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Fiber Reinforced Polymer (FRP) plates are widely used to strengthen structural members, but
their potential is limited by plate end debonding failure. Existing models that are developed to
address plate end debonding failure considered only few parameters and primarily based on
fracture mechanics or shear strength of beams. Following study aims to develop a Back
Propagation Neural Network (BPNN) model optimized by a quantum-computations and
multi-strategy enhanced Sparrow Search Algorithm (QMESSA) to effectively forecast the plate
end debonding load of externally bonded FRP plates. Where the model utilized complex
nonlinear relationship between all the prominent governing parameters and the debonding
load. Optimization accuracy and generalization is hindered by local minima problem in
BPNN. Incorporating QMESSA significantly reduced the local minima problem in BPNN
substantiated by an increased testing data sets regression value from 0.82 to 0.98. Reliability
analysis showed that the model outperformed the existing international codes and shear-
based model in terms of accuracy and stability. Results from the correlation analysis of
parameters revealed that the web reinforcement ratio is the most influential parameter for
debonding prediction. Therefore, QMESSA optimized BPNN model can be used as an

effective tool for designing FRP to prevent FRP plate end debonding.

1. Introduction

Reinforced concrete deteriorates over time due to various reasons,
such as corrosion of internal reinforcement, freeze-thaw action,
chemical attack, overloading and poor construction quality. It is
considered to be more environmentally and economically preferable
to retrofit structures rather than rebuilding. Retrofitting with steel
plates on the tension face of a structural member is often utilized,
but this method has significant drawbacks, primarily due to issues
with corrosion. The use of fiber reinforced polymers (FRPs) for
the repair and restoration of existing reinforced concrete structures is
becoming more and more common (Biscaia, 2001; Sen, 2015).
Advantages such as lightweight, corrosion resistance, high tensile
strength, reduction of concrete strain, design flexibility are highly
desirable (Hollaway, 2010; Kotynia et al., 2021). Scientists conducted
a range of experiments to investigate the flexural performance of
reinforced concrete (RC) beams that had been strengthened using
FRP systems. A study found that beams that have a low

reinforcement ratio, bonding thin FRP plates to the tension face
significantly enhances the flexural strength of beams (Deng, 2001).
However, strengthening reinforced concrete with FRP can lead
to brittle failure by the plate separating from the beam prematurely
and unpredictably at relatively low magnitude of load relative
compared to its high rupture strength (Chen and Teng, 2003). This
phenomenon greatly limits the use of FRP in practical fields. The
debonding of FRP plate can be classified as (a) Intermediate
crack (IC) debonding: Starts at the midspan where flexural stress
is high and moves towards plate end; (b) Plate End (PE) Debonding:
starts at the plate end by high interfacial stress and propagates
away from plate end towards midspan (Aram et al., 2008;
Narayanamurthy et al., 2012).

Various computational models have been developed by
researchers to address the issue of debonding at plate end. Primary
focuses are on factors such as the shear force exerted on concrete
beams as well as the value of strain at which debonding occurs in
the FRP.
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Oehlers strength model showed the calculation of PE debonding
by considering the combined effect of shear forces and flexural
forces (John, 1992). A model based on only concrete shear strength
was proposed by Smith and Teng (2002). PE debonding occurs
in beams having a comparatively low shear span to depth ratio
(John, 1992; Smith and Teng, 2002). PE debonding phenomenon
emerges in beams where the bending moment is relatively low,
leading to shear becoming the dominant factor governing their
behaviour instead of flexure (Lau et al., 2001). Jansze proposal
for the strength model of PE debonding, examined the occurrence of
PE debonding failure at shear crack initiation of RC beams
(Jansze, 1997). Majority of models rely either on beams shear
strength or the principles derived from fracture mechanics. An
empirical shear-based formula was presented by Ahmed et-al
which is based on available literatures on FRP PE debonding
models. Model is developed upon beams concrete shear strength
by accounting for the governing parameters initializing shear
cracks (El-Sayed et al., 2021). Finite element analysis had been
put forward in order to understand the intricate relationship among
the governing parameters of debonding failure (Al-Saawani et al.,
2022). Despite the complex relationship between PE debonding
and governing parameters of FRP-strengthened RC beams
addressed, existing models often exhibit appalling robustness
and moderate computation accuracy. Hence, there requires a crucial
step to develop a more accurate relationship between debonding
of PE and every individual parameter. Despite several research
studies, the mechanisms underlying this type of failure are intricate
and not yet fully comprehended. Because of this, the majority of
design guidelines and codes advise taking particular precautions
to prevent PE debonding. For example, extending the length of
the FRP plate beyond a certain point does not enhance the bonding
strength (Chen and Teng, 2001). Many design codes and guidelines
emphasize the importance of anchorage methods at terminating
point of FRP plate for prevention of PE debonding (Al-Saawani
et al., 2015, 2023; 440, 2017; Eslami et al., 2019). However, to
improve the design of end-anchorage mechanism, crucial step is
to initially ascertain the shear force at which PE debonding takes
place. Hence, it is necessary to find effective solutions that can
either prevent or delay debonding failures, or utmost utilization
of FRP before failure.

