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Abstract 

   In this paper, the steady two-dimensional laminar incompressible flow over a sphere in the presence of viscous dissipation and 

heat generation is considered. Thermal conductivity is assumed as a linear function of temperature. The governing equations are 

solved numerically by numerical solution strategy as per requirement and suitability. The obtained self similar equations are then 

solved numerically by an implicit, tri-diagonal, finite-difference method with Keller Box scheme. Favorable comparison with 

previously published work is performed. Computations are performed for a wide range of the governing flow parameters such as 

thermal conductivity variation parameter  , heat generation parameter Q, Prandtl number Pr and Eckert number Ec. The 

computational findings for the dimensionless velocity, temperature profiles as well as for the skin-friction coefficient and heat 

transfer rate are presented in tabular form and graphically. 
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1. Introduction 

   The study of convective flow, heat transfer gets much interest of researchers for nature and industrial application.  
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Chen and Mucoglu [1,2] have studied mixed convection over a sphere with uniform surface temperature and 

uniform surface heat flux for very large Reynolds Re and Grashof numbers Gr , using the boundary layer 

approximations. 

 

 

   Nomenclature 

  a  Radius of the sphere 

  Cf Skin friction coefficient 

  Cp Specific heat at constant pressure 

  f  
Dimensionless stream function 

  Gr Grashof number 

  
g  Acceleration due to gravity 

  k         Thermal conductivity 

  kf           Thermal conductivity of the fluid 

  k∞         Thermal conductivity of the ambient fluid 

 Ec         Eckert number 

  Nu  Local Nusselt number 

  Pr         Prandtl number 

  qw         Heat flux at the surface 

  Q Heat generation parameter 

  Q0        Constant 

  r  Radial distance from the symmetric axis to the surface 

  T Temperature of the fluid in the boundary layer 

  
T

       
Temperature of the ambient fluid 

  w
T

       
Temperature at the surface 

  u  Dimensionless velocity component along x direction 

  v  Dimensionless velocity component along y direction 

  U
         

Velocity component along the surface 

  V          Velocity component normal to the surface 

  X Axis in the direction along the surface 

  Y Axis in the direction normal to the surface 

 

Greek Symbols 

  
           Dimensionless coordinate along to the surface 

  
           Dimensionless coordinate normal to the surface 

  
          Stream function 

  w          Shearing stress 

  
          Density of the fluid 

  
          Viscosity of the fluid 

             Kinematics viscosity of the fluid 

             Dimensionless temperature function 

  
          Coefficient of thermal expansion 

  0
         Strength of magnetic field 

  
           Thermal conductivity variation parameter 

  
*

          Constant 

0
           Electric conductivity  

Viscous dissipation effects on natural convection flow along a sphere with radiation heat loss are examined by 

Alim et al. [3]. Viscous dissipation effects on natural convection flow along a sphere with heat generation is studied 

by Salina et al. [4]. Natural convection flow on a sphere through porous medium in presence of heat source/sink near 
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a stagnation point was considered by Mukhopadhyay [5]. Magneto hydrodynamic natural convection flow on a 

sphere in presence of heat generation was investigated by Molla et al. [6]. Alam et al. [7] has been investigated the 

free convection from a vertical permeable circular cone with pressure work and non-uniform surface temperature. 

Viscous dissipation effects on MHD natural convection flow over a sphere in the presence of heat generation was 

introduced by Alam et al. [8]. Mixed convection boundary layer flow about a solid sphere with Newtonian heating 

was analyzed by Salleh et al. [9]. Rahman et al. [10] analyzed the effects of temperature dependent thermal 

conductivity on magnetohydrodynamic (MHD) free convection flow along a vertical flat plate with heat conduction. 

