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Abstract—In ultrasonic medical imaging, in addition to the
boundaries of organs, blood vessels, etc., speckle patterns gen-
erated as interference of echoes from small scatterers in living
tissue are often observed. Speckle pattern has information on
the tissue properties and can be efficiently used as local position
information for measuring tissue motions, for example. On the
other hand, these are the main factor for lowering the image
resolution. In this study, we aim to improve the resolution
of ultrasonic imaging by restoring the scatterer distribution
within the tissues from the echo. Statistics calculated from the
restored scatterer distribution are expected to contribute to the
construction of new indicators for tissue properties diagnosis.

I. INTRODUCTION

In ultrasound medical imaging it is important that the
boundaries and edges of organs, blood vessels and tumors
are detected[1]-[3]. On the other hand, the reflection and
distribution of small scatterers in living tissue has important
information for diagnosing tissue properties. If the bandwidth
of the transmitted pulse is sufficiently wide, that is, if very
sharp pulses can be transmitted, high resolution imaging can
be carried out and thus, the distribution of the scatterer
producing the echoes can be measured exactly. However, in
actual imaging, typical ultrasonic transducers have narrow
band characteristics, and furthermore, in order to clearly obtain
echoes, the transmitted pulse contains several cycles of sin
waves. As a result, the reflectance distribution is convoluted
with the transmitted signal, and the echo whose resolution is
greatly reduced is reflected toward the transducer. These echo
signals interfere with each other to generate speckle patterns,
which make measurement of scatterer distribution difficult.

The speckle patterns are often used efficiently for medi-
cal diagnosis based on physician experience. These are also
effective for tissue motion analysis using image processing.
On the other hand, since the speckle patterns hinder the
detection of small tumors, various suppression methods have
been proposed[4]-[7]. Recently, studies to reduce speckle
observation by actively imaging a small number of strong
echo sources attract attention, which are based on compressed
sensing and/or sparse modeling techniques [8]-[12]. In this
strategy, only the echo intensity is taken into account and the
speckle characteristics are ignored. Contrary to these facts, in
this study, we aim to estimate the reflection distribution of
scatterers, which is the source of the speckle pattern, from
echo. If small scatterers can be accurately restored from the

echoes, by subtracting the corresponding echoes from the
entire echo, the images consisting only of sparse scatterers
with strong reflection, i.e., contours of organs, blood vessels,
tumors can be obtained by, for example, our super-resolution
imaging method[13]. Namely, by separately processing small
scatterers and large reflectors, both can be separately imaged,
which leads to high resolution imaging.

This scatterers restoration must be treated as an ill-posed
problem, because echoes occur via convolution process. It is
not possible to uniquely restore the distribution of the scatterer
from only the observed information, and observation noise is
also likely to influence the solution. In order to solve these
problems, it is necessary to (i) increase observation informa-
tion and (ii) apply appropriate assumptions and constraints
to the solution. The former can be realized, for example, by
using harmonic echoes in addition to fundamental echoes. For
measurement of harmonic echoes, we proposed techniques to
improve SNR[14] and compensate for distortion caused by
frequency dependent attenuation[15]. In this study, focusing on
the latter, we consider the reflection distribution of small scat-
terers as a stochastic sequence arranged in the range direction,
and we model it with autoregressive (AR) process usually used
in random signal processing. The parameters of the AR model
show correlations inherent in the reflection distribution, which
are expected to parametrize the tissue properties. The ill-posed
characteristics in this restoration problem are very strong,
for example compared to blurred image restoration, because
the frequency band not observed is so wide. Therefore, it is
necessary to investigate the estimation possibility and accuracy
of both the AR parameters and the reflection distribution itself.
To realize that, we can apply the algorithm constructed in the
time domain based on empirical Bayesian method[16][17]. As
a first step of our future efforts, in this study we evaluate the
performance through numerical simulation using data correctly
fitted to the assumed model.

