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Abstract

An extended version of the isotropic one—equation model is proposed to account for the dis-
tinct effects of low-Reynolds number (LRN) and wall proximity. The turbulent kinetic energy
k and the dissipation rate ¢ are evaluated using the R (= k?/¢) transport equation together with
some empirical relations. The eddy viscosity formulation maintains the positivity of normal
Reynolds stresses and the Schwarz’ inequality for turbulent shear stresses. The model coef-
ficients/functions preserve the anisotropic characteristics of turbulence in the sense that they
are sensitized to rotational and nonequilibrium flows. The model is validated against a well-
documented flow case, yielding predictions in good agreement with the direct numerical simu-
lation (DNS) data. Comparisons indicate that the present model offers some improvement over
the Spalart—Allmaras one—equation model.
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1. Introduction

One-equation turbulence model enjoys a wide popularity due to its simplicity of implementa-
tion and less demanding computational requirements, compared with the standard two-equation
k—e and k—w models. The algebraic model such as Baldwin—Lomax model [1] is efficient from
a numerical point of view but lacks generality for not having transport and diffusion effects.
However, one-equation model includes transport effects and can be considered as a good com-
promise between algebraic and two-equation models.

Considerable research is devoted to improving the accuracy of one-equation models, com-
prising the equilibrium and non-equilibrium flows [2—8]. The Baldwin—Barth (BB) model [2]
derived using the k—e closure is among the first one-equation models to be self-consistent by
avoiding the use of algebraic length scales. Nevertheless, in the course of transformation some
other major assumptions are made that weaken the link with its parent k— models. As a re-
sult, the BB model performs very differently from the underlying k—e model, even in simple
equilibrium flows [4]. To a larger extent, the failure of the BB model lies in the destruction



term. Besides, it is sensitive to the free-stream value efttinbulent Reynolds number and
yields unexpected results in predicting the separatiotathed flows with mild to strong ad-
verse pressure gradients. In addition, the diffusive tdrat is not directly connected to the
k— model renders the model ill-conditioned near the edge ofttear layers. However, the
BB model has good near-wall benign properties like the lifeshavior of its transport prop-
erty, which in turn does not require a finer grid than an algebhmodel does [5]. Spalart and
Allmaras (SA) [3] derive their model using empirical criseand arguments from dimensional
analysis, having no link to the— equations. The motivation for this approach is that the BB
model is constrained by assumptions inherited fromithemodel. Note that the SA model is
a modified version of the BB model.

Using the Bradshaw-relation [8] (i.e., the shear streskarbbundary layer is proportional
to the turbulent kinetic energy), Menter [4], in his tranmshation from thek— closure to the
one-equation model shows a closer connection than the BEeimbtenter also mentions that
using the Bradshaw-relation seems to be more effective meeualibrium flows. However,
transforming thé— closure may carry many of its deficiencies, such as the bddrpgnce in
wall-bounded flows in the presence of mild adverse pressacients. It should be emphasized
that Menter aims at establishing a firm bond between the amktveo-equation models rather
than endorsing a new model for general use. Further moddicato one-equation models
based on Menter’s transformation of thec and k—w closures are proposed by Elkhoury [5]
that have no effect for zero pressure gradient flows. Howdhery improve the predictive
capabilities of the models in wall-bounded nonequilibriflowvs compared with the SA model
and retain their wall-distance-free feature. Fares andd@ehn [6] devise a one-equation model
using the findings of the SA anid- models that predicts a wide range of flows especially jets
and vortical flows more accurately than the SA model whilairehg the same quality of results
for near-wall flows, and to be more efficient than thev model. Nagano et al. [7] propose
a low-Reynolds number (LRN) one-equation model derivednfan LRN two-equatiork—
model using the modified Bradshaw-relation that accoumtsdar-wall turbulence. The model
provides good results for simple flows and the flow with sef@maand reattachment.

In the present study, an LRN extension of the BB one-equdtidoulence model is pro-
posed and evaluated. This version has several desiralilutgs relative to the original BB
model: (a) It revives the link between the BB arid« models via the source/sink and diffu-
sion terms, using the turbulence structure parameter |—uv| /k (Bradshaw-relation)(b)
an eddy damping functiorfi,, the length scale of which is explicitly influenced by the mea
flow and turbulent variables, is devised to suppress thesskee eddy viscosity in near-wall
regions;(c) a physically appropriate time scale is used that never ffiellew the Kolmogorov
(dissipative eddy) time scaléj) the turbulent Prandtl numberis adjusted such as to provide
substantial turbulent diffusion in the near-wall regi¢#); source/sink term coefficients, , and
C,, that depend nonlinearly on both the rotational and irfotetl strains are proposed based
on the realizability constraints and appropriate expenitsieConsequently, the model extends
the ability of the BB model to account for nonequilibrium aadsotropic effects, a feature that
is missing in the single equation models developed so far.

The performance of the new model is demonstrated throughdimparison with the DNS
data such as fully developed channel flows. The test casdestag@ such as to justify the
ability of the model to replicate the combined effects of LRi¢ar-wall turbulence. Since
the SA model is not transformed from thee closure, it would be interesting to compare the
present model predictions with those of the SA model.



2. Turbulence modeling

The principal assumption in deriving the one-equation rhagdthat the turbulent shear stress
(—uw) is proportional to the turbulent kinetic energh),( which is equivalent to the assump-
tion of Production P) = Dissipation €) in standard two-equatioh—« models. The second
assumption is that = 0, = o.. A more detailed derivation can be found in Menter [4].
In collaboration with the Reynolds-averaged Navier-Sso@ANS) equations, the proposed
model determines by the following transport relation? = £?/é can be enumerated as an
undamped tentative eddy viscosity, where the reducedpdiish ratee — 0 as the wall is ap-
proached, while remains finite. The one-equation turbulence model for iRglgnolds number
wall-bounded flows developed by Baldwin and Barth [2] is nfiedito evaluater as:
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subjected tak,, = 0 at solid walls. Hereinp is the density, denotes the molecular viscosity,
o is the appropriate turbulent Prandtl number, the prododéom P = —w;w; (0w, /0x;), and
the undamped actual eddy viscosity= T}, whereT; is the hybrid time scale. Compared
with the original Baldwin—Barth (BB) model, the new modeblacesR by R from pr (eddy-
viscosity/diffusion) (' (production) and’; (destruction) terms that renders the direct coupling
betweenR, k andT; (i.e., e sinceT; contains botht ande¢), thus reducing the free—stream
sensitivity. Equation (1) presents a closure problem witeé¢ unknowns and therefore, in order
to close it,k ande are evaluated using the-transport equation together with the Bradshaw [8]
and other empirical relations. Alternativelyande are represented in terms Bfin section2.5.

The Reynolds stresses;u; are related to the mean strain rate ten$gthrough the Boussi-
nesq approximation:

L 1 2 1 (0u; Ou;
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The turbulent viscosity is evaluated from
NT:CufupR:Cufukat 3)

where the eddy viscosity damping functigp is obtained by solving the ellipti¢,, equation
that envisages LRN and wall proximity effects. Howevgr,relaxes tol (one) far from the
wall. The model coefficienC’, is in general a scalar function of the invariants formed an th
strain rateS;; and vorticitylV;; tensors in question [9]. The vorticity tensidf;; is defined as

1 0uz 8uj

The invariants of mean strain rate and vorticity tensorsdafned byS = ,/25,;5;; and

W = ,/2W,;;W,;, respectively. The detailed functional form ©f, is determined relying on
the constraints such as realizability and appropriateraxgats. The formulation of the model
coefficients and associated relevant aspects are disansseahe detail in subsequent sections.



2.1. Hybrid time scaleT;

The standard argument to introduce a specific time scalaiswdar a wall the flow is not tur-
bulent anymore, and hence the use of the dynamic time &¢ais not appropriate. Employing
k/e results in that the time scale vanishes when approachingllawlgere ¥ — 0 ande is
non-zero. To avoid this, the Kolmogorov time SCW is used as a lower bound, where
the viscous dissipation is dominant. Are models, this approach prevents the singularity in
the dissipation equation down to the wall. To interpolat®sthly between Kolmogorov and
dynamic scales, a hybrid time scale is formed as

k2 , vk C3 K
Tt— 6—2+CTE—E 1+R—6T’ RGT—; (5)

wherer denotes the kinematic viscosity aid is the turbulence Reynolds number. Equation

(5) warrants that the eddy time scale never falls below thenkgorov time scale’'ry/v /e,
dominant in the immediate neighborhood of the solid wallteAlatively, the turbulence time

scale isk/e at large Rer but approaches the Kolmogorov limit;y/v /e for Rer < 1. The

empirical constant’; = /2 associated with the Kolmogorov time scale is estimated fitoen
behavior ofk in the viscous sublayer [10].

2.2. CoefficientC),

The new model appears with recourse to the realizabilitgtamts, reflecting physically nec-
essary conditions for developing a compatible turbulenodeh The realizability conditions
represent the minimal requirement to prevent a turbulenogetfrom producing nonphysical
results [11]. The commonly used isotropic eddy viscositydelavith a constan€,, = 0.09
becomes unrealizable in the case of a large mean strainaesmptefl; S (whenT; S > 3.7),
producing negative normal stresses in question and rédltyas violated. To ensure realiz-
ability, the model coefficienC’, cannot be a constant. It must be related with the mean flow
deformation rate. Accordingly, a new formulation 0], as suggested by Gatski and Speziale
[9] is adopted:

an
1— %772 + 252’

The coefficientsy;—3 associated with Eq. (6) are given by

C,u = n =TS, &=a3sTiW (6)
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Note that the constants associated witire slightly modified to reproduce the data of DNS and
experiments. The invariant of the Reynolds strdssand production to dissipation ratig, /e
in Eq. (7) are modeled such that they depend nonlinearly ¢mthe rotational and irrotational
strains [12]:
P P,
m=Cc,—, == 8)
€

€
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o 1
”_2(L+ﬂswl+%ﬂ’

¢ =T;S max(1,R) (9)
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Figure 1: Variations of eddy viscosity coefficient with weikstance in channel flow.

whereR = |IW/S| is a dimensionless parameter that is very useful to chaiaetie flow. For
instance, for a pure shear flotv= 1, whereas for a plane strain fld&= 0. It is appropriate to
emphasize herein that the calibrated relationsipand P/e can assist the coefficients; —;)
in responding to both the shear and vorticity dominated fltves are far from equilibrium.
Detailed analysis of the model realizability is availabkeg/here [12].