Combined effects of viscous dissipation and temperature dependent thermal conductivity on MHD free convection 

flow with conduction and joule heating along a vertical flat plate was studied by Nasrin and Alim [11]. Safiqul Islam 

et al. [12] investigated the effects of temperature dependent thermal conductivity on MHD free convection flow 

along a vertical flat plate with heat generation and joule heating. Effects of variable viscosity and thermal 

conductivity on unsteady MHD flow of non-Newtonian fluid over a stretching porous sheet was presented by Abdel 

Rahman [13]. Borah and Hazarika [14] studied the effects of variable viscosity & thermal conductivity on steady 

free convection flow along a semi-infinite vertical plate (in presence of uniform transverse magnetic field). He 

solved the governing boundary layer equations by taking series expansion of the stream function and temperature 

function. Uddin and Kumar [15] examined the effect of temperature dependent properties on MHD free convection 

flow and heat transfer near the lower stagnation point of a porous isothermal cylinder.  

   In all the aforementioned study the effects of viscous dissipation on natural convection flow over a sphere with 

temperature dependent thermal conductivity in presence of heat generation has not been considered yet. The 

governing partial differential equations are reduced to locally non-similar partial differential forms by adopting 

some appropriate transformations. The transformed boundary layer equations are solved numerically using implicit 

finite difference scheme together with Keller box technique. Numerical results have been obtained in terms of local 

skin friction, rate of heat transfer for a selection of relevant physical parameters are shown graphically. 

2. Mathematical Formulation 

   The steady two-dimensional natural convection boundary layer flow of an incompressible viscous and electrically 

conducting fluid over a sphere of radius a has been considered. In this analysis  Tw is assumed as the constant 

temperature at the surface of the sphere and 


T   being the ambient temperature of the fluid. Whereas T is the 

temperature of the fluid in the boundary layer.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1:  Physical model and coordinate system 
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The conservation equations for the flow characterized with steady, laminar and two dimensional boundary layers, 

the continuity, momentum and energy equations can be written as:   
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The boundary conditions for the governing equations are   
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
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



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
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

a

X
sinaxr )(  (5) 

where r is the radial distance from the symmetrical axis to the surface of the sphere,  Tk  is the thermal 

conductivity of the fluid depending on the fluid temperature T. Here we will consider the form of the temperature 

dependent thermal conductivity which is proposed by Charraudeau [16], as follows  








 
 )(1 T-Tkk   (6) 

where 


k
 
is the thermal conductivity of the ambient fluid and 




 

is constant which is defined as 

fT

k

f
k
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
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1
  (7) 

The above equations are non-dimensional as usual manner by the following substitutions: 


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,

0
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

 Vv  (8) 

Where, 2
1

0
Gr

a

u


  is the characteristic velocity of the fluid. 

Using the above transformations into equations (1) to (5), we have 

  

     0   









vrur


 

(9) 

 





sin
uuu

u 















2

2

v  (10) 

 

 

22
1

2

2

1
1






























































 u
Ec

PrPr

u v  since        
(11) 

 

 

 

 

  



 Md. Raihanul Haque et al. / Procedia Engineering 00 (2015) 000–000 5 

The reduced boundary conditions are 
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 sinar )(  (13) 
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
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






  is the Grashof number and   ,  is the non dimensional temperature function, 

viscous dissipation parameter 
 
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TwTpCa
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
 is characterized by Eckert number

 
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
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

 

is the Prandtl number,  




 
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TwT
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1
  is the thermal conductivity variation parameter. To 

solve equations (10) and (11) subject to the boundary conditions (12), we assume the following variables u and v 

where ),()(  fr  and   ,  is the non-dimensional stream function which is related to the velocity 

components in the usual way as 
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Putting the above value in equation (10) and (11), we have 



































































2

222

2

2

 1
3

3

 




















ffffsinff
fcos

sin

f
 

(15) 

 

  





















































































































fff
cEfcos

sinPrPr
2

2
2

  1

2
1

2

2

1
1

 (16) 

 