II. METHOD

A. Problem Formulation
Since the echo depends not only on the reflection of the

scatterer but also on the transmittance and the diffraction, it is
difficult to formulate the echo generation process considering
all these properties. In this study, we define the equivalent
reflectance that generates echo by convolution with the trans-
mitted pulse.
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An N -dimensional vector y is defined as an observed
RF echo signal, in which N corresponds to the number of
time-sampling. We assume that y contains an additive white
normal random numbers n with zero mean and variance σ2

n as
observation noise. By using the N -dimensional vector h as the
above mentioned equivalent reflectance, y can be formulated
as follows:

y = Wh+ n, (1)

where W is an N ×N matrix representing convolution with
the transmission pulse. As the width of the transmission pulse
increases, the rank of W approaches zero. Therefore, we can
simply restore h using W+ which is a pseudo-inverse of W .

ĥ = W+y. (2)

However, the solution is sensitive to the noise contained in
y, and furthermore, the information contained in h discarded
by W can not be restored. Instead, by applying the AR
model to h we consider the method to recover such discarded
information by extrapolation.

The AR model is a general stochastic representation of
random time series with correlation between components.
Using i to indicate the order of the components, h is defined
using the white normal noise ϵi with variance σ2

h, as follows:

hi =
P∑

j=1

ajhi−j + ϵi, (3)

Here, a ≡ {a1, a2, ..., aP } is called the AR coefficient, and
P is the order of the AR model and indicates the number of
past components explicitly affecting the current component.
The matrix and vector representation of Eq. 3 is as follows:

Ah = ϵ. (4)

For example, when P = 2, the matrix A is written as

A =


1 0 0 0 · · ·

−a1 1 0 0 · · ·
−a2 −a1 1 0 · · ·
0 −a2 −a1 1 · · ·
...

...
...

...
. . .

 . (5)

From Eq. 4, h is a sample from the following multidimen-
sional normal distribution.

p(h|a, σ2
h) =

1√
(2πσ2

h)
Ndet(A⊤A)−1

exp

(
−h⊤A⊤Ah

2σ2
h

)
.

(6)
We can know that the mean of h is 0 and the variance-
covariance matrix is V h = σ2

h(A
⊤A)−1.

B. Estimation Method based on Empirical Bayes

Considering that y contains observation noise, we aim to
recover h in the time domain. From Eq. 1, the probabilistic
density of y under the condition that h is given forms the
following normal distribution.

p(y|h, σ2
n) =

1√
(2πσ2

n)
N

exp

[
− (y −Wh)⊤(y −Wh)

2σ2
n

]
.

(7)

The joint probability of y and h is derived using Eqs. 6 and
7 as follows:

p(y,h|a, σ2
n, σ

2
h) =

exp
[
− (y−Wh)⊤(y−Wh)

2σ2
n

− h⊤A⊤Ah
2σ2

h

]
(2π)N

√
σ2
n
Nσ2

h
N
det(A⊤A)−1

.

(8)
In general, {σ2

n, σ
2
h,a} is estimated as the maximum likeli-

hood estimator (MLE) using the probabilistic density of y
obtained by marginalizing Eq. 8 with respect to h.

p(y|a, σ2
n, σ

2
h) =

∫
p(y,h|a, σ2

n, σ
2
h)dh

=
1√

(2π)NdetΛ
exp

(
−y⊤Λ−1y

2

)
, (9)

Λ = σ2
hW (A⊤A)−1W⊤ + σ2

nI. (10)

Assigning the observed value of y to Eq. 9 and considering
it as a function of the parameters, Eq. 9 is called a likelihood
function, and its logarithm is a log-likelihood function. The
value that maximizes the likelihood function, and hence the
value that maximizes the log-likelihood function, is the ML
estimate. Using the ML estimate of {σ2

n, σ
2
h,a}, h can be

determined as the maximum a posteriori (MAP) estimator
ĥMAP , which maximizes the posteriori probability of h as
follows:

p(h|y,a, σ2
n, σ

2
h) =

p(y|h, σ2
n)p(h|a, σ2

h)

p(y|a, σ2
n, σ

2
h)

∝ exp

[
−1

2

(
h− ĥMAP

)⊤
V −1

h|y

(
h− ĥMAP

)]
, (11)

ĥMAP =

(
W⊤W

σ2
n

+
A⊤A

σ2
h

)−1
W⊤y

σ2
n

, (12)

V h|y =

(
W⊤W

σ2
n

+
A⊤A

σ2
h

)−1

. (13)

We can use ĥMAP as the recovery result of h by using the
ML estimate {σ̂2

n, σ̂
2
h, â} as the values of the parameters in

Eq. 12. Thus, the scheme of Bayesian estimation using the
parameters estimated based on marginal likelihood is called
empirical Bayesian method.