At present, Machine Learning is becoming an emerging field
in the contemporary research world. Koroglu proposed an BPNN
model and concluded that if the intricate connection between the
bond strength of FRP bars in concrete and the factors influencing
this bond strength has been identified, model could serve as a
promising alternative to conventional statistical and experimental
approaches (Koroglu, 2019). Abuodeh explored the use of Machine
Learning techniques to identify the behaviour of RC beams
strengthened with FRP laminates (Abuodeh et al., 2020). BPNN
possesses inherent capabilities for nonlinear mapping and offers
improved simulation of complex nonlinear relationships (Yu et al.,
2008; Ma et al., 2021).

Nevertheless, while the gradient descent optimizer is used to
determine weights and biases in the BPNN, it has limitations. It

can often result in the model getting trapped in local optima
problem and slow convergence speed (Choi et al., 2008). Hence,
there is a need for improvement through the utilization of better
algorithms. Besides, due to small datasets availability for training a
machine learning model, it becomes less effective in prediction
accuracy. Scientists are pondering on how to find an optimal
solution to this small data sets problem. From the time being,
optimization algorithm has been used in BP neural network to
enhance performance and achieve optimality. In 2020, a novel
optimization algorithm namely Sparrow Search Algorithm (SSA)
was put forward (Xue and Shen, 2020). This algorithm is used in
BPNN to overcome local minima issues in prediction models. To
improve prediction accuracy for calculating debonding strain in
FRP strengthened beams, a BPNN model was constructed and
further optimized using SSA (Li et al., 2021), illustrating the potential
effect of SSA algorithm in optimization problems. However,
SSA algorithm has some drawbacks in terms of its poor optimization
accuracy and scanty efficiency in search technique. For example.
the SSA algorithms' optimization performance is hindered by
shortcomings in the quality of the initial population generation
and an imbalance between exploration and exploitation abilities.
This imbalance results in slow convergence and leads the algorithm
to get trapped in local optima, resulting in poor optimization
accuracy. Several techniques and approaches are taken in scholarly
articles to ameliorate the shortcomings of SSA algorithm. An
improved SSA based on quantum computations and multi-strategy
enhancement (QMESSA) which showed excellent results in
accuracy and convergence of the algorithm was put forward (Wu
et al., 2023).

Addressing the aforementioned limitations, this study focuses
on constructing an optimal prediction model using a BPNN with
enhanced generalization capability and high prediction accuracy.
A dataset consisting of 128 samples with 13 parameters is used
for training, validation and testing the BPNN model as well as
QMESSA optimized BPNN model. The model accounts for all
the governing parameters that affects the plate end debonding of
FRP. The proposed model aimed to mitigate the issue of local
minima by incorporating the QMESSA in the BPNN. QMESSA
is utilized as weights and biases optimization technique in BPNN.
The outcomes of this study are expected to provide valuable
information on how the proposed model predicts PE debonding
load efficiently by developing a complex non-linear relationship
among the governing failure parameters and debonding load.

The following characteristics distinguish this paper from
previous works:

1. A detailed and comprehensive neural network model is
proposed including the effects of all parameters related to
plate end debonding.

2. The model incorporates Quantum-computations and Multi-
strategy Enhanced Sparrow Search Algorithm (QMESSA)
to mitigate the local minima problem in the optimization
process of back propagation neural network model.

3. QMESSA optimized BPNN model addressed the
generalization issue with the help of optimal sets of initial



5684 M. I. Monsury et al.

weights and biases indicating that, the current model is
much effective in terms of prediction accuracy.

4. A detailed parametric study has been carried out to identify
the most influential parameter effecting the plate end
debonding.

Remaining structure of this article is outlined as follows. Section

2 demonstrates how BPNN works followed by the introduction
and display of QMESSA. In section 3 a description of data set
collection and parameter identification for training and testing
the model is delineated. Section 4 presents how the proposed
model has been designed. In section 5, results and discussion of
the model is substantiated. Section 6 describes the model reliability
analysis with comparison to existing codes and the shear-based
model to showcase the robustness of the model and substantiated
the importance of proposed model in the design process of FRP
strengthened RC beams. In section 7, correlation analysis of
parameter is conducted in order to identify the most influential
parameter affecting PE debonding. Finally, in section 8 conclusions
are drawn based on the result and comparison of the model.

2. Back Propagation Neural Network and Modified
Sparrow Search Algorithm

2.1 Back Propagation Neural Network (BPNN)

The BPNN is a typical feed forward neural network with multiple
layers, consisting of the input layer, hidden layer, and output
layer. It is trained using the error backpropagation algorithm and
employs the weight and threshold adjusting method by means of
gradient descent for each neuron in each layer. The primary
objective is to reduce errors in the network output until they
achieve a predetermined level of convergence prior to completing
the full training of the network. The BPNN is capable of nonlinear
aligning between input and target, and possesses self-instructed
abilities with a straightforward structure. However, a drawback
of the BPNN is its susceptibility to getting stuck in local minima,
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Fig. 1. Backpropagation Neural Network (BPNN) Architecture

resulting in poor stability (Bianchini et al., 1994). The fundamental
composition of the BPNN is depicted in Fig. 1.