2.3. Damping function

The eddy viscosity damping functiofy faces the distinct effects of LRN and wall proximity in
near-wall regions. Alternatively, the primary objectivieitroducing f,, to turbulence models
is to represent the kinematic blocking by the wall, and isskl pragmatically as

1/3
thzl—am(—%), L2:2§@+%LR@J¢;j (10)

where(1?/¢)1/* signifies the Kolmogorov length scale. A plot@f f,, against the DNS data for
fully developed turbulent channel flows is shown in Fig. 1 gndd correlation is obtained for
y*t > 1. Fory™ < 1.5,C, f, seems likely to increase proportionallyidi.e., like a singlef,,) in
the very near-wall region as evinced by Fig. 1 in comparisdh the DNS data [13]. Overall,
the adopted form of’, f,, converges to replicate the influences of LRN and wall proiniihe
productC), f,, ~ 0.09 (the standard choice far, = 0.09, pertaining to the lineak-e model)
remote from the wall to ensure that the model is compatibté wie high-Reynolds number
turbulence model.

2.4. Other model coefficients
The model coefficient§’; and(C,, are related to thé-e constants by [2]

C* . [C*
Ci=Cu—Cq=048, Cy=(Coo—Ca) V" ~0.08 (11)

K2

wherex = 0.41 is the von Karman constant. The coefficieGtsandC, are calculated based
on the values of the standatde closure wherel’;; = 1.44, C, = 1.92 andC}, = 0.09.
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Figure 2: Mean velocity profiles of channel flow.

However, the necessity to account for changeSiimnd(Cs is desirable in order to include the
local anisotropy of turbulence as is practised in kheturbulence model [12]. To explore the
anisotropic situatior,; andCs are devised as a function of mean shear and vorticity pasmet
(i.e.,7,.S andT; W, respectively):

Cy =2 Hg(1—¢n>g), 02:2((]“—%7;@) (12)

whereC), = C; — C,, C;; = 0.09 and\/TTg = (O, is essentially identical to Eqg. (9), however,
with the exception thaf', is replaced by’,,. It can be stressed that the shear/vorticity parameter
certainly induces compatible changes(in, which account for the anisotropy of turbulence.
Remarkably(; ~ 0.42 andCs = 0.18 in the log layer of a channel flow witf’® = 1) ~ 3.3.
However, at some value af, = C,(7;S,T;W), C, will reach 0.08 as given in Eq. (11).
In principle, the reconstruction af', , assists qualitatively in predicting turbulent flows with
separation and reattachment as shown in the computatitarsec

The budgets ok ande from the DNS data suggest that the role of turbulent diffasiothe
near-wall region is substantial. Accordingly, the Prandtnbers is modeled, rather than being
assigned constant value (unlike the commonly adoptedipeawitho ~ 1):

o=C\+ f./Cr (13)

The model coefficients is developed so that sufficient diffusion is obtained in tieenity of
the wall. This contrivance tends to successfully predietkimetic energy and dissipation rate
profiles from theR—transport equation. Neverthele€$, ~ 0.3 andf,, = 1.0 in the free-stream
region and therefore; ~ 1 is recovered therein.

2.5. Evaluation ofk and e

The professed interest herein is to repregeande in term of R in order to evaluate? (and
thereforeur) in Eq. (3). Probably, it is the most essential step, sineegiémnerality of the re-
constructed: ande must be guaranteed through a wide range of flows. The mosbjppate
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Figure 3: Shear stress profiles of channel flow.

assumption concerning such a reconstruction is the Bradslipothesis [8] implemented di-
rectly into many turbulence models [6]. With the Bradshaslation,k may be expressed using
the tentative eddy viscosity’,, f;; ) through the turbulence structure parameter:

T S
| ; |:a1:CMf;‘RE (14)

where the turbulence structure parameter= ,/C,. The exponent of f, is chosen to be
n = 0.8 to fit DNS/experimental data and sensibly, without the Idsgemerality. To avoid the
implicit formulation, Eqg. (3) is not used to form Eq. (14) athe purpose herein is to revive the
link between the BB anéd— models via the source/sink and diffusion terms utilizing

Recent DNS and experimental data indicate that the Braddigwothesis is neither exactly
valid in the viscous sublayer of the turbulent boundary tan@ in the free shear layers [6, 7].
However, it is to be expected that the introduction of Eq.) (@#th the one—equation model
will actually lead to improved predictions of nonequilim flows [4]. Thereforek can be
determined from Eq. (14) as

k=\/C.RS 3 (15)

SinceS — 0 away from the wall (i.e., free-stream regiok)given by Eq. (15) is insufficient
there. In fact, the region wherg is locally zero is bridged mutually by the diffusion and
convection terms in th&-e turbulence model. With the assistance of [7], the meanrstede
correctionS,, away from the wall is determined by numerical optimization:

5 _ 2ot ( Vud/2 ) (16)

v \1+ur/p

with

Co = [C2 4+ — fo=1—cap <—ﬂ> (17)



whereu;, = Vvu?+ v? + w? is the velocity magnitude and.f,w) is the velocity vector in
Cartesian coordinates. The expressigrusesv + R) to avoid the singularity in the near—wall
region sincek — 0 there.

Note thatC, depends nonlinearly on both the shear and vorticity parerseind therefore,
the structure parametey = {a used in reconstructing is no longer constant. However, the
Bradshaw-relation Eq. (14) has no meaning for flows withbegs. To extend the predictive
capability, a modification is proposed to account for the@fbf mean rotation rate on the mean
strain rate:

Gog_Iml=m m=S—W (18)

The advantage of this formulation is that(and therefore, the turbulence eddy viscosity) is
reduced in the regions where the magnitude of the vorticitgeds that of the strain rate, such
as in the vortex core. Nevertheless, the overwhelming nitgjof applications of turbulence
models is for shear dominated flows, where the one—equatadehis probably well suited.
Thus, Eg. (15) can be reconstructed as follows:

k= f'®%/C.R Sk, S, =1/52+ S2 (19)

The value ofe plays an important role in evaluating the hybrid time sc@leccompanied by
the turbulence eddy viscosityr, and is reconstructed as follows:

/{52
€= /€2 + &, ¢ = % (20)
14

wheree,, signifies the wall-dissipation rate that equals to the wvisediffusion rate [14] and is
modeled as

2
€w = 2A. v <%> ~ 2A.v5? (21)
y

w

where A, is a function of the Reynolds number. Experimental and DN& déflat plate and
channel flows indicate th@t05 < A, < 0.11, with a preference for higher values at larger
Reynolds numbers [13]. In the current work, = C}; = 0.09 is adopted. Apparently, the
contribution ofe,, to € is confined within the wall layer.

3. Computations

To validate the generality and efficacy of the proposed mdd#y developed channel flows
are considered. To evaluate the model reliability and amythe present model predictions
are compared with those from the SA model [3]. However, caegbavith the SA model, the
new model is additionally sensitized to nonequilibrium amdsotropic effects (i.e., anisotropic
model coefficients, depending nonlinearly on both the ratal and irrotational strains). A
cell centered finite-volume scheme combined with an amifitompressibility approach is em-
ployed to solve the flow equations [15, 16].

The computation is carried out for fully developed turbalehannel flows atze, = 180
and 395 for which turbulence quantities are available from the DN#ad[13] . The calcula-
tion is conducted in the half-width of the channel, using-atimensional RANS solver. The
computation involving a x 64 nonuniform grid refinement is considered based on the grid
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Figure 4: Turbulence kinetic energy profiles of channel flow.
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Figure 5: Dissipation rate profiles of channel flow.

independence test. To ensure the resolution of the visaghiayser the first grid node near
the wall is placed ay™ ~ 0.3. Comparisons are made by plotting the results in the form of
ut =u/u,;, kT =k /u, w0t = ww/u? ande™ = ve/ul versusyT.

Figure 2 shows the velocity profiles for different models.edctions of the present and
SA models agree well with the DNS data. HoweverRat = 180 the relative errors on the
prediction of Re, are evaluated a$2% (averaged value) and1.7% for the present and SA
models, respectively. Profiles of turbulent shear streasedisplayed in Figure 3. Agreement
of all model predictions with the DNS data is fairly good. éesns likely that the present model
returns superior predictions in near-wall regions retatwvthe SA model.

Further examination of the model performance is directetthéd: ™ profiles as portrayed in
Fig. 4. As is evidentk™ is somewhat overpredicted in the near-wall region. Thisrabp
ably due to the improper behavior of the Bradshaw—relatiopleyed to evaluaté. Figure
5 exhibits the profiles o™ from the present computations that provides a maximtinat
the wall which is more in line with the experimental and DNSadaNevertheless;' is over-
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Figure 6: Turbulent eddy viscosity profiles of channel flow.

predicted/underpredicted in near-wall regions. The okekdiscrepancy might be due to the
limitation of the proposed near-wall correctiep in Eq. (21). Figure 6 shows the turbulent
eddy viscosity profiles. As notable from the figure, both tlieg®d present models reproduce
the correct near-wall behavior, comparable with the DN&.d&towever, both model predic-
tions are inaccurate beyond = 50. Surprisingly, this inaccuracy has little impact on the mea
flow and other turbulent parameters since they are reasppadadicted.

4. Conclusions

The present study reconstructs the Baldwin—Barth modektonbre consistent with the—

e models. Contrasting the predicted results with DNS dataahetnates that the new model
returns predictions comparable with the SA model. Compavrigld the SA model, the new
model is additionally sensitized to nonequilibrium andsatviopic effects. In particular, the
present model may be a good choice for engineering appitatsince it can easily be extended
to a nonlinear eddy viscosity model.
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Abstract

The present study addresses numerical prediction of fully developed two-dimensional laminar flow of viscous
incompressible fluid through a curved square duct with curvature ranging from 0.001 to 0.5. Numerical calculations are
carried out over a wide range of the Dean number O < Dn <6000 with a temperature difference between the vertical
sidewalls for the Grashof number Gr = 1000, where the outer wall is heated and the inner wall cooled. Spectral method is
used as a basic tool to solve the system of non-linear differential equations. First, we investigated steady solutions by using
Newton-Raphson iterations method. As a result, a complex structure of steady solutions with two- and multi-vortex
solutions is obtained. Then, in order to investigate the non-linear behavior of the unsteady solutions, time evaluations
calculations are performed and the transition between two types of solutions is determined by drawing the phase spaces of
the time evolution solutions. It is found that the unsteady flow undergoes in the scenario ‘steady-state — periodic — multi-
periodic — chaotic, if the Dean number is increased no matter what the curvature is. Secondary flow patterns, axial flow
distribution and temperature profiles on the flow characteristics are also obtained.

