connect the neurons in each 

layer. The connection weights play a significant part in neural 

network as they determine the efficacy of the model output by 

creating a nonlinear relationship between input parameters and 

target output. The input layer is made up of neurons X1 to X13 

(each neuron is for each parameter), while the hidden layer 

consists of neurons H1 to H10, and the output layer comprises of 

only one neuron, Y. Tables 5 and 6 shows the connection weights 

of interlayer neurons. These connection weights are taken from 

neural network architecture modelled in MATLAB.

The degree of influence of the Xth parameter on the debonding 

load, is calculated using Eq. (31).

, (31)

where wxi is the connection weight between Xth parameter and 

the i-th implied layer; and hi is the connection weight between the 

Vdb end, 0.67Vc<

Vdv end, 0.67Vu<

Vdb end, 0.67VRd<

Vdb end, f ck

1 3⁄
bd<

Px i 1=

10
wxi∑ hi×=

Table 4. Statistical Results of Each Model

ACI 440.2R

(2017)

AS 5100.8

(2017)

Fib Bulletin 14

(2001, Eq. 34)

TR 55 (2012,

Eq. 37)

 Shear Based Model

(El-Sayed et al., 2021)
QMESSA-BPNN

R
2 0.7948 0.6564 0.8951 0.8803 0.8868 0.9752

STD 0.67 0.33 0.21 0.25 0.20 0.12

CV (%) 24.4 36.2 18.1 18.6 17.7 11.62

C (%) 100 35.94 79.7 94.5 54 14.1

N-C (%) - 64.06 20.3 5.5 46 85.9
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i implied layer and the output layer, respectively.

To get the importance of each parameter on PE debonding, 

the values were calculated using Eq. (31). After normalizing, the 

plot is shown in Fig. 11.

The graph in Fig. 11 illustrates the significance of different 

parameters in the proposed model, with input parameters ranging 

from X1 to X13 on the X-axis and the corresponding percentage 

contribution on the Y-axis. The most crucial parameter, X5, which 

represents the shear reinforcement in concrete sv, has the highest 

importance of 100%. The next important parameter is X9, which is 

the yield strength of steel fy with an importance of 78.17%. 

Afterwards, X11, representing the thickness of FRP (tfrp), with an 

importance of 72.27%. On the other hand, the parameter X8 

represents the variable Lup, which has the least impact on the model 

with an importance of only 2.29%. As can be seen from Fig. 11, the 

order for the importance of each parameter can be demonstrated as 

following:

X5(sv) > X9(fy) > X11(tfrp) > X1(b) > X10(ffu) > X6(Efrp)

> X13(a) > X2(d) > X4(fyv) > X12(L) > X7(bfrp) > X3(( ))

> X8(Lup);

This graph effectively illustrates the significance and relative 

contributions of various parameters in plate end debonding 

failure, aiding decision-making in the design process. Shear 

reinforcement emerges as a crucial factor in mitigating debonding in 

FRP-strengthened RC beams. Additionally, the model highlights 

the often-overlooked influence of FRP material and geometric 

properties, such as thickness and ultimate strength, on debonding 

occurrence. The intricate non-linear relationship in the model 

comprehensively considers all governing parameters, emphasizing 

the importance of accounting for these factors in FRP system 

design to prevent premature failures like plate end debonding.