2.2 Modified Sparrow Search Algorithm
Quantum computations and multi-strategy enhancement of sparrow
search algorithm (QMESSA) is a unique updated swarm intelligence
optimization technique. Features of QMESSA algorithm is given
below:
1. Initial population generation with more randomization and
diversity by employing circle chaotic mapping combining
quantum computations and quantum gate mutations.
2. An adaptive T-distribution to help the algorithm jump out
of local minima.
3. A precision elimination strategy to help creating a balance
between exploration and exploitation of the algorithm.
Properties of QMESSA help SSA to converge first, avoid the
local minima, and increase the efficiency and accuracy. Procedural
steps of QMESSA are illustrated in Fig. 2.

Mathematical formulation of QMESSA is demonstrated below:

Step 1: First, formulation of initial population of sparrows is
conducted. To enhance the initial population quality of sparrows,
varied starting population approach method was suggested which
includes improved circle chaotic mapping and quantum theory.
The first step involves initializing the population using an
improved circle chaotic mapping technique. The equation follows:

0.0305
T

Vie] = mod(yi+0.4204f( )Sin(2ﬂJ/i), 1) ) )]

x;,; = b+ (ub—I1b)xy;, )

where x;; is a matrix which denote the position of sparrows in
search space, ;1 is the expression of circle chaotic mapping, up
(upper bounds) and /b (lower bounds) states the limits or boundaries
of the exploration space. Next step is, during the initialization
stage, integration of quantum computing principles was considered,
enabling the generation of additional initial populations using a
collection of qubits. Suppose the position that has been developed
by Eq. (1) in terms of sine (x;) or cosine location (x,), then angle
of rotation () can be developed from the following equation:

- aresin(257D_))

4 arcsm( b Th 1/, 3)
_ 2(x,—1b) )

4 arccos( b Th 1. 4)

Further, some new population position can be deduced by the
following equation:

X, = %((sin9+ 1)ub—1b))+1b, 5)
X, = %((cos9+ 1)(ub—1b))+1b. ©)

Added that, to diversify initial population, dynamic quantum
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Fig. 2. Flow Chart of QMESSA Algorithm

rotation gate mutation was considered by the following equation:

cosf.—sin6,
| )

R(0)=|

cos@.sing,

here, g <6< g . The updating process is follows:

’

[0 = R[], ®)

sin@ siné

Following a mutation induced by a rotation gate, individual
positions in a population are determined using Egs. (1), (5), and
(6). The initial population is then compared to the mutated
population, and individuals with superior sine and cosine positions
are chosen for the final initial population.

Step 2: The fitness values of individuals in the final initial
population are computed. The positions of the best and worst-
performing sparrows are sorted based on fitness. The finder,
representing the sparrow initiating the search for food, possesses
the highest fitness and acts as the primary explorer for the group,
communicating food source locations to joiners. Finders, with a
broader search capability, play a pivotal role in the exploration
process compared to joiners. The location update formula of
finders, joiners, and vigilantes to search for food is given in the
literature (Xue and Shen, 2020). The algorithm employs an adaptable
T-distribution factor in the location update formulas of finders,
joiners, and vigilantes to enhance search strategy. This factor
promotes exploratory phases in initial iterations, aiding in escaping
local optima. As iterations progress, the mutation factor gradually
shifts focus towards exploitation, maintaining a balance between
exploration and exploitation. This prevents premature confinement
to local optima, ensuring accelerated convergence in later stages.
The adaptive T-distribution variation factor is given below:

! Yes

r=1{%) = (£ xexp(=0)) ©

a= exp(lnf—m) R (10)
iter .
t, = — - (11)

Here, ¢ denotes the present iteration, iter,,, states iterations of
maximum number, 7, is a critical point at the time of iteration
process, a is a value which depends on #,, m is a scaling factor
which is taken as a value of 10.

Hence, the enhanced strategy was implemented to facilitate
iterative updating, corresponding location update formulas of
finders, joiners, and vigilantes are as follows:

Following the equation of a finder to update position:

Xﬁ‘j-(z'exp(————iy——— -2ri—1)- J?Z+(r3—0.5)5)

a-iter,,,

Xit= if (R,<ST) (12)
X?Y‘/-F]‘(ixexp(m),)i if R,>ST.

t

X,; denotes sparrow location details in the j" dimension.
Additionally, the algorithm uses o, a randomly chosen number
ranging in between 0 to 1, R,, a preliminary alert threshold lies in
between 0 and 1, ST, a safety threshold value between 0.5 and 1,
and L, a 1 X d matrix comprising entirely of elements equal to 1.
When R,, > ST, indicates the absence of nearby predators, allowing
the sparrow to explore its surroundings extensively. However, if
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R, < ST, all sparrows must look for safe locations to forage. 7

and u are random constants ranges from [1.5, 2.5] and [4, 12]

respectively, 7, r,, r; are random numbers within the range of 0 to 1.
Next, the position update of a joiner is as follows:

t Xt
. 7'(_1. x exp(l—n(IC)) ) . exp(x—lwmf2 a2 ) if i>n/2
Xy =9 " Le ! (13)
X;l +|X£/7X;H’ “A*-L  otherwise,
where X, states the optimal location where finder is positioned,
X,ors indicates present global worst position, A is a matrix
consisting of a single row and d columns.
Position update formula of a vigilante given below:

