


term. Besides, it is sensitive to the free-stream value of the turbulent Reynolds number and
yields unexpected results in predicting the separation in attached flows with mild to strong ad-
verse pressure gradients. In addition, the diffusive term that is not directly connected to the
k–ǫ model renders the model ill-conditioned near the edge of theshear layers. However, the
BB model has good near-wall benign properties like the linear behavior of its transport prop-
erty, which in turn does not require a finer grid than an algebraic model does [5]. Spalart and
Allmaras (SA) [3] derive their model using empirical criteria and arguments from dimensional
analysis, having no link to thek–ǫ equations. The motivation for this approach is that the BB
model is constrained by assumptions inherited from thek–ǫ model. Note that the SA model is
a modified version of the BB model.

Using the Bradshaw–relation [8] (i.e., the shear stress in the boundary layer is proportional
to the turbulent kinetic energy), Menter [4], in his transformation from thek–ǫ closure to the
one-equation model shows a closer connection than the BB model. Menter also mentions that
using the Bradshaw–relation seems to be more effective in nonequilibrium flows. However,
transforming thek–ǫ closure may carry many of its deficiencies, such as the bad performance in
wall-bounded flows in the presence of mild adverse pressure gradients. It should be emphasized
that Menter aims at establishing a firm bond between the one- and two-equation models rather
than endorsing a new model for general use. Further modifications to one-equation models
based on Menter’s transformation of thek–ǫ andk–ω closures are proposed by Elkhoury [5]
that have no effect for zero pressure gradient flows. However, they improve the predictive
capabilities of the models in wall-bounded nonequilibriumflows compared with the SA model
and retain their wall-distance-free feature. Fares and Schröder [6] devise a one-equation model
using the findings of the SA andk–ω models that predicts a wide range of flows especially jets
and vortical flows more accurately than the SA model while retaining the same quality of results
for near-wall flows, and to be more efficient than thek–ω model. Nagano et al. [7] propose
a low-Reynolds number (LRN) one-equation model derived from an LRN two-equationk–ǫ
model using the modified Bradshaw–relation that accounts for near-wall turbulence. The model
provides good results for simple flows and the flow with separation and reattachment.

In the present study, an LRN extension of the BB one-equationturbulence model is pro-
posed and evaluated. This version has several desirable attributes relative to the original BB
model: (a) It revives the link between the BB andk–ǫ models via the source/sink and diffu-
sion terms, using the turbulence structure parametera1 = |−uv| /k (Bradshaw–relation);(b)
an eddy damping functionfµ, the length scale of which is explicitly influenced by the mean
flow and turbulent variables, is devised to suppress the excessive eddy viscosity in near-wall
regions;(c) a physically appropriate time scale is used that never fallsbelow the Kolmogorov
(dissipative eddy) time scale;(d) the turbulent Prandtl numberσ is adjusted such as to provide
substantial turbulent diffusion in the near-wall region;(e) source/sink term coefficientsC1,2 and
Cµ, that depend nonlinearly on both the rotational and irrotational strains are proposed based
on the realizability constraints and appropriate experiments. Consequently, the model extends
the ability of the BB model to account for nonequilibrium andanisotropic effects, a feature that
is missing in the single equation models developed so far.

The performance of the new model is demonstrated through thecomparison with the DNS
data such as fully developed channel flows. The test case is selected such as to justify the
ability of the model to replicate the combined effects of LRN, near-wall turbulence. Since
the SA model is not transformed from thek–ǫ closure, it would be interesting to compare the
present model predictions with those of the SA model.