The corresponding boundary conditions are  
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It can be seen that near the lower stagnation point of the sphere i.e. 0  Equations (15) and (16) reduces to the 

following ordinary differential equations: 
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Where primes denote the differentiation of the function with respect to . 
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Subject to the boundary conditions 
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In practical application, the physical quantities of principal interest are the heat transfer and the skin- friction 

coefficient, which can be written in non- dimensional form as 

 
wq

TwTk

aGr
Nu







4
1

 and w

aGr
C

f




24
3

                                     
 

(21) 

 Where 

0


 









YY

T

f
kwq  and

0


 









YY

U

w  , 
f

k being the thermal conductivity of the fluid. Using the new 

variables (8) along with the boundary conditions (17), we have the simplified form of the heat transfer and the skin- 

friction coefficient as 
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3. Result and discussion  

   In order to gain physical insight the velocity and  temperature profiles as well as skin  friction  coefficient and rate  

of  heat  transfer  have been discussed  by  assigning  numerical  values  to  the  parameter  encountered  in  the  

problem  in  which  the numerical results are displayed with the graphical illustrations. Solutions are obtained for the 

fluid having Prandtl number Pr = 1.0, viscous dissipation parameter N which is characterized by Eckert number Ec

(= 1.0, 1.5, 2.5, 3.5), thermal conductivity variation parameter  (= 0.50, 1.50, 2.50, 3.50) and heat generation 

parameter Q (= 0.01, 0.15, 0.25, 0.35) against   at any position of  .  

Figs. 2(a) and (b) display results for the velocity and temperature profiles, for different values of Eckert number Ec  

with thermal conductivity variation parameter  = 0.50, heat generation parameter Q= 0.01 and Prandtl number Pr 

=1.0. From Fig. 2(a), it can be observed that the velocity goes significantly upward with the increase of the Eckert 

number Ec . From Fig. 2(b), it is seen that when the values of Eckert number Ec  increases in the region 5.60  

, the temperature distribution also increases. Figs. 3(a) and (b) show how variations in Ec  affect the flow on skin-

friction coefficient and the rate of heat transfer. It is observed  that  at  = 0.87266,  the  skin  friction  coefficient  Cf 

increases  by  10.03%  and  the Nusselt number  Nu  decreases  by  77.74%  as  Ec   increases  from  1.0  to 3.5. 

Figs. 4(a) and (b) illustrate the velocity and temperature distribution against the variable    for different values of 

the thermal conductivity variation parameter  while Pr =1.0, Ec  = 1.0 and Q = 0.01. It is found that both the 

velocity and temperature distribution increases with the increasing values of the thermal conductivity variation 

parameter  . It should be noted that at each value of the thermal conductivity variation parameter  , the velocity 

profile has a local maximum value within the boundary layer. The maximum values of the velocity are 0.37182, 

0.40869, 0.44253 at  = 1.11440 and final maximum value is 0.47266 at  = 1.17520 for  = 0.50, 1.50, 2.50, 3.50 

respectively. The velocity increases by 27.12% as    increases from 0.50 to 3.50. It is obvious that the velocity 

boundary layer and the thermal boundary layer thickness enhance for large values of  . 

  Figs. 5(a) and 5(b) deal with the effect of thermal conductivity variation parameter   associated with the heat 

generation parameter Q = 0.01and Eckert number Ec =1.0 and Prandlt number Pr = 1.0.  From Figs. 5(a) and 5(b) 

we observed that the skin friction co-efficient Cf increase sharply, on the contrary heat transfer rate decrease 

monotonically for selected value of  . It is seen that skin friction co-efficient and heat transfer rate increases by 

16.27% and decreases by 80.52% for distinct value of   at  = 0.87266.The effect of heat generation parameter Q  
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Fig. 2. (a)Velocity profiles and (b) temperature profiles for different values of Ec while  = 0.50, Q = 0.01 and Pr =1.0. 

  
Fig. 3. (a) Skin friction coefficient and (b) rate of heat transfer for different values of Ec while  = 0.50, Q = 0.01 and Pr =1.0. 

 

  
Fig. 4. (a)Velocity profiles and (b) temperature profiles for different values of   while Ec = 1.0, Q = 0.01 and Pr =1.0. 