C. Algorithm Implementation by EM scheme

The MLE based on Eq. 9 generally requires iterative calcu-
lations, and each calculation is a little complicated. Instead, we
can use an expectation-maximization (EM) algorithm where
the MLE of the parameter and the MAP estimator of the latent
variable are alternately updated by iterative calculation. In the
EM algorithm, observation and latent variables are collectively
referred to as complete data. The EM algorithm is effectively
executed against the problem that the MLE of the parameter is
easy when complete data is observed. Equation 8 corresponds
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to the probability of complete data, and the log-likelihood
function of complete data is formulated from Eq. 8 as follows:

lnLc(σ
2
n, σ

2
h,a)

= Const.− N lnσ2
n

2
− N lnσ2

h

2
− ln det(A⊤A)−1

2

− (y −Wh)⊤(y −Wh)

2σ2
n

− h⊤A⊤Ah

2σ2
h

. (14)

The following E-step and M-step are repeated until conver-
gence.

In the E-step, we derive the expectation of Eq. 14
with respect to the posteriori probability of h,

p(h|y, σ̂2
n

(p)
, σ̂2

h

(p)
, â(p)), where Θ̂

(p)
≡ (σ̂2

n

(p)
, σ̂2

h

(p)
, â(p))

is the estimate determined at the pth iteration. As a result,
this expectation of Eq. 14, called the Q function, can be
derived as follows:

Q(Θ|Θ̂
(p)

)

= Const.− N lnσ2
n

2
− N lnσ2

h

2
− ln det(A⊤A)−1

2

−y⊤y + 2y⊤Wĥ
(p)

+ traceWV̂
(p)

h W⊤

2σ2
n

− traceA⊤AV̂
(p)

h

2σ2
h

, (15)

ĥ
(p)

=

W⊤W

σ̂2
n

(p)
+

Â
(p)⊤Â

(p)

σ̂2
h

(p)

−1

W⊤y

σ̂2
n

(p)
, (16)

V̂
(p)

h = ĥ
(p)

ĥ
(p)⊤ +

W⊤W

σ̂2
n

(p)
+

Â
(p)⊤Â

(p)

σ̂2
h

(p)

−1

. (17)

In the M-step, Θ̂ is updated so as to maximize the Q
function derived as Eq. 15 with respect to Θ. For a, we need
to maximize the 4th and 6th terms on the right hand side of
Eq. 15. When the number of observation is sufficiently large,
since the 6th term is O(N), the 4th term can be neglected as
compared to the 6th term. Therefore, in this study, we update
â to satisfy the following equation.

trace
∂(A⊤A)

∂a
V̂

(p)

h = 0. (18)

Both variances are updated as follows:

σ̂2
n

(p+1)
=

y⊤y + 2y⊤Wĥ
(p)

+ traceWV̂
(p)

h W⊤

N
, (19)

σ̂2
h

(p+1)
=

traceÂ
(p+1)⊤Â

(p+1)
V̂

(p)

h

N
. (20)

The above two steps are repeated and update is stopped
when the change of Θ̂ becomes sufficiently small. Θ̂

(p)

obtained when converging corresponds to the MLE, and also
ĥ
(p)

is the MAP estimator.

III. NUMERICAL EVALUATION

A. Evaluation Method

Numerical performance evaluation of our method was done
using ideal data satisfying Eq. 1. As the number of cycles
included in the transmission pulse increases, the observed
frequency band decreases, and it becomes difficult to estimate
the AR parameters and hence, to recover h. Impulse, 1 cycle of
5 MHz and 5 cycles of 5 MHz were used as the transmission
pulse. Of the above, two 5 MHz pulses were apodized by
Gaussian window function. Observing the echo generated by
impulse transmission, it is expected that h can be almost
completely restored. This is because the entire frequency band
can be observed. Observation data y was prepared by the
following procedure.