© 2012 Published by Elsevier Ltd.
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Nomenclature
Dn : Dean number T  :Temperature
g : Gravitational acceleration u :Velocity components in the X —direction
Gr : Grashof number V  :Velocity components in the y — direction
h : Half height of the cross section W : Velocity components in the z —direction
d :Half width of the cross section X :Horizontal axis
L :Radius of the curvature y  :Vertical axis
Pr  : Prandtl number Z  :Axis in the direction of the main flow
t :Time A :Resistance coefficient
Greek letters
o : Curvature of the duct v Kinematic viscosity
o) : Density x  : Thermal diffusivity
v : Sectional stream function M1 Viscosity
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1. Introduction

The study of flows and heat transfer through curved ducts and channels has been and continues to be an area of
paramount interest of many researchers because of the diversity of their practical applications in fluids engineering, such as
in fluid transportation, turbo machinery, refrigeration, air conditioning systems, heat exchangers, ventilators, centrifugal
pumps, internal combustion engines and blade-to-blade passage for cooling system in modern gas turbines. The flow
through curved a duct shows physically interesting features under the action of centrifugal force caused by the curvature of
the duct. The presence of curvature produces centrifugal forces which acts at right angle to the main flow direction and
creates secondary flows. Dean [1] was the first who formulated the problem in mathematical terms under the fully
developed flow conditions and showed the existence of a pair of counter rotating vortices in a curved pipe. The readers are
referred to Berger et al. [2], Nandakumar and Masliyah [3] and Yanase et al. [4] for some outstanding reviews on curved
duct flows.

Considering the non-linear nature of the Navier-Stokes equation, the existence of multiple solutions does not come
as a surprise. The solution structure of fully developed flow is commonly present in a bifurcation diagram which consists of
a number of lines (branches) connecting different possible solutions. These branches can bifurcate and show multiple
solutions in limit points (Mondal, [5]). An early complete bifurcation study of two-dimensional flow through a curved duct
of square cross section was conducted by Winters [6]. Wang and Yang [7] performed numerical as well as experimental
investigations of periodic oscillations for the fully developed flow in a curved square duct. Unsteady flow characteristics
through a curved rectangular duct were investigated in detail by Yanase et al. [8]. Recently, Mondal et al. [9] performed
comprehensive numerical study on fully developed bifurcation structure and stability of two-dimensional (2D) flow through
a curved duct with square cross section and found a close relationship between the unsteady solutions and the bifurcation
diagram of steady solutions. The flow through a curved duct with differentially heated vertical sidewalls has another aspect
because secondary flows promote fluid mixing and heat transfer in the fluid. Recently, Mondal et al. [10] performed
numerical investigations of non-isothermal flows through a curved duct with square cross section, where they studied the
flow characteristics with the effects of secondary flows on convective heat transfer.

In the present study, a numerical result is presented for the fully developed two-dimensional flow of viscous
incompressible fluid through a curved square duct with various curvatures. Investigating effect of curvature on unsteady
solutions is an important objective of the present study.

2. Mathematical Formulations

Consider an incompressible viscous fluid streaming through a curved duct with square cross section whose width or
height is 2d. The coordinate system with the relevant notations is shown in Fig. 1. It is assumed that the outer wall of the
duct is heated while the inner one cooled. The temperature of the outer wall is Ty + AT and that of the inner wall is
T, — AT , where AT >0. The x, y and z axes are taken to be in the horizontal, vertical, and axial directions, respectively.
It is assumed that the flow is uniform in the axial direction, and that it is driven by a constant pressure gradient G along the
center-line of the duct, i.e. the main flow in the axial direction as shown in Fig. 1. The variables are non-dimensionalized by
using the representative length d and the representative velocity U, =v/d . We introduce the non-dimensional variables
defined as

u’ v’ N26 X =y z'
u=—oms, V=—-, W=——W, X=—, yzl, Z=—
U, U, U, d d d
T=1 =0y, 529 P=i2, -® d2
AT d L Sk oz pUg

where u, v, and w are the non-dimensional velocity components in the x, y, and z directions, respectively; t is the non-

dimensional time, P the non-dimensional pressure, & the non-dimensional curvature, and temperature is non-
dimensionalized by AT . Henceforth, all the variables are nondimensionalized, if not specified.

The sectional stream function y is introduced as

1 oy 1 oy 1)

u= —,v=-— .
1+ oy 1+ 06X Ox

Then the basic equations for w,i and T are derived from the Navier-Stokes equations and the energy equation under the

Boussinesq approximation as,
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Fig. 1. Coordinate system of the curved duct
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The Dean number D, , the Grashof number G, , and the Prandtl number P, , which appear in Egs. (2) to (4) are defined as
3 3
Gd [Zd LgATd v 6
Dh=—-—, Gr= , Pr=—
n v L r 2 L (6)
where &,v,k and g are the viscosity, the coefficient of thermal expansion, the coefficient of thermal diffusivity and the

gravitational acceleration respectively.
The rigid boundary conditions for W and { are used as

WL Y) = WD) = (41, y) = p(x.+) =%‘”(J_r1, v) =%//(x,irl) —0 @)
and the temperature T is assumed to be constant on the walls as
TALY)=LT(Ly)=-1 T(x+l) =x. ®)
The upper and lower walls are adiabatic. In the present study, Dn and ¢ are varied while Gr and Pr are fixed as Gr = 1000
and Pr = 7.0 (water).
3. Method of numerical calculation

In order to obtain the numerical solutions, spectral method is used. The main objective of the method is to use the
expansion of the polynomial functions that is the variables are expanded in the series of functions consisting of Chebyshev
polynomials. The expansion function ¢p (X) and wn(x) are expressed as

¢>n(x):(l—x2)Cn(x), ‘Pn(x):(l—xz)zcn(x), )
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where Cp,(x) = cos(ncos 1(x)) is the n™ order Chebyshev polynomial. w(x, y,z), w(x, y,t) and T(x,y,t) are expanded
in terms of ®p, (x) and Wp(x) as

w(ry.2)= £ v (0om ()0 (4),
p(x3t)= 5 3y (6)¥m () ¥n (). )

M N
T y 7t == T t q) (I) )
(X, y,1) mEOnEO mn (1) @m (X)@n (y)+x

where M and N are the truncation numbers in the X and Yy directions respectively. The expansion coefficients
W,.., ¥ .,and T are then substituted into the basic Egs. (2), (3) and (4) and the collocation method is applied. As a result,

the nonlinear algebraic equations for W, , /... and T, are obtained. The collocation points are taken to be
X =cos| 7[1-—— ||, i=1..,M +1,
M+2

yi :COS[;{l— . : ZH j=1.. N +1.
+

where i=1..,M+1 and j=1,...,N+1. Inthe present study, numerical calculations are carried out over a wide range of the
Dean number 0 < Dn <6000 and the Grashof number Gr = 1000 for the square duct of curvatures ranging from & = 0.001
to & = 0.3. For sufficient accuracy of the solutions, we used M = 20 and N = 20. Steady solutions are obtained by the

Newton-Raphson iteration method. Finally, to calculate the unsteady solutions, Crank-Nicolson and Adams-Bashforth
methods together with the function expansion and collocation methods are applied to the equations (2) to (4).

(1)

4, Resistance coefficient

We use the resistance coefficient 1 as one of the representative quantities of the flow state. It is also called the
hydraulic resistance coefficient, and is generally used in fluids engineering, defined as

P -P, 2
- A1 *

L2 op(w) (12)
Az dh” 2

where quantities with an Pl* be asterisk denote dimensional ones, ( ) stands for the mean over the cross section of the duct

and dp, =4(2d x2d1)/(4d +4dl) is the hydraulic diameter. The main axial velocity ( w’) is calculated by

1 1
* v
(o Y= T Ildx Ila)(x, y, t)dy (13)

Here, A4 isrelated to the mean non-dimensional axial velocity ( w) as

4J25Dn
(@)*

where <W> =4/25d /v<w*>. In this paper, A is used to find the solution structure of the steady solutions and to find the

A= (14)

unsteady solutions by numerical computations.

5. Results and Discussion
5.1 Steady Solutions

With the present numerical calculation, we obtain a single but entangled branch of steady solution for Gr = 1000 over
the Dean number 0 <Dn<6000. To obtain the steady solution, we used path continuation technique as discussed by
Mondal [5]. The solution structure of the steady solution is shown in Fig 2(a). An enlargement of Fig. 2(a) is also shown in
Fig. 2(b). It is found that the branch starts from point @ (Dn ~0) and goes to the direction of increasing Dn and
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decreasing A up to point b (Dn =4823), where it experiences a smooth turning and goes to the direction of increasing
A and decreasing Dn up to point ¢ (Dn = 3897). At point C, the branch experiences another interesting turning and goes
to the direction of increasing Dn and decreasing A up to pointd (Dn = 4976) , where the branch turns very smoothly and
goes to the direction of increasing A and decreasing Dn up to point e (Dn =3862) and then to point f (Dn =4156), and

finally extents to increasing Dn through points g and h. It is found that the branch consists of asymmetric two- and four-
vortex solutions, which are not shown here for brevity.

015
4 - - — - ans
0.4r o145
0.4
oa3sf
0.3F
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ozl aizf
o115
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0.1 . L 1 1 1
0 2000 4000 2000 4000 s000
Dn Dn
(@) (b)

Fig. 2: (a) Solution structure of the steady solution for Gr =1000 and 0 < Dn < Dn <5500at & = 0.1 (b) An enlargement of
Fig. 2(a) at 1180 < Dn <5200.