 

on velocity and temperature profiles with  = 0.50, Ec  = 1.0 and Pr = 1.0 are exposed in Figs. 6(a) and 6(b). From 

Fig. 6(a), it can be stated that the velocity distribution increases as the values of heat generation parameter Q 

increase. It is obvious that when the heat is generated (Q > 0) the buoyancy force increases, which induces the flow 

rate to increase giving, rise to the increase in the velocity profiles. Again when the heat absorption (Q < 0) 

intensifies the velocity is found to decrease due the decrease in the buoyancy force. The maximum values of the 

velocity are 0.37182, 0.39892, 0.41964, 0.44168 for Q = 0.01, 0.15 0.25 and 0.35 respectively which occur at η = 

1.11440. Here it is observed that the velocity increase by 18.78 % as Q increases from 0.01 to 0.35. From Fig. 6(b), 

it is seen that when the values of heat generation parameter Q increase, the temperature distributions also increase.  
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Fig. 5. (a) Skin friction coefficient and (b) rate of heat transfer for different values of of   while Ec = 1.0, Q = 0.01 and Pr =1.0. 

 

  
Fig. 6. (a)Velocity profiles and (b) temperature profiles for different values of Q while Ec = 1.0,  = 0.50 and Pr =1.0. 

  
Fig.7. (a) Skin friction coefficient and (b) rate of heat transfer for different values of of Q while Ec = 1.0,  = 0.50 and Pr =1.0. 

The variation of the local skin friction coefficient and the local rate of heat transfer for different values of the heat 

generation parameter Q are depicted in Figs. 7(a) and 7(b) while   = 0.50, Ec  = 1.0 and Prandtl number Pr =1.0. 
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0.87266 the skin friction coefficient Cf increases by 12.44% and the Nusselt number Nu  decreases by 84.14% 

respectively, as Q increases from 0.01 to 0.35. 

 

    In order to verify the accuracy of the present work, the values of non dimensional heat transfer parameter Nu for 
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Ec = 0,   = 0 and Q = 0 having prandlt number Pr = 0.7 at different position of  (in degree ) are compared with 

those reported by Nazar et al.[17] and Molla et al. [6] as present in table 1. The results are found to be in good 

agreement. 

 
Table 1: Rate of heat transfer against  for Prandlt number Pr = 0.70 with other controlling parameters Ec = 0.0,   = 0.0 and Q =0.0. 

  in degree Nazar et al.[17] Molla [6] present 

0 0.4576 0.4576 0.45762 

10 0.4565 0.4564 0.45653 

20 0.4533 0.4532 0.45336 
30 0.4480 0.4479 0.44808 

40 0.4405 0.4404 0.44067 

50 0.4308 0.4307 0.43107 
60 0.4181 0.4188 0.41920 

70 0.4046 0.4045 0.40499 

80 0.3879 0.3877 0.38828 
90 0.3684 0.3683 0.36891 

 

4. Conclusion 

   Natural convection heat transfer gained considerable attention because of its numerous applications in the areas of 

energy conservations cooling of electrical and electronic components, design of solar collectors, heat exchangers, 

pumps and flow meters and many others.  An analysis has been carried out to study the effects of viscous dissipation 

on natural convection flow over a sphere with temperature dependent thermal conductivity in presence of heat 

generation. The following observations and conclusions can be drawn: 

 

 The velocity  and temperature within the boundary layer increases for increasing values of  Eckert number 

Ec, thermal conductivity variation parameter  , heat generation parameter Q. 

 The local skin friction co-efficient Cf increases for the increasing values of Eckert number Ec, thermal 

conductivity variation parameter  , heat generation parameter Q.  

 The local Nusselt number Nu decreases for the increasing values of the Eckert number Ec, thermal 

conductivity variation parameter  , heat generation parameter Q. 

 The effect of increasing values of the thermal conductivity variation parameter   is  to  increase  the  

momentum  boundary  layer  as  well  as  the  thermal  boundary  layer thickness. 
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