1) We set a and σ2
h, and use these to generate h as AR

time series.
2) h is convoluted with the transmission pulse selected

from the above three, and the result corresponds to y
with no noise.

3) We set σ2
n and use it to generate Gaussian noise.

This noise is added to y generated above to obtain
observation data.

Transducer characteristics, beam focusing and propagation
attenuation were ignored and data exactly matched to the
evaluation model were used for evaluation.

Performance evaluation that depends on the order of AR
model and AR coefficient will be a subject for the future, and
we set the order to 2 and fixed the parameters a = {0.6, 0.3}
and σ2

h = 0.02. In that case, each value of generated h
remained almost in the range of ±1. We also set the noise
variance σ2

n = 0.02, and the peak amplitude of the transmis-
sion pulse was normalized to 1.0. Under this condition, the
standard deviation of noise was 2.5% of the standard deviation
of y when transmitting a pulse consisting of one cycle, and
1.2% when transmitting a pulse consisting of 5 cycles. Since
it is assumeobservation noise is electric noise, we can suppose
that σ2

n is known in advance with no practical problem.

B. Results

In this study, 10 time series of echo consisting of 1000 sam-
pling values were used. The time sampling rate is about 100
points per 5 MHz sinusoidal cycle common to all processing.
For all trials performed, we confirmed that the EM algorithm
had almost converged by 500 iterative updates, therefore we
adopt ĥ

(500)
as an estimation result and simply write it as ĥ.

An example of the setting value of h to be recovered is shown
in Fig. 1. Instead of ensemble average, the power spectrum in
Fig. 1(b) was calculated by taking the average value of 10
series of h. The power spectrum density (PSD) P (f) of the
AR model can theoretically be formulated as follows:

P (f) =
σ2
h

|1−
∑P

i=1 aie
−j2πf |2

, (21)

and the theoretical value corresponding to the assumed AR
model is shown in Fig. 1(b) as a red curve.
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(a)

(b)

Fig. 1. One series of h consisting of 1,000 samples is shown in (a), and its
power spectrum is shown in (b). The red curve in (b) indicates the theoretical
power spectrum of the set AR model.

(a)

(b)

Fig. 2. The echo y generated by convolving the impulse with h and adding
observation noise is shown in (a) and its PSD is shown in (b).

Firstly, we attempted to restore ĥ when the transmission
pulse is impulse. In this case, almost all frequencies are
observed, and only observation noise hinders estimation. Fig-
ure 2 shows the echo signal y and its power spectrum.
Since the observation noise exists, the level of high frequency
components in Fig. 2(b) rise compared to the power spectrum
of h in Fig. 1(b). The ĥ corresponding to Fig. 1(a) is indicated
by a red line in Fig. 3(a), and its power spectrum is also shown
in Fig. 3(b), in which the red curve and the green curve show
respectively the theoretical values of the set AR model and

(a)

(b)

Fig. 3. ĥ restored for impulse transmission is indicated by red line in (a)
and blue line is set value. The PSD is shown in (b), the red curve corresponds
to the theoretical value of the set AR model, and the green curve corresponds
to the theoretical value of the estimated AR model.

the theoretical values of the estimated AR model, both of
which are approximately equal. Estimated AR parameters are
â = {0.618, 0.278} and σ̂2

h = 0.0198. From this result, it can
be seen that the AR model can be estimated with extremely
high accuracy. Regarding the recovery of h, it is difficult to
obtain the white noise component in principle, and in the
high frequency band in Fig. 3(b), the restoration error appears
conspicuously.

Next, we estimated the AR parameters and restore h from
the echo generated by one cycle pulse transmission. As in
Fig. 2, y and its PSD are shown in Fig. 4. Comparing Fig. 2
and Fig. 4, it can be seen that one cycle pulse transmission
restricts the observable frequency band to a low range. The
restored ĥ is shown in Fig. 5, and the estimated parameters
are â = {0.589, 0.313} and σ̂2

h = 0.0185, and the estimation
error is slightly larger than in the case of impulse transmission.
Although it can be easily predicted that the restoration problem
from very limited observation is a difficult task, AR model
can be estimated with high accuracy. The reason for this is
presumed to be that the local frequency component has suf-
ficient information to restore the AR model as extrapolation.
This characteristic seems to be weakened as the order of the
AR model increases, that is, as the degree of freedom of the
AR model increases. In Fig. 5(b), there is little difference
between the red curve showing the theoretical PSD of the true
model and the green curve of the estimated model. Comparing
Fig. 5(b) with Fig. 4(b), it is clear that the PSD of ĥ becomes
obviously a wide band and approaches the PSD of the set value
in Fig. 1. In other words, a part not in the high frequency band
of the unobservable frequencies can be effectively restored by
assuming the AR model.