5.2 Time evolution of the unsteady solutions

In order to study the non-linear behavior of the unsteady solutions, we perform time-evolution calculations of A at
various Dn for the curvatures ranging from & = 0.001 to & = 0.5 for Gr =1000. However, in this section, we only show the
results of unsteady solutions for the curvature & = .1, and complete unsteady solutions ranging from & = 0.001 to & = 0.5,
are shown in a phase diagram in the next section.

Gr=1000
01434+
H Gr=1000 Dn=2200
Dn=2900 o
0.1428:-
2.
"l 1
Q1422
0'
[*RE N
i i
a7 = 75 T = L . . ;
Time(t) 0.1415 u.14zk 01425 0.143
(@) (b)

27.714  27.80 2791 2797

Fig. 3: (a) Time evolution of A for Dn=2900 and Gr =1000 at & =0.1 (b) Phase space of the time evolution of A
for Dn =2900 and Gr =1000 (c) Contours of secondary flow patterns (top) and temperature profile (bottom) for
one period of oscillation at time 27.69 <t < 27.97 .
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To investigate the non-linear behavior of unsteady solutions, we studied time evolution of A for Dn = 2900 and
Gr =1000 at 6 =0.1as shown in Fig. 3(a). Figure 3(a) shows that the unsteady flow at Dn =2900is a periodic solution,
which is well justified by drawing a phase spaces as shown in Fig. 3(b). We also show typical contours of secondary flow
patterns and temperature profiles, for one period of oscillation at time 27.69 <t <27.97, in Fig. 3(c). It is found that the
unsteady solution at Dn=2900and Gr =1000 at & =0.1is an asymmetric two-vortex solution. Then, we studied the time
evolution of A for Dn =2925as shown in Fig. 4(a). It is found that the unsteady flow at Dn=2925is a multi-periodic
oscillation. In order to observe the multi-periodic solution more clearly, we draw the phase space as shown in Fig. 4(b). In
order to view the change of the flow characteristics as time proceeds, typical contours of secondary flow patterns and
temperature profiles are shown in Fig. 4(c). It is found that the unsteady solution at Dn=2925and Gr =1000 is an
asymmetric two-vortex solution. We studied the time evolution of A for Dn = 3000 as shown in Fig. 5(a). It is found that the
flow at Dn = 3000 is a transitional chaos, which is well justified by drawing the phase space as shown in Fig. 5(b). Then we
obtained typical contours of secondary flow patterns and temperature profiles as shown in Fig. 5(c). It is found that the
chaotic oscillation at Dn =3000 and Gr =1000 is an asymmetric two-vortex solution.

Jmabk L
0.1432 Gr=1000 8
On=2925
11_.
o.1424f
l 2
01418 ! ok
0.1408F 2r
_'_‘l. ﬂ.l. i L 4 i i | L
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Fig. 4: (a) Time evolution of A for Dn =2925and Gr =1000 at & =0.1 (b) Phase space of the time evolution of A for
Dn =2925 (c) Contours of secondary flow patterns (top) and temperature profiles (bottom) for Dn = 2925 and
Gr =1000 at time 27.50 <t <30.00.
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t 2760 27.80 28.00 2820 2840  28.60

Fig. 5: (a) Time evolution of A for Dn =3000 and Gr =1000 (b) Phase space of the time evolution of A for Dn = 3000 (c)
Contours of secondary flow patterns (top) and temperature profiles (bottom) for Dn=3000 and Gr =1000 at
time 27.60 <t <28.60.

It is found that the unsteady solution at Dn =3450 and Gr =1000 is an asymmetric two-vortex solution. We studied the
time evolution of A for Dn = 3450 as shown in Fig. 6(a). It is found that the flow at Dn = 3450 is a transitional chaos, which
is well justified by drawing the phase space as shown in Fig. 6(b). Then we obtained typical contours of secondary flow
patterns and temperature profiles as shown in Fig. 6(c). It is found that the chaotic oscillation at Dn =3450 and
Gr =1000 is an asymmetric two-vortex solution.
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0.15F _
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Fig. 6: (a) Time evolution of A for Dn =3450and Gr =1000 (b) Phase space of the time evolution of A for Dn = 3450
(c) Contours of secondary flow patterns (top) and temperature profiles (bottom) for Dn =3450 and Gr =1000 at
time16.00 <t <17.00.

5.3 Phase diagram in the D' — & plane

Here, the complete unsteady solutions, obtained by the time evolution computations in the present study, are shown by
a phase diagram in Fig. 6 in the Dn —¢ plane for 0 < Dn <6000 and 0.001< ¢ <0.5for Gr = 1000. In this figure, the circles
indicate steady-state solutions, crosses periodic solutions and triangles chaotic solutions. As seen in Fig. 6, the steady-state

solution turns into chaotic solution through periodic or multi-periodic oscillation if Dn is increased, no matter what the
curvature is.
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Fig. 6: Distribution of the unsteady solutions in the Dn—¢ plane for 0 < Dn <6000 and curvature 0.001<6<0.5
for Gr =1000 (O: steady-state solution, = : periodic solution and £&: chaotic solution).

6. Conclusion

A comprehensive numerical study is presented for the flow characteristics through a curved square duct. Numerical
calculations are carried out by using a spectral method and covering a wide range of the Dean numbers 0 < Dn <6000 and
the curvature 0.001<6 <0.5for the Grashof number Gr =1000. First a single branch of asymmetric steady solution is
obtained with two- and four-vortex solution. Then, in order to investigate the non-linear behavior of the unsteady solutions,
time evaluation calculations as well as their phase space are performed. It is found that the flow becomes steady-state
for Dn <2900 but periodic at Dn=2900 , multi-periodic solutions for 2925 < Dn <3000 and chaotic solutions for
3000= D1 = 3430, Thus the unsteady flow undergoes in the scenario “steady — periodic — multi-periodic — chaotic”,
if Dn is increased up to 3450. If the Dean number is increased further, that is, for Dn > 3450 the unsteady flow undergoes
through various flow instabilities in the scenario “periodic —> multi-periodic — chaotic —> periodic —> chaotic”, if Dn is
increased. Secondary flow patterns and temperature profiles are also obtained and it is found that the secondary flow is a
two-vortex solution for the unsteady solution.
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Abstract

In this research, we numerically investigate the physics of a pulsatile non-Newtonian flow confined within a two-dimensional (2D)
axisymmetric pipe with an idealized stenosis using the finite volume method. The governing Navier-Stokes equations have been modified
using the Cartesian curvilinear coordinates to handle the complex geometry, such as, arterial stenosis. The flow is characterized by the
Reynolds number at 300 which are appropriate for the large arteries. For the non-Newtonian blood flow, the Cross models is used along
the Newtonian model. The numerical results are presented in terms of the velocity, pressure distribution, wall shear stress as well as the
streamlines indicating the recirculation zones at the post stenotic region.

© 2012 The authors, Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Bangladesh Society
of Mechanical Engineers

Keywords: Pulsatile flow, non-Newtonian blood flow, arterial stenosis, finite volume method, wall shear stress, pressure drop.

Nomenclature

f. center frequency
Re Reynolds number
Greek symbols
V] viscosity of fluid
p density of fluid
T, wall shear stress
Subscripts
D diameter of artery
p pressure

1. Introduction

In case of pulsatile flow it remains difficult to measure correctly the arterial wall shear stress (WSS) included by a
stenosis. According to Ku [1], when WSS is estimated experimentally, errors of 20-50% may occur. Previous studies hardly
says that the result of non-Newtonian fluid behavior through the vessel (Bharadvaj et al., [2]; Perktold et al., [3], [4]). On
the other hand, the assumption of Newtonian behavior of blood is acceptable for large arteries because of high shear rate
flow. When share rate low (0.1 s™) which is the case of small arteries and the downstream region of the stenosis, the Non-
Newtonian behavior of blood flow is acceptable. It has also marked out that some diseased condition like severe myocardial
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infarction, cerebrovascular diseases and hypertension, blood exhibits remarkable non-Newtonian properties (Chien, [5]).

The existence of a stenosis makes an artery narrowing which makes the recirculating flows through the arteries which
are reverse to the healthy artery (Deplano et al. [6]). The interaction between the fluid mechanics variables and
atherosclerotic infection reveals a powerful association amidst reduced WSS, oscillating WSS, intimal condensing and
plague formation, while the sites of high WSS are generally freed (Giddens et al., [7]). It has been already proved that
vascular fluid dynamics play an important role in the development of arterial stenosis, one of the most widespread diseases
in human beings, which is caused due to the deposits of cholesterol in arterial wall. Many studies have been done so far to
observe the effect of stenosis when blood flows through the narrowed segment of the artery, considering blood as a
Newtonian fluid.

Blood will be treated as non Newtonian incompressible viscoelastic fluid. According to Berger and Jou [8], if the shear
rate is greater than 100 s™, the blood behaves like a Newtonian fluid and it’s viscosity approaches as an asymptotic value, [t
= 3.45x10° Pa-s. However, if the shear rate of the blood flow falls down this threshold, its viscosity increases and non-
Newtonian fluid behaviors begin to exhibit. The down payments of cholesterol on the arterial wall and expansion of the
connective tissues in the wail pattern plaques which grow inward and constraint the body-fluid flow. Stenosis has a
convoluted leverage on body-fluid flow through and beyond the tapered segment of artery.

Numerical simulation of arterial stenosis offers a non-invasive entails of getting comprehensive flow patterns
associated with the disease. It provision information beyond that accessible from untested study. It can furthermore
characterise the specific function performed by the geometry of the partition, the kind and feature of the flow. Fry [9] first
postulated that high shear stresses on the arterial wall would injure the vessel wall, and lead to atherogenesis. Atherogenesis
originated in the low shear regions (Caro et al., [10]). The blood flow in the human body is pulsatile in nature; the temporal
variety of the shave tension might be significant (Ku et al., [11]). And the spatial variety of the wall shear has furthermore
been enquired as a likely causative agency by Lie et al. [12].