1 In(z.)\' .
X;esl+ T(’; X exp(f—)) ) : |X;.,/7X;e.w lf f/ >fg
Xi'= (14)
' t |Xlr',/_x»tvorst . _
X,,+K-(m> if Ji=fes

where X, is optimal current global position. K falls randomly
within the range of -1 to 1. f; represents a single sparrow fitness at
present, while £, and f; indicate the worst fitness value and
current global optimum fitness, respectively. Additionally, is a
small constant. If f; > f£,, then the sparrows are in a precarious
position near the population boundary and are at risk of being
attacked. If f; = f;, sparrows occupy a central position within the
population and need to seek safety by flying towards other sparrows.
Step 3: Individuals with the lowest fitness scores are removed
after a series of iterations. A strategy for precise elimination is
implemented, generating new individuals to replace them, outlined
as follows:
o= Xyt (ub—1b)x R, x T(zln X exp(lnf—t"))’) ,

X! (15)

4

R, =1-- ,
iter .«

(16)

where ub and /b states the upper and lower bounds of search
space, R, indicates the dynamic radius of search space. Rest
meanings of the symbol in the formula remains same as above.
Step 4: A novel boundary control approach is proposed, utilizing
the positional data of optimal and suboptimal individuals to
regulate the search boundary. This can be expressed as:
X!

) =

X’beer +rx (X;nzstitheMZ) > (17)

where X, and X},,,, refer to the globally optimal and globally
suboptimal results in i® iteration, respectively, 7 is randomly
chosen number ranged in between [0,1]. The approach randomly
places individuals outside the specified boundary near those with
higher fitness. In successive iterations, these individuals explore
their surroundings using improved positions, enhancing SSAs
exploitation capability.

Step 5: The algorithm seeks the current optimal value by
comparing it to the previous generation optimal value. If the

current value surpasses the previous one, the algorithm updates
the finest value. It iterates until the criterion is met, ultimately
identifying the globally best fitness value and its location.

3. Description of Experimental Data and Parameter
Identification

For training and validation of a neural network, a substantial
amount of data is required. An extensive literature review was
carried out to create a comprehensive dataset of experimental test
results on reinforced concrete (RC) beams strengthened with
FRP plates, which eventually fail in plate end debonding. 128
experimental test results are collected from the article (El-Sayed
et al., 2021) for building the neural network model. The database
consists of 114 beams tested with four-point bending systems
and 14 beams tested with three-point bending systems. Beams
that are included in the database, had to meet specific criteria that
follows: a) failure had to occur through PE debonding, either by
interfacial debonding or CCS.; b) every specimen were rectangular
sections of conventionally reinforced beams with simple support; c)
the FRP were not under any anchorage system; d) beams were
tested using either a three-point or four-point bending system.

The beams have a wide range of geometric properties. From
Fig. 3, we can get that the test beams varied in width from 100 —
400 mm and has a height range of 100 — 450 mm. Clear span
length is in between 812 — 3,800 mm, and the shear span/depth
ratios varied from 2.29 — 6.25. Steel Continued reinforcement
ratio in the tension zone was between 0.32% and 2.12%. Material
properties also showed a wide range. Some beams (43) were
strengthened with pultruded plates of FRP, while others were
reinforced with FRP sheets of wet lay-up. FRP width varied
from 30 — 360 mm. Thickness of dry fibers for wet lay-up FRP
sheets ranged in between 0.11 — 0.176 mm. Pultruded FRP plates
total thickness is in between 0.82 — 4.76 mm. Modulus of elasticity
of FRP materials ranged from 10.3 — 400 GPa. The ratio of the
length of the plated section beyond the point load to the shear
span of the beam ranged from 0.25 — 1.00. Additionally, beams
compressive strength varied from 19.2 — 66.4 MPa.

4. Model Design

The parameters affecting the plate end debonding most are
considered for designing the model. Model design and simulation
works were conducted using MATLAB (2018) programming
language. Design of BPNN model and how the QMESSA
algorithm has been implemented in BPNN model for predicting
plate end debonding load are explained as follows:

1. Thirteen input parameters are considered as input layer of
the designed BPNN. As a result, there are thirteen input
neurons in input layer of BPNN. They are—width (b), depth
(d), compressive strength (f.") . Then, properties of steel
reinforcement — yield strength (), shear reinforcement (f;,),
shear reinforcement ratio (p,,), FRP reinforcement property
— modulus of elasticity (£j,), ultimate strength (f;,), thickness
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beam (L), shear span (a), FRP curtailment length (Z,,).