2. Turbulence modeling
The principal assumption in deriving the one-equation model is that the turbulent shear stress
(−uv) is proportional to the turbulent kinetic energy (k), which is equivalent to the assump-
tion of Production (P ) = Dissipation (ǫ) in standard two-equationk–ǫ models. The second
assumption is thatσ = σk = σǫ. A more detailed derivation can be found in Menter [4].
In collaboration with the Reynolds-averaged Navier-Stokes (RANS) equations, the proposed
model determinesR by the following transport relation.R = k2/ǫ̃ can be enumerated as an
undamped tentative eddy viscosity, where the reduced dissipation ratẽǫ → 0 as the wall is ap-
proached, whileǫ remains finite. The one-equation turbulence model for high-Reynolds number
wall-bounded flows developed by Baldwin and Barth [2] is modified to evaluateR as:

∂ρR

∂t
+

∂ρujR

∂xj
=

∂

∂xj

[

(

µ +
µT

σ

)

∂R

∂xj

]

+ C1ρ

√

P R̃ − C2ρ

(

∂R̃

∂xi

)2

(1)

subjected toRw = 0 at solid walls. Herein,ρ is the density,µ denotes the molecular viscosity,
σ is the appropriate turbulent Prandtl number, the production termP = −uiuj(∂ui/∂xj), and
the undamped actual eddy viscosityR̃ = kTt, whereTt is the hybrid time scale. Compared
with the original Baldwin–Barth (BB) model, the new model replacesR by R̃ from µT (eddy-
viscosity/diffusion),C1 (production) andC2 (destruction) terms that renders the direct coupling
betweenR, k andTt (i.e., ǫ sinceTt contains bothk and ǫ), thus reducing the free–stream
sensitivity. Equation (1) presents a closure problem with three unknowns and therefore, in order
to close it,k andǫ are evaluated using theR–transport equation together with the Bradshaw [8]
and other empirical relations. Alternatively,k andǫ are represented in terms ofR in section2.5.
,

The Reynolds stressesρuiuj are related to the mean strain rate tensorSij through the Boussi-
nesq approximation:

−ρuiuj = 2 µT
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Sij −
1

3
Skk δij

)

− 2

3
ρ k δij , Sij =

1

2
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∂ui
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+

∂uj

∂xi

)

(2)

The turbulent viscosity is evaluated from

µT = Cµ fµ ρ R̃ = Cµ fµ ρ k Tt (3)

where the eddy viscosity damping functionfµ is obtained by solving the ellipticfµ equation
that envisages LRN and wall proximity effects. However,fµ relaxes to1 (one) far from the
wall. The model coefficientCµ is in general a scalar function of the invariants formed on the
strain rateSij and vorticityWij tensors in question [9]. The vorticity tensorWij is defined as

Wij =
1

2

(

∂ui

∂xj
− ∂uj

∂xi

)

(4)

The invariants of mean strain rate and vorticity tensors aredefined byS =
√

2SijSij and

W =
√

2WijWij, respectively. The detailed functional form ofCµ is determined relying on
the constraints such as realizability and appropriate experiments. The formulation of the model
coefficients and associated relevant aspects are discussedin some detail in subsequent sections.



2.1. Hybrid time scaleTt

The standard argument to introduce a specific time scale is that near a wall the flow is not tur-
bulent anymore, and hence the use of the dynamic time scalek/ǫ is not appropriate. Employing
k/ǫ results in that the time scale vanishes when approaching a wall, where k → 0 and ǫ is

non–zero. To avoid this, the Kolmogorov time scale
√

ν/ǫ is used as a lower bound, where
the viscous dissipation is dominant. Ink–ǫ models, this approach prevents the singularity in
the dissipation equation down to the wall. To interpolate smoothly between Kolmogorov and
dynamic scales, a hybrid time scale is formed as

Tt =

√

k2

ǫ2
+ C2

T

ν

ǫ
=

k

ǫ

√

1 +
C2

T

ReT
, ReT =

k2

ν ǫ
(5)

whereν denotes the kinematic viscosity andReT is the turbulence Reynolds number. Equation
(5) warrants that the eddy time scale never falls below the Kolmogorov time scaleCT

√

ν/ǫ,
dominant in the immediate neighborhood of the solid wall. Alternatively, the turbulence time
scale isk/ǫ at largeReT but approaches the Kolmogorov limitCT

√

ν/ǫ for ReT ≪ 1. The

empirical constantCT =
√

2 associated with the Kolmogorov time scale is estimated fromthe
behavior ofk in the viscous sublayer [10].