2. Formulation of The Problem

2.1. The Cross Model for the non-Newtonian Viscosity

Here 1 = ,u(;?) represents the molecular viscosity for non-Newtonian fluid. The value of p is a function of the norm
of the shear rate 7. In a Newtonian model for the blood viscosity, the value of  is treated as a constant, usually set to

y7 =3.45%x107% Pa-s. However, for non-Newtonian fluid behavior, Cross proposed a shear rate dependent viscosity

model (which is often referred to as the Cross model). The Cross model [13] assumes the following functional relation
between the molecular viscosity and the shear rate:

-1

p=pt, + (o — 1) 1+(|7L|j @)

Where o= 0.0364 Pa-s is the usual molecular blood viscosity at very low shear rates, y = 2.63 s is the reference shear

rate and m = 1.45 is the model constant. Here cross model is using for calculating the molecular viscosity of the non-
Newtonian fluid at the resolved scale.

2.2. Test Case and Governing Equation:

The geometry of 2D pipe is a one-sided cosine-shaped stenosis on the upper wall. Due to the presence of the stenosis,
the height of the channel, J, is a variable in the streamwise direction (i.e., 6 = d(x)) Away from the stenosis, the height of
the pipe is a constant and is represented here using D (i.e., J = D in the region either upstream or downstream of the

stenosis). The stenosis is centered 5D downstream of the pipe inlet (i.e., the inlet location is §/D = -5 ) and 15D from

the pipe outlet. The stenosis of the upper wall is centered at x’D= 0.0  and length of the stenosis is 2D . The form of the
stenosis chosen for this study is
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Y _q f(l cosx—”j _D<x<D @
D 2 D

Where f. =&/D is a parameter that controls the height of the stenosis. In the present study, f is fixed to 3/4 , which
results in a 75% reduction of the cross-sectional area at the center of the stenosis. Here we use x and y to represent the
streamwise and radius respectively. We also use &, and &, to represent x and y respectively. The governing equation and

momentum equations for an incompressible flow take the following forms in the general Cartesian curvilinear coordinate
system
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Where A, , A, A,;and A, are the elements of the cofactor matrix, A of the Jacobian | J|.

2.3. Numerical procedures:

The governing filtered equations (2-5) in Cartesian coordinates are transformed into curvilinear coordinates system
and the finite volume approaches are used to discretised the partial differential equations to yield a system of linear
algebraic equations. To discretise the spatial derivatives in eqns. (2-3), the standard second order accurate central difference
scheme is used, expert for the convective terms in the momentum equations (3) for which an energy conserving
discretisation scheme. Using the above mentioned pressure correction algorithm the computed pressure and the velocity
components are stored at the center of a control volume according to the collocated grid arrangement. The Poisson like
pressure correction equation is discretised by using the pressure smoothing approach, which prevents the even-odd node
uncoupling in the pressure and velocity fields. A BI-CGSTAB [14] solver is used for solving the matrix of velocity vectors,
while for the Poisson like pressure correction equation a ICCG [15] solver is applied due to its symmetric and positive
definite nature. Overall the code is second order accurate in both time and space, which is in-house, developed.

3. Results and Discussion

The term stenosis can mention to an abnormal constriction of an artery, generally of a discrete segment. In the case of
an artery, stenosis most commonly happens in large circulating arteries for example coronary, renal, cerebral, iliac and
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femoral arteries. The narrowing commonly occurs from a chronic infection method - atherosclerosis. Sometimes a vessel
can become acutely stenotic due to focal vasospasm. In general, stenosis takes place from chronic vascular disease. The
term "critical stenosis" mentions to a critical narrowing of an artery (stenosis) that outcomes in an important decrease in
maximal flow capability in a distal vascular bed. Critical stenosis normally is considered of in periods of a 60-75% decrease
in the diameter of the large circulating artery. Fig.1 shows the schematic diagram of arterial stenosis in terms of 75%
reduction of diameter. Here the diameter of artery is D and the length of stenosis region is 2D.
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Figl: Schematic diagram for the model arterial stenosis

Fig. 2(a) describes the wall pressure distribution. In this section, we are going to make you familiar with how pressure
behaviour for pre and post stenotic region including the result of the stenotic point too. Here, the dotted line refers to non-
Newtonian and the solid line refers to Newtonian case. As we see the graph from pre stenotic region to post stenotic region,
we find a sudden acute drop at stenotic point for both cases. The Newtonian flow has a slightly larger drop than the non-
Newtonian flow. When it starts reaching the downstream, it tries to recover from there. As a result, we can notice that it
goes high quickly just after the peak drop point. In the Newtonian case, the flow fluctuates rapidly where as the non-
Newtonian increases a moderate amount in the starting of the downstream region and then it goes steadily in a decreasing
manner.
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Fig 2: (a) Wall pressure, p/pU? and (b) wall shear stress, z,/pU? for the Newtonian and non-Newtonian blood.

As we have seen earlier that wall pressure drop becomes high at the point of stenosis but different phenomena occur in
case of wall shear stress distribution. Wall shear stress, another quantity of considerable physiological interest, is shown in
Fig.2 (b). Where the dotted line corresponds to Non- Newtonian and the solid line corresponds to Newtonian cases.
Furthermore, at the centre of the stenosis, the wall stress is maximum for both the Newtonian and Non-Newtonian cases.
However, from the graph we can noticeably see that non- Newtonian wall share stress is very higher than Newtonian case at
the stenosis place. However, both the figures show that when it goes far from stenosis non-Newtonian, wall share stress is
steady and it gives a fixed value of wall share stress. On the other hand, Newtonian wall share stress fluctuates slightly. In
this region, the wall stress increases sharply to reach a peak value and then from the point of the maximum it decreases
rapidly in the reverse direction for the non- Newtonian case. Furthermore, Newtonian case shows a different result and it
does not go as high as non Newtonian in this region; rather it moves slightly upstream and then behaves almost like a
constant behaviour for rest of the region. Finally, it can be concluded that, the wall shear stress is significantly larger in the
non-Newtonian case than the Newtonian case, which is an important factor in the medical issue.

In Fig 3(a)-(f), here we can observe the velocity of the Newtonian and non-Newtonian cases for six different axial
locations. We start our simulation starting from the inlet (x/D = -5) and end with the outlet ( x/D = 15) of the arterial
segment. In between, we took four locations and those are velocities at position x/D (= 0, 2, 4, 6) which show the result in
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Fig. 4(b), (c), (d) and (e) respectively. Fig 3 (a) is for inlet and (b) is for outlet. At the inlet of the artery, the velocity of both
the cases seems to be same which has a nice parabolic shape and is symmetric about the axis of pipe. At inlet of artery the
centre line velocity or pick velocity is approximately 2.7 but when it reaches the stenosis point, it increases significantly. In
this position, the peak value is 11.6 approximately. Where the inlet peak was only 2.7 and Newtonian has a slightly greater
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Fig 3: Streamwise velocity u/U, at the different axial position (a) inlet (b) h/D = 0.0, (c) h/D = 2.0, (d) h/D = 4.0,
(e) h/D = 6.0 and (f) outlet at the time period t/T =10.25.

Fig.4: Streamlines for the non-Newtonian blood flow at the different pulsatile phase (a) t/T = 9.0, (b) t/T = 9.3,
(c)tT=9.6and (d) /T=9.9

value than Non-Newtonian fluid case. However, it still maintains its symmetric pattern. Phenomena start changing when the
fluid enters to the post stenotic region. It loses its symmetric pattern and in Newtonian case does it quickly than Non-
Newtonian case. This may happen because when the fluid passes through the stenotic point, there creates high vorticity and
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then flow may becomes transitional. As a result, the frames (c) and (d) show a more chaotic result than the others. This state
of velocity profile may call transient state because these two states can be distinguished easily from other states and from
where it goes from one state to another. Frame (d) shows that Non-Newtonian figure is symmetric whereas the Newtonian
figure is non symmetric because of Newtonian case, which carries high velocity than the Non-Newtonian. At the end, it
passes the transient state to get back its steady and symmetric laminar velocity again by getting far from the stenosis.

Fig. 5: Streamlines for the Newtonian blood flow at the different pulsatile phase (a) /T = 9.0, (b) t/T = 9.3,
(c) YT =9.6 and (d) /T = 9.9.

Fig.4 (a) to (d) shows the streamlines for four different pulsatile phase for the Non-Newtonian case. Naturally, blood
flow is unsteady due to heart pump and blood flows in a sinusoidal cyclic nature. The heart ejects and fills with blood in
alternating cycles called systole and diastole. That is why these streamline diagrams drawn based on sinusoidal cycle and
the each cycle range is from 0 to 2w. The 10th cycle of the simulation pulse is divided into four parts and presents some
results by streamline at the different phase t/T (= 9.0, 9.3, 9.6 and 9.9) in Fig.4 (a)-(d), respectively. Whereas Fig. 5(a)-(d)
represent same phase streamlines for the Newtonian case. In addition, if we pay attention to Fig. 5, we can examine the
differences of vortex creation between (a) to (d). First of all, vortex creates a little bit far from the stenosis. Then it comes
closer and increase a little as well. In the third part we find vortex stronger than others and at the end, it looks like the first
situation in a stronger way. On the other hand, due to less viscous effect, transitional flow takes places quickly after stenosis
in Newtonian phenomena. For the Newtonian case, the creation of vortex cell is higher than the Non-Newtonian case,
because velocity of blood flow is very high in Newtonian case rather than Non-Newtonian case. in addition to this abnormal
vortex is harmful in the point of pathological issue. Because of this vortex blood cannot flow properly and it takes time to
reach its ultimate destination and this is the main reason of heart attack and brain stroke. Therefore, if we compare between
Non-Newtonian and Newtonian case we can easily state that Newtonian case is very harmful for its high velocity.