2. One output layer with one hidden neuron is used for the
debonding failure load (P,..,).

3. One hidden layer is used in BPNN. Number of hidden
neurons is determined through an empirical equation:

L=Jm+n+a. (18)

4. Here, L is the hidden neurons number in hidden layer; m is
input layer neurons number; n is neuron in output layer; ‘a’
is a number taken in between 1 to 10. With a number of
trials and considering overfitting and underfitting problem
L is selected as 10. A topology is drawn in the Fig. 4.
Dimensions (d) of BPNN that need to be optimized by
QMESSA is calculated by the following equation:
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Table 1. Parameter Initialization of QMESSA-BPNN Model

Parameter Value  Description

Size of population 70 -

Primary location [-2,2] Originated arbitrarily
Finders number 20% -

Safety threshold 0.8 -

Dimension of sparrow 151 -

Upper and lower limits of Sparrow position -2~2 -

Maximum iterations of QMESSA 500 -

d=uxv+tv+tyxwt+w,

(19)

where u is input neurons number, v is hidden neurons
number, and w is output neuron number. Here, d means the
total weights and biases of the BPNN. QMESSA algorithm
has been utilized to optimize these weights and biases of
BPNN. Next, with the help of optimized weights and
biases BPNN starts the training process.

Parameters of the QMESSA are initialized. For the purpose
of applying the QMESSA algorithm in BPNN, values of
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different parameters are given in the Table 1. How the
QMESSA algorithm is implemented in the BPNN is
illustrated clearly in Fig. 5.

5. In the QMESSA algorithm function of fitness is shown in
equation 20 and it can be used to measure population fitness
by recording the optimal fitness value as well as optimal
position globally, ranking the fitness values, updating the
positions of finders, joiners, vigilantes, and calculating
each of their fitness values separately. An individual fitness
value improves with decreasing fitness value.

Fitness =Y i N

Here y; is the target output and J; is the predicted output.

6. Update sparrow position by means of current fitness value
if a value lower than the present fitness value emerges.

7. When the value of fitness is at its lowest point or has gone
through all possible iterations, optimization is said to be
complete. If not, go back to step V.

8. The BPNN weights and biases are given the sparrow

(20)

Table 2. Properties of Training Parameters

Training Parameters Property
Training function ‘trainlm’
Activation function (hidden layer) ‘tansig’
Activation function (output layer) ‘purelin’
Maximum epoch 1000
Learning rate 0.01
Maximum validation check 6
Performance (MSE) goal 0
Minimum Gradient le-07

and biases
Feed-foiwsrd Update weights as well
dissemination of >
; : as biases
information

| [

Calculating MSE
(Target— Model output)

Error back propagation

Whether the
requirements
are met?

Output results

BP Neural Network

position with the lowest value of fitness, allowing the best
weights and biases to be obtained. After that, training
process of BPNN starts.

9. For training the neural network ‘trainlm’ training function
is applied in the network. LM of ‘trainlm’ training function
stands for Levenberg-Marquardt algorithm. Properties of
training parameters are given in the Table 2.

10. 128 experimental samples as stated in previous section are
randomly divided into training (70%), validation (15%),
and testing (15%) sets for neural network analysis.

11. For evaluating model generalization ability and prediction
accuracy, mean squared error (MSE) and perfection to
fit (Regression- ‘R’) are calculated and compared.

= l n Z)2
MSE = nzz':l(zi_zi) 21
Here z; is the target output and Z; is the predicted output from
the model. Target output is the experimental value (debonding
failure load). Predicted output is what the QMESSA-BPNN model
is predicting (debonding failure load). MSE is calculated and

minimized at each iteration of BPNN until it reaches to a

specified value as declared.

5. Results & Discussions

The graphical representations provided in Figs. 6 and 8, clearly
illustrate that the QMESSA optimized BPNN model achieves
higher regression coefficient values compared to the BPNN model
across the training, validation, and testing datasets. Specifically,
the QMESSA-BPNN model demonstrates regression coefficients of
0.994, 0.996, and 0.985, while the BPNN model yields regression
coefficients of 0.997, 0.977, and 0.817 for the respective datasets.
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Best Validation Performance is 268.7806 at epoch 18
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Fig. 6. Result of BPNN Model: (a) Performance, (b) Regression

Besides, in Fig. 9 it is seen that MSE is significantly reduced in
test data set for the QMESSA-BPNN model (230.42) with respect
to BPNN model (512.53), illustrating the enhanced accuracy of
the model. It is noteworthy that both models exhibit satisfactory
performance on the training set in terms of regression value on
training stage. However, the BPNN model exhibits an overfitting
issue, as evidenced by the substantially lower regression coefficient
on the test data. This occurrence can be attributed to the extensive
training of the BPNN model, leading to an overly complex model
that hinders to generalize effectively beyond the training data. It
is evident that the BPNN model exhibits substantially higher
deviation in predicting result from experimental result in both the

Best Validation Performance is 97.033 at epoch 26
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Fig. 7. Result of SSA-BPNN Model: (a) Performance, (b) Regression

validation and test datasets compared to the QMESSA-BPNN
model. Another reason is because of local minima problem during
the training process. To explain broadly, the optimization algorithm
(‘trainlm’) failed to reach the global minima.

A comparison among the models is given in the Table 3.