fc′

Table 5. Connection Weights of Input Layer and Hidden Layer

Column1  X1  X2  X3  X4  X5  X6  X7  X8  X9  X10  X11  X12  X13

H1 -2.09 1.99 -1.97 -1.97 -1.64 -1.94 -2.02 -1.92 2.03 -1.94 -2.13 1.92 -2.09

H2 2.09 1.52 0.66 2.96 -1.61 1.28 -3.00 -1.33 0.18 2.11 2.94 -2.21 1.99

H3 1.97 -1.98 2.01 -2.07 -2.02 -1.85 1.99 1.94 -2.02 -2.02 1.97 2.03 2.06

H4 -1.68 -1.75 -1.87 2.28 -1.88 2.13 -1.99 -1.68 -2.26 1.89 2.31 2.19 2.14

H5 1.94 -1.29 -2.49 -0.05 -2.09 2.19 -2.16 -1.99 -1.88 2.34 1.95 -2.20 -2.20

H6 -2.03 2.07 -1.33 -0.63 4.75 -3.32 0.94 -1.87 2.93 2.00 -0.61 -1.90 1.41

H7 -2.67 -1.64 -2.15 -2.14 2.34 0.60 -1.79 -1.83 -0.96 1.44 -2.12 -2.09 2.06

H8 1.98 1.17 -1.98 2.01 -1.37 2.02 1.80 2.02 -0.07 -1.99 2.02 -2.01 1.73

H9 1.31 1.41 1.27 -1.52 1.71 1.95 -1.15 -2.39 0.92 -1.97 0.58 2.34 0.99

H10 -0.59 -0.99 2.04 1.26 1.69 -2.49 -1.21 1.63 1.40 -0.83 -0.33 -0.32 2.34

Table 6. Connection Weights of Hidden Layer and Output Layer

Column1  H1  H2  H3 H4  H5  H6  H7  H8  H9  H10

Y -6.25 5.13 2.05 -3.49 9.16 -5.39 2.42 -0.21 7.16 -5.43

Fig. 11. Importance of Each Parameter
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8. Conclusions

This study presents a predictive model for debonding at the plate 

end region in FRP-strengthened RC beams in flexure. QMESSA 

optimized BPNN model demonstrates effective and accurate 

forecasting of debonding loads and is evaluated against several 

codes. The following conclusions can be drawn:

1. The QMESSA-BPNN model gives the best prediction 

results compared to the BPNN model. The BPNN model 

faces overfitting issues, with a regression value of 0.997 in 

training, 0.977 in validation, but 0.816 in testing. On the 

other hand, the QMESSA optimized BPNN model solved 

this overfitting problem, with both the regression value of 

validation and testing dataset equal to 0.99. This indicates 

the generalization capability and robustness of the QMESSA-

BPNN model.

2. QMESSA-BPNN model significantly solved the shortcomings

(convergence speed, getting out of local minima, balancing 

in exploration and exploitation ability of SSA) in SSA-

BPNN model by an increased regression value in test dataset 

from 0.96 to 0.99.

3. In the parametric study of QMESSA-BPNN model, the shear 

reinforcement ratio was identified as the most influential factor

affecting plate end debonding capacity. High reinforcement 

ratio enhances the shear capacity, consequently prevents 

debonding. Notably, factors like steel yield strength, thickness, 

modulus of elasticity, and FRP ultimate strength also contribute 

significantly to debonding load.

4. The coefficient of determination (R2) of QMESSA-BPNN 

model is 97.5% indicating a low dispersion of data set and 

high accountability capacity of variance by the prediction 

model. Indicating that it optimally utilizes the strength of 

FRP-strengthened RC beams. This contrasts with the more 

conservative nature of ACI and other codes. 

5. Unlike existing code provisions, the QMESSA-BPNN model

considers crucial FRP properties in predicting debonding 

capacity. Its ability to capture complex non-linear debonding 

parameters suggests its potential as a superior alternative 

for code implementation. 

6. QMESSA-BPNN model experiences some optimization 

issues due to complex neural network architecture, limited 

data, and extreme outliers. Noise in the data leads to poor 

prediction accuracy.

7. Data skewness and outliers’ removal can be resolved by 

governing data pre-processing techniques, and better 

generalization capability of model can be achieved by 

increasing the dataset size.
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Nomenclature

a = Shear span of beam

b = Beam width

bfrp = FRP width

BPNN = Back Propagation Neural Network

CCS = Concrete Cover Separation

d = Depth of beam

Efrp = Modulus of elasticity of FRP

= Concrete compressive strength

ffu = Ultimate strength of FRP

FRP = Fiber Reinforced polymer

fy = Yield strength of steel reinforcement

fyv = Shear reinforcement

IC = Intermediate Crack

L = Clear span of beam

LM = Levenberg Marquardt algorithm in BPNN

Lup = FRP curtailment length

NN = Neural Network

PE = Plate End

Pu,exp = Debonding failure load of FRP

QMESSA = Quantum-computations and Multi-Strategy 
enhanced Sparrow Search Algorithm

RC = Reinforced Concrete

tfrp = Thickness of FRP

sv = Shear reinforcement ratio
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