3. Conclusion

Many studies have been undertaken experimentally and theoretically treating blood as Newtonian fluid. In this paper,
blood is considered as Newtonian and non-Newtonian fluid and the simulation is done for Re = 300. Our main purpose is to
find out how blood behaves in arterial stenosis when it is assumed as Newtonian and non-Newtonian fluid. For both the
cases we found different results for different distribution like pressure, wall shear stress, velocity etc. In the case of shear
stress and pressure, we found how pressure drops at stenosis and how its stress increases suddenly at the centre of the
stenosis. In the case of Non-Newtonian blood the flow is always laminar whether a transient flow is observed in the post
stenotic region in the Newtonian case. Also, at the centre of the stenosis the wall shear stress is very high which is harmful
for the inner side of the arterial wall and at the post stenotic region the flow recirculation created due to the adverse pressure
gradient.
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Appendix

. In this paper governing Navier-Stokes equations have been modified using the Cartesian curvilinear coordinates to

handle the complex geometry such as arterial stenosis. For this reason we use Jacobian matrix to simplify our complex

geometry.
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Abstract

The aim of this paper is to study the fluid flow behavior around a wedge shaped body with different wedge angles placed in a channel
using Lattice-Boltzmann Method (LBM). The LBM has built up on the D2Q9 model and the single relaxation time method called the
Lattice-BGK (Bhatnagar-Gross-Krook) model. The influence of the gap ratio G*=G/H, where H is the distance between two parallel
walls, G is the gap between body and wall, on the flow field is illustrated. The gap ratio, G*, depends on the angle of wedge-shaped body
(0°< 0 <180°). Streamlines, vorticity contours and pressure contours are provided to analyze the important characteristics of the flow field
for a wide range of non dimensional parameters namely the Reynolds number (Re), Strouhal number (St) and the gap ratio(G*). However,
it is seen that the flow can be characterized by three regions: (i) large gap ratio, 0.44 <G* < 0.50, with 0°< # <55°, (ii) intermediate gap
ratio, 0.20 < G* < 0.44, with 55° < 6 < 120° and (iii) small gap ratio, 0 < G* < 0.20, with 120° < ¢ <180°. The simulation results are
compared with experimental data and other numerical models and found to be very reasonable and satisfactory.

© 2012 The authors, Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Bangladesh Society
of Mechanical Engineers
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Nomenclature

C Specific heat at constant pressure (J.kg? K™)
Cs Speed of sound (m.s™)

c CFL number

€ Discrete particle velocity vector (m s™)
Fi Discrete particle distribution function
F; Discrete particle distribution function

f Shedding frequency

G Gap between body and wall (m)

G* Gap ratio

H Channel height (m)

L Channel length (m)

Re Reynolds number
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St Strouhal number

U Characteristic velocity (m.s™)

u, ©  Fluid velocity in x and y direction respectively(m.s™)
Wi Weighting factor

Greek symbols

T Relaxation parameter for momentum
P Density of the fluid (kg m™)

u Viscosity of the fluid (kg m™s™)

I’ Coefficient of wedge angle

v Kinematic viscosity (m?s™)

1) Relaxation parameter

0 Wedge angle

Abbreviations

BGK  Bhatnagar-Gross-Krook

CFD  Computational fluid dynamics
CFL  Courant-Friedriehs- Lewy
D2Q9 2D-9 velocities

LBM Lattice-Boltzmann Method
N-S Navier-Stokes

PDF Particle distribution function

1. Introduction

In the past years, the Lattice Boltzmann Method (LBM) has attracted much attention as a novel alternative to traditional
computational fluid dynamics(CFD) methods for numerically solving the Navier—Stokes (N-S) equations. Actually the LBM
originated from the Lattice Gas Automata (LGA) method, which can be considered as a fictitious molecular dynamics (MD)
in which space, time and particle velocities are all discrete. Lattice gas models with an appropriate choice of the lattice
symmetry in fact represent numerical solutions of the Navier-Stokes equations and therefore able to describe the
hydrodynamics problems have been discussed by McNamara et .al [1] and Wei et al. [2]. Due to the sampling of the particle
velocities around zero velocity, LBM is limited to the low Mach number (nearly incompressible flow) flow simulation. It is
commonly recognized that the LBM can faithfully be used to simulated the incompressible Navier-Stokes (N-S) equations
with high accuracy and this lattice BGK (LBGK) model, the local equilibrium distribution has been chosen to recover the
N-S macroscopic equations by different authors [3-5]. It is found that the simulation results from LBM are in good
quantitative agreement with experimental results. However, He and Luo [6] shown that the lattice Boltzmann equation is
directly derived form the Boltzmann equation with various approximations by discretization in both space and time. In their
study, they demonstrated that simulation results from LBM are in good quantitative agreement with experimental results.
An overview of LBM, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and also for
incorporating additional physical complexities have been discussed by Chen and Doolen [7]. Taher and Lee [8] have
investigated numerically the suppression of fluid forces acting on a bluff body with different control bodies. It is found that the fluid
forces acting on the main bluff body are effectively suppressed if the control body (a thin plate or a small circular cylinder) is placed at a
suitable position with proper height or diameter. Moreover,LBM has several advantages over other conventional CFD methods,
especially in dealing with complex boundaries, incorporating of microscopic interactions, and parallelization of the
algorithm that are described in the excellent books by authors [9-12]. The viscous flow past a bluff body and the resulting
separated region behind it has been focus on numerous experimental and numerical investigations. There is no doubt that an
enormous corpus of literature on the subject of bluff body wakes has developed since the pioneering work of Strouhal and
Von Karman. This flow situation is popular not only because of its academic attractiveness but also owing to its related
technical problems associated with energy conservation and structural design. This type of flow is of relevance for many
practical applications, e.g. vortex flow meter, buildings, bridge, towers, masts and wires. A laminar vortex shedding region
is known to occur for the Reynolds number range extending approximately from 50-80 and the universal relationship
between Reynolds and Strouhal numbers around a circular cylinder have been studied by and Williamson [13]. Actually
many authors have been studied the vortex shedding frequency behind a circular cylinder or square cylinder or two
cylinders for different cases both in numerically and experimentally However, in this paper, the present authors want to
study the fluid flow behaviors around wedge-shaped using lattice Boltzmann method (LBM).As far we know, the problem
has not been considered before. The objective of this paper is to numerically study of fluid flow behavior around wedge-
shaped body using LBM where flow can be driven with the pressure (density) gradients. Computations are carried out for
various wedge angles ranging from 0° to 180° and the Reynolds number ranging from 0 to 397, based on the characteristic
length of the channel, the maximum incoming flow velocity (less than 0.1 lu) and also the nature of fluid transport
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properties. Here we have focused our attention on the evolution of streamlines, vorticity contours, pressure contours as well
as velocity profiles and vortex shedding frequency, to investigate the important characteristics of the flow field around wed-
shaped body for a wide range of non-dimensional parameters that present in our simulation namely Reynolds number (Re),
Strouhal number (St) and Gap ratio (G*). Throughout our calculation, we use Lattice-Boltzmann units.

2. Formulation of the problem

The computational domain is to consider as a rectangular region LxH, where H is the height and L= 4H is the length of
the channel. A wedge-shaped body having wedge angle & placed symmetrically between parallel walls as shown in Fig.1

enap- L TO—

Fig.1. Physical model and coordinate systems.

The wedge angle is defined by 8 = 7,0 < <1. It is noted that, in the case of § equal to zero corresponds to flow over a
horizontal flat plate while g equal to 1.0 corresponds to flow over a vertical flat plate. So the angle measurement is very
important in this analysis. If G is the gap between wall and the body then G = G/H is defined as a gap ratio. It is noted that
if the value of 4 increase, then G” decreases. For convenient, it has been discussed in the present study of the following three
different cases.

Table 1. The different cases of wedge-shaped body:

B 0 G'(=G/H)
Case 1 0.25 45° 045
Case 2 0.50 90° 0.375
Case 3 0.75 135° 0.20

In an incompressible flow, Reynolds number is the only parameter that controls the flow field and is define by Re=UD
/v, where U and D are the characteristic velocity and the length respectively. In fluid dynamics, vorticity is the circulation
per unit area at a point in the flow field. Mathematically, it is defined as, W=V x U, where U is the fluid velocity. The
non dimensional shedding frequency, the Strouhal number, is defined as: St = fD/U, where f is the vortex shedding
frequency. This relation is believed to be accurate to +1% in the Reynolds number. In this section, it is assumed that, Ax =
1lu = 1.27x10° m, At = 1 ts = 2.44x10°%. The fluid properties are taken to air properties. The kinematic viscosity v
=15.636x 10 m?/s, which corresponds to 0.024 lattice unit. All reported data are obtained on our calculation domain 320x
80 (lattice node). Thus the physical domain of simulation is 400 um x100 pum. For accurate solution, the Mach number, Ma,
should be kept as small as possible. In general, the maximum incoming fluid velocity U is considered in the LBM in order
of 0.2 or 0.1 or less. Therefore, the Reynolds number should be chosen very carefully.

In order to simulate a fully developed laminar channel flow upstream of the wedge-shaped body, a parabolic velocity
profile can be used with a maximum velocity U at the midpoint of the channel. This velocity is chosen to be lower than 10%
of the speed of sound for LBM simulations to avoid significant compressibility effects. In our simulation, we use Zou-He
Boundary condition to implement Dirichlet boundaries on inlet/outlet. At the top and bottom wall, no slip boundary
conditions were imposed by the standard bounce back treatment. In LBM, the movement of the fluid particles is modeled
instead of directly solving the macroscopic fluid quantities like the velocity and the pressure. It is known as mesoscopic
simulation model, which is based on the Boltzmann equation. Neglecting external forces, the Boltzmann equation (BE) with
BGK approximation can be written as

oF; oF 1 o .
“lie.—t=—Z(F-F"), i=0123....,01
a e T( i—F) q (1)

Where, F; (X, t) is the discrete particle distribution function and F* is the discrete equilibrium distribution function at lattice
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position X and time t defined by

éi.U+i4(éi.a)2—iz u?] @
c 2c 2c

The lattice weighting factors, w; depend on the lattice model. For D2Q9 model, each node of the lattice has three kinds of

particle: a rest particle that resides in the node, particles that move in the co-ordinate directions and the particles that move

in the diagonal directions. So the total number of discrete velocities (g;) on each node in D2Q9 model is 9.

Table 2. D2Q9 lattice velocities.

e =(0,0) e1=(c, 0) e;=(0,¢) es=(-c,0) e,=(0,-c)

es= (C, C) €= (-C, C) e;=(-¢,-C) es= (-C, C)

Here c is called the Courant-Friedrichs- Lewy (CFL) number and is proportional to Ax/At, where Ax and At are the lattice
space and the time steps respectively. Therefore the discrete form of equation (1) is called the Lattice- Boltzmann equation
(LBE) and can be defined as

Fi(X+At€,t+At) - F, (>‘<,t):—£(|=i -F*M), i=012---—----- 8 (3)
T

The relaxation parameter, w =1/z, depends on the local macroscopic variables p and pU .These variables should satisfy the
following laws of conservation:

PZZi:Fi , pU=;é} Fi (4)

The above expressions describe the relationships between the microscaled quantities and the macro scaled physical
quantities. Using the Chapman-Enskog expansion, i.e. multi-scale analysis, it is mathematically provable that the LBM
equation (3) can recover the N-S equation to the second order of accuracy in the limit of low Mach number [5], if the
pressure and the kinetic viscosity are defined by P = pCs® and v = (#1/2) Cs?At.