Consequently, the inability of BPNN model to accurately predict
output when provided with new sets of data is clearly seen. In
contrast, the QMESSA-BPNN model successfully resolves the
overfitting issue, as indicated by its higher regression coefficient
value of 0.985 in the test datasets. In addition, the dynamic property
of QMESSA helped to achieve a higher regression result on test
dataset as compared to SSA. SSA-BPNN model achieved a
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Best Validation Performance is 94.3495 at epoch 5
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regression score of 0.96 on test datasets as shown in Fig. 7.
Besides, QMESSA-BPNN model converges within 5 epochs
compared to SSA-BPNN model (26 epochs). Reasons for these
phenomena are because of initial quality population of sparrows
ensured by chaotic mapping and quantum computations, enhanced

600

500

400

300

200

Mean Squared Error (MSE)

100

BPNN SSA-BPNN
Fig. 9. Performance of the Models (MSE)

QMESSA-BPNN

search strategy of sparrows which accomplished to increase the
exploration and exploitation ability of the algorithm, elimination
strategy to accelerate the convergence. All these dynamic
adaptability power of quantum mechanics and multiple strategy
incorporated in SSA helped it to further jump out of the local
minima, optimized the search space, and increased the generalization
ability while being implemented in BPNN. As a result, the
QMESSA-BPNN model demonstrates considerable improvement
in terms of its generalization ability and prediction accuracy.
Finally, results from above emphasize the superior performance
of the QMESSA-BPNN model with its ability to generalization,
providing a distinct advantage over the SSA-BPNN, and BPNN
model. The reason that all the models achieved high MSE is
because of extreme outliers’ presence in datasets. As a result,
summation of squared error increases.

6. Reliability Evaluation of Codes

Numerous models had been developed to forecast the occurrence
of debonding failure at PE in RC beams strengthened with FRPs.
The models primarily rely either on fracture mechanics principles or
shear strength of beams. To conduct a comprehensive analysis of
the efficacy of the QMESSA-BPNN model, a comparison was
made between the QMESSA-BPNN model and various existing
international codes as well as with a shear-based model. After
performing the training and validation of the QMESSA-BPNN
model an object of the model has been created in the workspace
of MATLAB. Using the model object, debonding load is calculated
by giving the input values of 13 parameters in the model object.
In addition, it only takes the value of 13 input parameters (described
in section 3) to predict the output debonding load from the model
object.

Table 3. Comparison among BPNN, SSA-BPNN, and QMESSA-BPNN Models

Comparison among Regression Best Validation Test Dataset Performance
Models Training Validation Testing Performance (MSE) (MSE)
BPNN 0.99718 0.97732 0.81694 268.78 512.53
SSA-BPNN 0.99607 0.96309 0.96057 97.03 248.58
QMESSA-BPNN 0.99389 0.99565 0.98508 94.35 230.42
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In 2020 an empirical shear-based formula was put forward for
prediction of debonding failure at PE for FRP beams, based on
the existing models available in the literature and factors governing
the debonding failure criteria (El-Sayed et al., 2021). The proposed
shear force at PE region that initiates debonding can be expressed as:

d 1/3
de,end = ﬂvﬂL2'17(f;‘,peq—g) bdeq .

a

22)

L, is a factor for shear reinforcement ratio (p,). This is expressed in:

B, = 2.15(p,)0%.

P, is a factor that accounts for the influence of ratio of the
FRPs unplated length (Z,,) to the beams shear span (a). The
equation follows:

(23)
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d,, is the equivalent effective depth expressed as:

AEd+ A, E. h
d, = Tems® O fp R fip (25)

AE T Ay, Ey,
P, 1s the equivalent reinforcement ratio stated as:
E;
(4-+47)
= 5 26

Peq bd) (26)

where £, is the compressive strength of concrete; a is denoted as
shear span; E; and 4, are the internal modulus of elasticity and
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Fig. 10. Predicted Results versus Experimental Results: (a) QMESSA-BPNN, (b) ACI 440.2R, (c) AS 5100.8, (d) Shear Model, (e) TR 55, (f) Fib Bulletin 14
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Table 4. Statistical Results of Each Model

ACI 440.2R AS 5100.8 Fib Bulletin 14 TR 55 (2012, Shear Based Model
(2017) (2017) (2001, Eq. 34) Eq. 37)( (El-Sayed etal,, 2021) ~ QMESSA-BPNN
R 0.7948 0.6564 0.8951 0.8803 0.8868 0.9752
STD 0.67 0.33 021 0.25 0.20 0.12
CV (%) 244 362 18.1 18.6 17.7 11.62
C (%) 100 35.94 79.7 94.5 54 14.1
N-C (%) - 64.06 203 55 46 85.9

steel area; £y, and 4y, are external elasticity modulus, FRP area
respectively; b represents the beam width, d denotes the effective
depth of tension steel, and h is the total depth of the beam.

ACI 440.2R code sets a maximum threshold for factored
shear force at end point of the plate to mitigate the debonding
risk at plate end.

Vb ena<0.67V., 27)

where V, is the beam sections concrete shear strength as established
by the ACI 318 code (Wight et al., 2010; 440, 2017).