2.2. CoefficientCµ

The new model appears with recourse to the realizability constraints, reflecting physically nec-
essary conditions for developing a compatible turbulence model. The realizability conditions
represent the minimal requirement to prevent a turbulence model from producing nonphysical
results [11]. The commonly used isotropic eddy viscosity model with a constantCµ = 0.09
becomes unrealizable in the case of a large mean strain rate parameterTt S (whenTt S > 3.7),
producing negative normal stresses in question and realizability is violated. To ensure realiz-
ability, the model coefficientCµ cannot be a constant. It must be related with the mean flow
deformation rate. Accordingly, a new formulation forCµ as suggested by Gatski and Speziale
[9] is adopted:

Cµ =
α1

1 − 2

3
η2 + 2ξ2

, η = α2TtS, ξ = α3TtW (6)

The coefficientsα1–α3 associated with Eq. (6) are given by
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8
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2
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3√
2
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1 + 2
Pk

ǫ

)−1 (7)

Note that the constants associated withg are slightly modified to reproduce the data of DNS and
experiments. The invariant of the Reynolds stressΠb and production to dissipation ratioPk/ǫ
in Eq. (7) are modeled such that they depend nonlinearly on both the rotational and irrotational
strains [12]:

Πb = Cν
Pk

ǫ
,

Pk

ǫ
= Cν ζ2 (8)

with

Cν =
1

2
(

1 + TtS
√

1 + ℜ2

) , ζ = TtS max(1,ℜ) (9)
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Figure 1: Variations of eddy viscosity coefficient with walldistance in channel flow.

whereℜ = |W/S| is a dimensionless parameter that is very useful to characterize the flow. For
instance, for a pure shear flowℜ = 1, whereas for a plane strain flowℜ = 0. It is appropriate to
emphasize herein that the calibrated relations forΠb andP/ǫ can assist the coefficients(α1–α3)
in responding to both the shear and vorticity dominated flowsthat are far from equilibrium.
Detailed analysis of the model realizability is available elsewhere [12].

2.3. Damping function
The eddy viscosity damping functionfµ faces the distinct effects of LRN and wall proximity in
near-wall regions. Alternatively, the primary objective of introducingfµ to turbulence models
is to represent the kinematic blocking by the wall, and is devised pragmatically as

fµ = 1 − exp
(

− y

L

)

, L2 = 2 ζ (6 + CµReT )

√

ν3

ǫ
(10)

where(ν3/ǫ)1/4 signifies the Kolmogorov length scale. A plot ofCµfµ against the DNS data for
fully developed turbulent channel flows is shown in Fig. 1 andgood correlation is obtained for
y+ > 1. Fory+ ≤ 1.5, Cµfµ seems likely to increase proportionally toy (i.e., like a singlefµ) in
the very near-wall region as evinced by Fig. 1 in comparison with the DNS data [13]. Overall,
the adopted form ofCµfµ converges to replicate the influences of LRN and wall proximity. The
productCµ fµ ≈ 0.09 (the standard choice forCµ = 0.09, pertaining to the lineark-ǫ model)
remote from the wall to ensure that the model is compatible with the high-Reynolds number
turbulence model.

2.4. Other model coefficients
The model coefficientsC1 andC2 are related to thek-ǫ constants by [2]

C1 = Cǫ2 − Cǫ1 = 0.48, C2 = (Cǫ2 − Cǫ1)
C∗

µ

√

C∗

µ

κ2
≈ 0.08 (11)

whereκ = 0.41 is the von Karman constant. The coefficientsC1 andC2 are calculated based
on the values of the standardk-ǫ closure whereCǫ1 = 1.44, Cǫ2 = 1.92 and C∗

µ = 0.09.
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Figure 2: Mean velocity profiles of channel flow.