3. Results and discussions

In this problem, equation (3) is an algebraic equation. In conventional CFD methods for incompressible N-S equations,
we need to solve the Poisson equation for the pressure, while in LBM, solving the equation (3) we get all information that
we interested to our study. In Fig.2, we compare our result with analytical solution for Re =100, 200 in a channel in order to
assess the accuracy of our method.
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Fig.2. Verify LBM with analytical result for different Reynolds numbers

The solid lines are the analytical solution and the dashed lines are the data results obtained from the simulation. This
figure shows that the velocity profile in the channel is parabolic and the maximum value at the middle position of the
channel. It is obviously as we consider the fully developed laminar parabolic flow and it is seen that our results are in
excellent agreement with analytical solution. This confirms the accuracy of our present simulation. One important quantity
taken into account in the present study is the Strouhal number(St = fh/U)), computed from the height (h) of the bluff body,
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the vortex shedding frequency (f) and the velocity of the incoming fluid. The dimensionless shedding frequency with
Reynolds number along the wake centerline downstream of the wedge-shaped body is shown in Fig.3
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Fig.3.Variation of dimensionless shedding frequency with Reynolds number

It is noted that the flow velocity profile, the position, shape of the bluff (barrier) and the ratio of the cross section area of
the bluff to the wall affect the Strouhal number(St) for the given Reynolds number(Re) of the flow regime. As the
dimensionless vortex frequency increases when the gap ratio decreases with the Reynolds number in the range 45-275 and
consequently the Strouhal number also increases within this range. The higher frequency means that the process of vortex
shedding is faster. Therefore, the nature of the vortex shedding is a strong function of the Re. In order to gain further insight
into the evolution of vortex shedding in the near-weak region, the patterns of the vorticity contours for Re=100, 200 and 300
with different gap ratios are plotted in Figs. 4-6.
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Fig.4.Vorticity distribution for 9= 45° with Re Fig.5.Vorticity distribution for 6= 90° with Re
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Fig.6.Vorticity distribution for 8=135° with Re

For small wedge angle, higher gap ratio, it is seen that a pair of vortices with same strength and size are formed behind
the body; a positive vortex (anticlockwise) appears on the lower part of the body and a negative vortex (clockwise) on the
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upper part of the body. Further, It is observed that for low wedge angles (< 55°), the flow patterns are almost symmetrical
for all Reynolds number within the range up to 300. However, for large wedge angles, an unsymmetrical flow patterns have
been seen around the body as shown in the Fig.5-6. For, 8 = 90° with Re < 195, the fluid flow behaviors is almost symmetric.
Moreover, a significant changed in the flow is observed when Re > 195. In Fig. 5(b)-(c), the Von Karman Street is seen,
which is consists of vortices in a regular arrangement. For Re=200, the width of the vortex street behind the body is
narrower compare to the Re = 300. The width is increasing with the increasing of Reynolds number. When Re > 230, the
strong vortices are observed i.e. the width of the vortex street and the numbers of vortices are remarkably changed. There
are seven vortices are seen in Fig.5(c) within the considered wake region for Re=300. This kind of flow behaviors are
observed with the wedge angles in the range of 55° < @ < 120°. Further, the increases in the wedge angle (Fig.6) correspond
to very low gap ratio, a pair of vortices are formed just behind the body, and in addition, the wall proximity effects are seen
to give rise to reverse Von Karman Street.

(a) t=20000 ts (b) t=20500 ts
(o) t=21000 ts (d) t=21500 ts

— *

Fig.7. Streamlines plot for different time steps with Re = 260 and 6= 90°.

A detailed view of flow field behind the wedge-shaped body and changes in the vortex shedding pattern with different
time steps are shown in Fig.7. The flow is developed until 20,000 time steps. In Fig.7 (a), a new vortex is forming on the top
of the body but the lower one is pulled away from the body. The formation of the upper vortex is completed at 20,500 time
steps and consequently another new vortex on the bottom is forming and it is observed that the vortices are shed alternately
with different time steps. Finally, the last plot, at time steps t = 21500, is nearly identical with the Fig.7 (a). This
evolutionary process is repeated approximately every 1500 time steps. This time period is strongly depends on the Reynolds
number. If the Reynolds number increases, the time period becomes shorter. It is investigated that for Re=300, the time
period is approximately 1000 time steps. The same phenomenon has been seen that for flow over an airfoil at -90 degrees
angles of attack documented by Rogers and Kwak [14].

@ 5,000 t5 () ~ t=10.000 ts

" o

(©) ~__=15,000t
(‘25\

Fig.8. Streamlines plot for different time steps with Re=300, #=135°

Typical examples of instantaneous flow fields are presented in terms of vorticity for various time steps with wedge
angle, # =135°, corresponding to the gap ratio G = 0.20. This is easily understood by examining streamlines shown in Figs.8
(a)-(c). At t =5,000 time steps, two opposite vortices with almost similar size and shape are seen just behind the body and
simultaneously three stationary vortices are seen on the top wall whereas two vortices are seen on the bottom wall of the
channel. The recirculation regions on the bottom wall are much larger than those of top wall. In Fig.8 (b), the upper vortex
just behind the body a little extended and the two stationary vortices on the top wall far from the body are merging but the
one (near the body) is still observed. However, the two vortices at the bottom wall have shown to tendency to become a
large one. Finally, at t = 15,000, the two vortices on the bottom wall converted to one big size vortex with same center.
After t =15,000 times steps, there is no changed of the flow field. Thus it is concluded that, for higher wedge angle, small
gap ratios, the change of flow field occurred until approximately 15,000 time steps. However, the flow separation on the
wall is observed in this case. This phenomenon is observed when Re > 130.
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Fig. 9. Pressure fields for different wedge angles

Apart from the velocity profile, pressure distribution is important to understand the flow field behavior around the bluff
body. Fig.8 shows the pressure contours with Reynolds number Re=300 for different angles 6 = 45°, 90° and 135°. In all
cases, the pressure contour at the frontal stagnation point has maximum value where as just behind the body has minimum.
Fig.9 (a), for large gap ratio, the variations of the pressure contours are not significant because the recirculation regions as
well as the flow in the wake are fully developed. However, if the wedge angle increases, Figs.9 (b), the pressure contours
becomes more complicated patterns and many recirculation regions are observed. The pressure contours indicate the
location of vortex contours, where the pressure has a local minimum value. Further increased the wedge angle, Fig.9(c),
corresponds to very low gap ratio, the wall effects are considerable. Therefore, there exist a little recirculation region and
the variation of pressure contours are not significant at the far from the body. The same characteristic has found in Fig.6.

4, Conclusions

In this study, the flow can be characterized by three regions: (i) large gap ratio, 0.44< G* <0.50, with 0°< @ <55°, (ii)
intermediate gap ratio, 0.20 < G* <0.44, with 55° < # <120° and (iii) small gap ratio, 0< G* <0.20, with 120°< 6 <180°. The
investigations of these regions are as follows:
eFor case 1, § = 45°, the flow is almost symmetrical.
eFor case 2, 6 = 90°, the flow behind the body is characterized by a Karman vortex street when Re> 195 and the vortices
become stronger with increasing the Reynolds number. The formation and the shedding of vortices are repeated during a
time period. This time period becomes shorter with increasing the Reynolds numbers. For Re=260, the time period is
approximately 1500 times steps (lattice unit) where as for Re=300, it is seen approximately 1000 time steps. This kind of
flow behaviors are observed with the wedge angles in the range of 55°< 6 <120°.
eFor case 3, 6 =135°, the wall proximity effects are observed to give rise to reverse VVon Karman street and consequently a
packet of vortices are created on the both channel walls and it is observed when Re > 130.
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Abstract

This paper presents a numerical study of an investigation of a fluid flow through a rotating rectangular straight duct in the
presence of magnetic field. The straight duct of rectangular cross-section rotates at a constant angular velocity about the
centre of the duct cross-section is same as the axis of the magnetic field along the positive direction in the stream wise
direction of the flows. Numerical calculation is based on the Magneto hydrodynamics incompressible viscous steady fluid
model whereas Spectral method is applied as a main tool. Flow depends on the Magnetic parameter, Dean number and
Taylor number. One of the interesting phenomena of the fluid flow is the solution curve and the flow structures in case of

rotation of the duct axis. The calculation are carried out for5< M, <50000,50 <T, <100000, D, =500, 1000, 1500 and

2000 where the aspect ratio = 3.0. The maximum axial flow will be shifted to the centre from the wall and turn into the

ring shape under the effects of high magnetic parameter and large Taylor number whereas the fluid particles strength is
weak.

Keywords: Magnetic parameter, Taylor number, Dean number and aspect ratio

Nomenclature

Aspect ratio

Magnetic parameter

n Dean number
Taylor number

Dimensional total flow
Non-Dimensional Total flow

OO0 4o <=

1. Introduction

Fluid flows in a straight duct are of great importance. It has large applications in chemical and mechanical engineering.
The purpose of this paper is to make some numerical calculations on the fluid flow through a rotating rectangular straight
duct in the presence of magnetic field which has been interested to the engineering communication. The results of this
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investigation may not have direct practical applications but are relevant to the problems mentioned above. The fluid flows
through a rectangular straight duct to rotate at a constant angular velocity about an axis normal to a plane. Such rotation
passages are used in cooling systems for conductors of electric generators. The earliest work on the flow in rotating straight
pipe was carried out for the asymptotic limits of weak and strong rotations by Barua [2]. Benton and Baltimore [3] used a
perturbation expansion to the Hagen-Poiseuille flow. Ito and Nanbu [4] and Alam, et al. [1] have used spectral method to
describe the flow through a rotating straight pipe with large aspect ratio. MHD flow in an insulating rectangular duct under
a non-uniform magnetic field is studied by [5]. Numerical simulations of MHD flows past obstacles in a duct under
externally applied magnetic field is studied by [6]. [7] Investigates the study of surface and bulk instabilities in MHD duct
flow with imitation of insulator coating imperfection. [8] Investigates the natural convective flow phenomena under the
influence of magnetic field. [9] studied the rotational MHD flow field of unity magnetic Prandtl number in the effects of
regional magnetic field. [10] has been observed the stability of viscous flow between rotating cylinders in the presence of a
magnetic field.