The approach taken in the AS 5100.8 is identical to the
methodology found in the Concrete Society (TR 55) from 2012
and ACI 440.2R. This involves suggesting a maximum threshold
for the shear force that is exerted at the region of plate end:

Vdv,end<0'67 I/u s (28)

where V, is theoretical shear strength (7,) for the beam section,
which is calculated from AS 5100.5 standard (Standards Australia,
2017).

The Concrete Society Technical Report 55 (TR55) from 2012
suggests a maximum threshold considering shear force applied at
plate terminating region to prevent PE debonding.

Vb, ena<0.67Vr4, (29)

where V, is beams shear strength, and is determined following
the guidelines outlined in Eurocode 2 at Section 6.2 (European
Committee for Standardization, 2004).

The concept introduced by Blaschko in 1997, as outlined in
fib Bulletin 14 from 2001, relies on shear strength of concrete
within the beam. The approach follows, prevention of PE debonding
involves limiting the shear force exerted at the PE region to the
beam shear cracking strength, as expressed in the following
manner:

Vab,ena <[ i-/?bd 5 (30)

where represents the concrete compressive strength (characteristic),
which is determined from Eurocode 2 (European Committee for
Standardization, 2004).

Figure 10 displays the calculated values obtained from the
code models, empirical shear-based model and the predicted value
generated by QMESSA-BPNN model. 128 sets of experimental
data have been utilized for making the prediction comparison
among the model, codes and shear-based model. It is evident from

the figure that the code-based model calculations exhibit a relatively
discrete distribution, whereas QMESSA-BPNN outperforms ACI,
TRS55, AS 5100.8, Fib Bulletin and empirical shear-based model in
terms of model fit and accuracy. The coefficient of determination
(R*) of QMESSA-BPNN model is 97.5% indicating a low
dispersion of data set and high accountability capacity of variance
by the prediction model.

Furthermore, Table 4 provides a thorough examination of the
predictive precision and dependability of the model formulated
in this research and comparison with national codes. The coefficient
of variation for all the code models exceeds 18% whereas it is
17.7% in the empirical shear-based model.

Consequently, application in practice is difficult due to high
variance. However, QMESSA-BPNN model demonstrates a
lower coefficient of variation at only 11.62%. In comparison to
the code models, QMESSA-BPNN model exhibits significant
reduced variability. Notably, the ACI, TR55, AS 5100.8, Fib Bulletin
code models as well as the shear model are highly conservative.
Approximately 100%, 94.5%, 35.94%, 79.7%, and 54% of all
specimens have significantly overestimated predicted values
according to these models. On the other hand, the QMESSA-BPNN
model significantly reduced this conservativeness with a value of
14.1% indicating the effectiveness in prediction accuracy.

7. Correlation Analysis of Parameters

The impact of various parameters on the debonding load can be
determined through the weights that connect the neurons in each
layer. The connection weights play a significant part in neural
network as they determine the efficacy of the model output by
creating a nonlinear relationship between input parameters and
target output. The input layer is made up of neurons X1 to X13
(each neuron is for each parameter), while the hidden layer
consists of neurons H1 to H10, and the output layer comprises of
only one neuron, Y. Tables 5 and 6 shows the connection weights
of interlayer neurons. These connection weights are taken from
neural network architecture modelled in MATLAB.

The degree of influence of the X™ parameter on the debonding
load, is calculated using Eq. (31).

Px:z}glwxixhiﬂ (31)

where w,; is the connection weight between X™ parameter and
the i-" implied layer; and /;is the connection weight between the
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Table 5. Connection Weights of Input Layer and Hidden Layer

Column1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
HI -2.09 1.99 -1.97 -1.97 -1.64 -1.94 -2.02 -1.92 2.03 -1.94 -2.13 1.92 -2.09
H2 2.09 1.52 0.66 2.96 -1.61 1.28 -3.00 -1.33 0.18 2.11 2.94 -2.21 1.99
H3 1.97 -1.98 2.01 -2.07 -2.02 -1.85 1.99 1.94 -2.02 -2.02 1.97 2.03 2.06
H4 -1.68 -1.75 -1.87 2.28 -1.88 2.13 -1.99 -1.68 -2.26 1.89 231 2.19 2.14
H5 1.94 -1.29 -2.49 -0.05 -2.09 2.19 -2.16 -1.99 -1.88 2.34 1.95 -2.20 -2.20
Hé6 -2.03 2.07 -1.33 -0.63 4.75 -3.32 0.94 -1.87 2.93 2.00 -0.61 -1.90 1.41
H7 -2.67 -1.64 -2.15 -2.14 2.34 0.60 -1.79 -1.83 -0.96 1.44 -2.12 -2.09 2.06
HS8 1.98 1.17 -1.98 2.01 -1.37 2.02 1.80 2.02 -0.07 -1.99 2.02 -2.01 1.73
H9 1.31 1.41 1.27 -1.52 1.71 1.95 -1.15 -2.39 0.92 -1.97 0.58 2.34 0.99
H10 -0.59 -0.99 2.04 1.26 1.69 -2.49 -1.21 1.63 1.40 -0.83 -0.33 -0.32 2.34
Table 6. Connection Weights of Hidden Layer and Output Layer
Column1 H1 H2 H3 H4 H5 Ho6 H7 HS8 H9 H10
Y -6.25 5.13 2.05 -3.49 9.16 -5.39 242 -0.21 7.16 -5.43
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Fig. 11. Importance of Each Parameter

i implied layer and the output layer, respectively.