However, the necessity to account for changes inC1 andC2 is desirable in order to include the
local anisotropy of turbulence as is practised in thek-ǫ turbulence model [12]. To explore the
anisotropic situation,C1 andC2 are devised as a function of mean shear and vorticity parameters
(i.e.,TtS andTtW , respectively):

C1 = 2
√

Π∗

b

(

1 −
√

Π∗

b

)

, C2 = 2



Cµ −
∣

∣

∣C̃µ

∣
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∣− C̃µ

C2
T



 (12)

whereC̃µ = C∗

µ − Cµ, C∗

µ = 0.09 and
√

Π∗

b = Cµζ is essentially identical to Eq. (9), however,
with the exception thatCν is replaced byCµ. It can be stressed that the shear/vorticity parameter
certainly induces compatible changes inC1,2 which account for the anisotropy of turbulence.
Remarkably,C1 ≈ 0.42 andC2 ≈ 0.18 in the log layer of a channel flow withζ(ℜ = 1) ≈ 3.3.
However, at some value ofCµ = Cµ(TtS, TtW ), C2 will reach 0.08 as given in Eq. (11).
In principle, the reconstruction ofC1,2 assists qualitatively in predicting turbulent flows with
separation and reattachment as shown in the computation section.

The budgets ofk andǫ from the DNS data suggest that the role of turbulent diffusion in the
near-wall region is substantial. Accordingly, the Prandtlnumberσ is modeled, rather than being
assigned constant value (unlike the commonly adopted practice withσ ≈ 1):

σ = Cµ + fµ/CT (13)

The model coefficientsσ is developed so that sufficient diffusion is obtained in the vicinity of
the wall. This contrivance tends to successfully predict the kinetic energy and dissipation rate
profiles from theR–transport equation. Nevertheless,Cµ ≈ 0.3 andfµ = 1.0 in the free-stream
region and therefore,σ ≈ 1 is recovered therein.

2.5. Evaluation ofk and ǫ

The professed interest herein is to representk andǫ in term ofR in order to evaluatẽR (and
thereforeµT ) in Eq. (3). Probably, it is the most essential step, since the generality of the re-
constructedk andǫ must be guaranteed through a wide range of flows. The most appropriate



-1

-0.8

-0.6

-0.4

-0.2

 0
 1  10  100

uv
+

y+

Reτ=180
Present

SA
DNS

-1

-0.8

-0.6

-0.4

-0.2

 0
 1  10  100

uv
+

y+

Reτ=395
Present

SA
DNS

Figure 3: Shear stress profiles of channel flow.

assumption concerning such a reconstruction is the Bradshaw hypothesis [8] implemented di-
rectly into many turbulence models [6]. With the Bradshaw–relation,k may be expressed using
the tentative eddy viscosity(Cµf

n
µ R) through the turbulence structure parameter:

|−uv|
k

= a1 = Cµf
n
µ R

S

k
(14)

where the turbulence structure parametera1 =
√

Cµ. The exponentn of fµ is chosen to be
n = 0.8 to fit DNS/experimental data and sensibly, without the loss of generality. To avoid the
implicit formulation, Eq. (3) is not used to form Eq. (14) andthe purpose herein is to revive the
link between the BB andk–ǫ models via the source/sink and diffusion terms utilizinga1.

Recent DNS and experimental data indicate that the Bradshaw–hypothesis is neither exactly
valid in the viscous sublayer of the turbulent boundary layer nor in the free shear layers [6, 7].
However, it is to be expected that the introduction of Eq. (14) with the one–equation model
will actually lead to improved predictions of nonequilibrium flows [4]. Therefore,k can be
determined from Eq. (14) as

k =
√

CµR S f 0.8
µ (15)

SinceS → 0 away from the wall (i.e., free-stream region),k given by Eq. (15) is insufficient
there. In fact, the region whereS is locally zero is bridged mutually by the diffusion and
convection terms in thek-ǫ turbulence model. With the assistance of [7], the mean strain rate
correctionSα away from the wall is determined by numerical optimization:
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2Cαfα
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with
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√

C2
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ν
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, fα = 1 − exp
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36µ

)

(17)



whereui =
√

u2 + v2 + w2 is the velocity magnitude and (u,v,w) is the velocity vector in
Cartesian coordinates. The expressionCα uses(ν +R) to avoid the singularity in the near–wall
region sinceR → 0 there.