Hence our aim is to study through the direct numerical simulation, the response of the magnetic effects on the fluid flow
through a rotating rectangular straight duct with large aspect ratio.

2. Governing Equations

The fully developed laminar flow of an incompressible viscous fluid in a straight duct that is subjected to a steady
rotation Q with rectangular cross-section in the presence of magnetic field has been considered. Let 2a be the width of the

duct cross-section and 2b its height. Cartesian co-ordinate system (X',y’,z") has been considered to describe the motion of
the fluid particles in the duct with the center O at the centralism of the rectangular cross-section duct as illustrated in Figure
1. The system rotates at a constant angular velocity Qz(O,—Q, 0) around the

0
y’ —axis. The flow is derived by the pressure gradient —a—S=G along the centerline of
the duct in the presence of magnetic field. u’,v’,w’ are the dimensional velocity

components along X', y’,z" direction respectively and U,v,wW are the dimensionless

velocity along x',y’,z’ direction respectively. p' is the modified pressure which
includes gravitational and centrifugal force.

The assumption of fully developed flow means that except for the pressure derivatives
z' are all set to zero. The dependent and independent variables are non dimension-

lized as follows: Figure 1: Co-ordinate system in a
, v , . , 02 . , U - . , L . Rotating Straight Duct
u'=—=u; x'=xa; p'=—pp; V==v; y=ya;, w=—=w;
a a a a
2'=0

where the variables with prime are dimensional quantities and "'a" be the half width of the cross section of the duct.
Under the above assumption, the governing equations are;

2 2
ua_u+vﬂ=_@+ a_u+a_u _TrW_Mgu (1)
ox ay  ox |ox?  oy?
2 2
uﬂ+vﬂ:_a_p+ ﬂ_Fﬂ _Mgv (2)
ox o0y 0y \ox? oy?
2 2
ua—W+v8—W:Dn+ 0 \;V 0 \;v +T,u @)
OX ox® oy

2 '

o
J, Magnetic parameter, M ; = — a’BZ =ou,a’H;
M

a
where, Taylor number T, = 2(
v
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3
Dean number D, = Ga2 and equation of continuity 8_u+@ =0
yol¥) ox oy
The boundary condition is that the velocities are zero at X =21and y = i[Ej = 1y (aspect ratio).
a
The new variable Y = Y is introduced where y is the aspect ratio, y = [9 LU == 8_1// andV = 8_1// which
% a oy oX
satisfies the continuity equation The basic equations (1)-(3) become for 7 and W as:
Oy, 2 oy 10w _ 1oy oy 1loydy 10ydy 1oy ov
éh(A }/2 éﬁ7ZéaX2 7/4 6574 7/3 é§7 6%726%( }/ éﬁ7 é%(3 }/3 é%( 6%73 }/ é%( é%(26§7
2 2
—la\—ﬁlTr+ %8_{/2/+81/2/ M, 4)
y oy y© oy o
2 2
ow 1ow_ loyow loyoy  1ovy )
Xyt oy y oy ox y Ox oy y oy

The boundary conditions for 7 and W are given by

WL Y)=wx1)=y(+1y)=0
(2 feng)- )| 2 o -

oX

Flux through the Straight Duct

b a
The dimensional total flux Q" through the ductis Q" = ”de’dy' =vaQ

—b-a

y 1
where Q = _”dedy is the non- dimension flux.

—y-1
3. Calculation Technique

The simulations are based on the Spectral method is used as a numerical technique to obtain the solution. It is necessary
to discuss the method briefly. The basic ideas of the Spectral and collocation methods are given below. The expansion by
polynomial functions is utilized to obtain steady or unsteady solution. The series of the Chebyshev polynomial is used in the

x and y directions where, Xand Y are coordinate variables. Assuming the flow is symmetric along the axial direction.
The expansion function ¢, (X) and y, (X) are expressed as ;

$a(X) = (L= X*)T, (%) (6)
v, (¥) = @-x*)"T, (x) (7)
where, T_(X) = cos(ncos ™ (X)) is the Chebyshev polynomial.

The functions W(X, Y)and (X, ) are expanded as;

WX, ¥) =D > Wend (X) 6, (V) ®): WX ) =D D Wl n (¥, (Y) 9

m=0 n=0 m=0 n=0

where, M and N are the truncation numbers in the Xand Y directions respectively. The collocation method (Gottlieb and
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Orszag [5]) applied in Xand Y directions yields a set of nonlinear differential equations for W,,, and W - The collocation

points are taken as (X;,Y;)

[ :
.= 1— =1 2 ........ M 1
X; cos{n[ v +2ﬂ (i=12, M +1) (10)

_ ] i

y. =cos| 7| 1- ]=12,......... yN+1 (12)
. N+2 ( )

The details calculation technique and arc-length method for critical calculations are not shown for brevity.

4. Results and Discussion:

The steady solution has been obtained by the graphical representation of the total flux (Q) versus Taylor number (Tr) at
Magnetic parameter (M) =5000, corresponding Dean number (D,) =500, 1000, 1500 and 2000 respectively where the
aspect ratio y=3.0 . The steady solution curves have been drawn by the path continuation technique in the
range 50 < T, <100000. The graphical representation has shown in Figure 2 for the total flux (Q)versus Taylor number
(T, ) in the range 50 < T, <32000 . For sufficient accuracy, M =10 and N =30 in the numerical calculations have been
considered. The steady solution curves have been obtained for aspect ratio (y)=3.0 and Mgy = 5000 in the

range 50 <T, <32000 . These solution curves denoted by t,, t,,t;and t, at the Dean number (D,) =500, 1000, 1500 and
2000 respectively for graph of the total flux (Q) versus Taylor number (T, ). For brevity, plots of the flow pattern are not

shown in actual format. The flow pattern of the secondary flow and contours plot of the axial flow at several Taylor
numbers (Tr) on the solution curve for constant y and w are shown in Figures (3)-(6). We look the figures from the

upstream. Therefore in these figures, the structures of the secondary flow and the axial flow can be understood.
T, =(500,2500, 5000, 6000, 9000 , 16000) on t, curve (see Figure 3); T, = (500, 2500, 3000, 6000, 7500 14300, 16000) on

t, curve (see Figure 4); T, =(500, 1500, 3000, 4300, 9700, 16000) on t,curve (see Figure 5); T, = (500, 1500, 3000,

4300, 9700, 16000) on g4 curve (see Figure 6) have been taken where the stream lines of the secondary flow (top) and the
contour plots of the axial flow (bottom) in each row from left to right with the increment Ay = 0.045, 0.075, 0.070, 0.10

and Aw =6.0, 10.0, 10.0, 20.0 at Dean number (D, ) =500, 1000, 1500 and 2000 respectively.

2200

2000 = Dn=500
Dn=1000
1800 Dn=1500
Dn=2000
1600 -
1400
D200
3
u_OO()
800
600
400
200
80C 4000 32000

D0 1‘3006 2
Taylor Number (Tr)
Figure 2: Steady solution for _f'lrif‘g = 5000, D, =500,
1000, 1500 and 2000,at 50 <7, < 32000
In Figures (3)-(6), the secondary flow, (> 0) in the upper region of the duct is the clock wise direction and counter clock

wise in the lower part when (i <0) . We have observed that the symmetric solution obtained in the range 50 <T, <32000 .
The stream lines of the secondary flow are shown at various Taylor number (Tr) in the development of the vortex. 3-vortex,
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4-vortex, 5-vortex and 6-vortex solution have been found in the secondary flow which is depend on the Taylor numbers (T,)
and Magnetic parameter (M ). The contour plots of the axial flow has been formed the ring shape which are either single or

double ring shape that appeared depends on the variation of Taylor number (Tr)as well as Magnetic parameter (M) .

T =500 2500 5000 6000 9000

T

16000

Figure 3: Stream lines of the Secondary Flow (top)
and contours plot of Axial flow (bottom) in each
row at Dean number (D,)=500 and

Mg =5000 for Flux (Q) versus Taylor number

(T,)at T, =500, 2500, 5000, 6500, 9000 and
16000 .

= 500 1500 3000 4300 9700 16000

Figure 5: Stream lines of the Secondary Flow (top)
and contours plot of Axial flow (bottom) in each
row at Dean number (D,)=1500 and

M, =5000 for Flux (Q) versus Taylor number

(T,) at T, =500, 1500, 3000, 4300, 9700 and
16000.

T = 500 2500 3000

6000 14000 16000

Figure 4: Stream lines of the Secondary Flow (top)
and contours plot of Axial flow (bottom) in each
row at Dean number (D,)=1000 and

M, =5000 for Flux (Q) versus Taylor number

(T,)at T, =500, 2500, 3000, 6000 ,14000 and
16000 .

= 500 2000 4000 6000 10000 16000

Figure 6: Stream lines of the Secondary Flow (top)
and contours plot of Axial flow (bottom) in each
row at Dean number (D,)=2000 and

M, =5000 for Flux (Q) versus Taylor number

(T,) at T, =500, 2000, 4000, 6000, 10000 and
16000.
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5. Conclusion

According to the results, we have obtained the following important view:

1. For Magnetic parameter (M g ) and Taylor number (T,) in both cases at high Dean number (Dn), steady solution

has been obtained.
2. Anomalous vortices solution has been found for the maximum secondary flow pattern which depends on the

Magnetic parameter (M) and Taylor number (T,) .

3. The symmetric flow structures at the maximum total flow region show almost the same flow behaviour in the range
of 5< M, <50000. The strength of the secondary flows are decreases with the gradually increases of magnetic

parameter (M) .

4, Tendency of the axial flow structures to turn into the single, double and triple ring shape that appeared of course
depends on the various Taylor number (T,)at Dean number (D,) =500, 1000, 1500 and 2000 and Magnetic
parameter (M) .
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