To get the importance of each parameter on PE debonding,
the values were calculated using Eq. (31). After normalizing, the
plot is shown in Fig. 11.

The graph in Fig. 11 illustrates the significance of different
parameters in the proposed model, with input parameters ranging
from X1 to X13 on the X-axis and the corresponding percentage
contribution on the Y-axis. The most crucial parameter, X5, which
represents the shear reinforcement in concrete o, has the highest
importance of 100%. The next important parameter is X9, which is
the yield strength of steel f, with an importance of 78.17%.
Afterwards, X11, representing the thickness of FRP (#;,), with an
importance of 72.27%. On the other hand, the parameter X8
represents the variable L,,, which has the least impact on the model
with an importance of only 2.29%. As can be seen from Fig. 11, the
order for the importance of each parameter can be demonstrated as

following:

X5(p,) > X9(£) > X11(1,) > X1(b) > X10(f;) > X6(E;,)
> X13(a) > X2(d) > X4(f,) > X12(L) > X7(by,) > X3((f.))
> X8(Ly,);

This graph effectively illustrates the significance and relative
contributions of various parameters in plate end debonding
failure, aiding decision-making in the design process. Shear
reinforcement emerges as a crucial factor in mitigating debonding in
FRP-strengthened RC beams. Additionally, the model highlights
the often-overlooked influence of FRP material and geometric
properties, such as thickness and ultimate strength, on debonding
occurrence. The intricate non-linear relationship in the model
comprehensively considers all governing parameters, emphasizing
the importance of accounting for these factors in FRP system
design to prevent premature failures like plate end debonding.
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8. Conclusions

This study presents a predictive model for debonding at the plate
end region in FRP-strengthened RC beams in flexure. QMESSA
optimized BPNN model demonstrates effective and accurate
forecasting of debonding loads and is evaluated against several
codes. The following conclusions can be drawn:

1. The QMESSA-BPNN model gives the best prediction
results compared to the BPNN model. The BPNN model
faces overfitting issues, with a regression value of 0.997 in
training, 0.977 in validation, but 0.816 in testing. On the
other hand, the QMESSA optimized BPNN model solved
this overfitting problem, with both the regression value of
validation and testing dataset equal to 0.99. This indicates
the generalization capability and robustness of the QMESSA-
BPNN model.

2. QMESSA-BPNN model significantly solved the shortcomings
(convergence speed, getting out of local minima, balancing
in exploration and exploitation ability of SSA) in SSA-
BPNN model by an increased regression value in test dataset
from 0.96 to 0.99.

3. In the parametric study of QMESSA-BPNN model, the shear
reinforcement ratio was identified as the most influential factor
affecting plate end debonding capacity. High reinforcement
ratio enhances the shear capacity, consequently prevents
debonding. Notably, factors like steel yield strength, thickness,
modulus of elasticity, and FRP ultimate strength also contribute
significantly to debonding load.

4. The coefficient of determination (R*) of QMESSA-BPNN
model is 97.5% indicating a low dispersion of data set and
high accountability capacity of variance by the prediction
model. Indicating that it optimally utilizes the strength of
FRP-strengthened RC beams. This contrasts with the more
conservative nature of ACI and other codes.

5. Unlike existing code provisions, the QMESSA-BPNN model
considers crucial FRP properties in predicting debonding
capacity. Its ability to capture complex non-linear debonding
parameters suggests its potential as a superior alternative
for code implementation.

6. QMESSA-BPNN model experiences some optimization
issues due to complex neural network architecture, limited
data, and extreme outliers. Noise in the data leads to poor
prediction accuracy.

7. Data skewness and outliers’ removal can be resolved by
governing data pre-processing techniques, and better
generalization capability of model can be achieved by
increasing the dataset size.
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Nomenclature

a= Shear span of beam
b= Beam width
bs,= FRP width
BPNN = Back Propagation Neural Network
CCS = Concrete Cover Separation
d= Depth of beam
Ej;,= Modulus of elasticity of FRP
f." = Concrete compressive strength
Jw= Ultimate strength of FRP
FRP = Fiber Reinforced polymer
J,= Yield strength of steel reinforcement
Jf»= Shear reinforcement
IC= Intermediate Crack
L= Clear span of beam
LM = Levenberg Marquardt algorithm in BPNN
L,,= FRP curtailment length
NN = Neural Network
PE= Plate End
P, .,,= Debonding failure load of FRP
QMESSA = Quantum-computations and Multi-Strategy
enhanced Sparrow Search Algorithm
RC = Reinforced Concrete
ts,= Thickness of FRP
Ps»= Shear reinforcement ratio
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