Finally, y and ĥ for 5 cycles pulse transmission are
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(a)

(b)

Fig. 4. The echo y generated by convolving the one cycle pulse with h and
adding observation noise is shown in (a) and its PSD is shown in (b).

(a)

(b)

Fig. 5. ĥ restored for one cycle pulse transmission is indicated by red line
in (a) and blue line is set value. The PSD is shown in (b), the red curve
corresponds to the theoretical value of the set AR model, and the green curve
corresponds to the theoretical value of the estimated AR model.

shown in Figs. 6 and 7. The parameters are estimated as
â = {0.546, 0.365} and σ̂2

h = 0.0168. Since the frequency
band to be observed is further limited, the estimation error
of the parameters is slightly larger than the estimation error
of the one cycle transmission. However, the theoretical PSD
computed using â and σ̂2

h is sufficiently close to that of the
true model.

The above result are better than expected and it was con-
firmed that the empirical Bayesian method is very useful for

(a)

(b)

Fig. 6. The echo y generated by convolving the 5 cycles pulse with h and
adding observation noise is shown in (a) and its PSD is shown in (b).

(a)

(b)

Fig. 7. ĥ restored for 5 cycles pulse transmission is indicated by red line
in (a) and blue line is set value. The PSD is shown in (b), the red curve
corresponds to the theoretical value of the set AR model, and the green curve
corresponds to the theoretical value of the estimated AR model.

latent variable estimation where the observation is limited and
the parameters of the prior knowledge of the latent variable
are unknown. Such a problem is often to be solved[18].
For comparison, the estimates simply restored by Eq. 2 are
shown in Fig. 8, where the singular values of W greater
than σ2

n are used to define W+. As a result of observation
noise amplification, ĥ shown by a red line has large noisy
component. These results relatively indicate the effectiveness
of the application of empirical Bayesian estimation.
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(a)

(b)

Fig. 8. ĥ obtained by pseudo-inverse filtering for 1 cycle pulse transmission
is shown in (a) and that for 5 cycle pulse transmission is shown in (b). Red
line indicates ĥ and blue line indicates set h.

IV. CONCLUSIONS

In this study, in order to restore scatterer distribution from
ultrasonic echo, empirical Bayesian method was applied. Al-
though AR model identification is usually performed directly
on the observed time series, in this problem, it is a latent
time series that model identification should be done, and the
identification is impossible with the well-known Levinson-
Durbin algorithm. In identifying and restoring the latent time
series in this study, ill-posed characteristic is strong, that is,
observations are largely restricted. However, we confirmed
through ideal data simulations that the empirical Bayes could
properly solve the problem.

The simulations was carried out only under restricted con-
ditions, and there are some important matters to be con-
firmed. Firstly, the performance of the empirical Bayes against
the higher order AR models should be evaluated. Various
complicated conditions, for example, the characteristics of a
transducer and of a propagation medium should be considered.
To do so, we are advancing simulations based on finite
element method (FEM) using PZFlex, a standard FEM code
for ultrasound analysis. Since the echo generation process is
complicated and depends not only reflection but also transmit-
tance and diffraction, it is difficult in principle to restore the
reflectance of the scatterers purely. However, the obtained ĥ
contains information on the tissue, and we expect to be able
to diagnose tissue properties from the change ĥ.

In the next stage, we are going to examine a new imaging
system that presents organ boundaries and inside the organ
separately. By subtracting the echo corresponding to the image
of the inside the organ, that is obtained by the method in this
study, from the original echoes, and subsequently applying a
method to extract the organ boundaries, the imaging system

above is expected to be constructed.
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