Note thatCµ depends nonlinearly on both the shear and vorticity parameters and therefore,
the structure parametera1 =

√

Cµ used in reconstructingk is no longer constant. However, the
Bradshaw–relation Eq. (14) has no meaning for flows without shear. To extend the predictive
capability, a modification is proposed to account for the effect of mean rotation rate on the mean
strain rate:

S̃ = S − |η1| − η1

CT
, η1 = S − W (18)

The advantage of this formulation is thatk (and therefore, the turbulence eddy viscosity) is
reduced in the regions where the magnitude of the vorticity exceeds that of the strain rate, such
as in the vortex core. Nevertheless, the overwhelming majority of applications of turbulence
models is for shear dominated flows, where the one–equation model is probably well suited.
Thus, Eq. (15) can be reconstructed as follows:

k = f 0.8
µ

√

CµR Sk, Sk =
√

S̃2 + S2
α (19)

The value ofǫ plays an important role in evaluating the hybrid time scaleTt accompanied by
the turbulence eddy viscosityµT , and is reconstructed as follows:

ǫ =
√

ǫ2
w + ǫ̃2, ǫ̃ =

k2

ν + R
(20)

whereǫw signifies the wall-dissipation rate that equals to the viscous-diffusion rate [14] and is
modeled as

ǫw = 2Aǫν

(

∂u

∂y

)2

w

≈ 2AǫνS̃2 (21)

whereAǫ is a function of the Reynolds number. Experimental and DNS data of flat plate and
channel flows indicate that0.05 < Aǫ < 0.11, with a preference for higher values at larger
Reynolds numbers [13]. In the current work,Aǫ = C∗

µ = 0.09 is adopted. Apparently, the
contribution ofǫw to ǫ is confined within the wall layer.

3. Computations
To validate the generality and efficacy of the proposed model, fully developed channel flows
are considered. To evaluate the model reliability and accuracy, the present model predictions
are compared with those from the SA model [3]. However, compared with the SA model, the
new model is additionally sensitized to nonequilibrium andanisotropic effects (i.e., anisotropic
model coefficients, depending nonlinearly on both the rotational and irrotational strains). A
cell centered finite-volume scheme combined with an artificial compressibility approach is em-
ployed to solve the flow equations [15, 16].

The computation is carried out for fully developed turbulent channel flows atReτ = 180
and395 for which turbulence quantities are available from the DNS data [13] . The calcula-
tion is conducted in the half-width of the channel, using one–dimensional RANS solver. The
computation involving a1 × 64 nonuniform grid refinement is considered based on the grid
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Figure 4: Turbulence kinetic energy profiles of channel flow.
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Figure 5: Dissipation rate profiles of channel flow.

independence test. To ensure the resolution of the viscous sublayer the first grid node near
the wall is placed aty+ ≈ 0.3. Comparisons are made by plotting the results in the form of
u+ = u/uτ , k+ = k+/u2

τ , uv+ = uv/u2
τ andǫ+ = νǫ/u4

τ versusy+.
Figure 2 shows the velocity profiles for different models. Predictions of the present and

SA models agree well with the DNS data. However, atReτ = 180 the relative errors on the
prediction ofReτ are evaluated as+2% (averaged value) and−1.7% for the present and SA
models, respectively. Profiles of turbulent shear stressesare displayed in Figure 3. Agreement
of all model predictions with the DNS data is fairly good. It seems likely that the present model
returns superior predictions in near-wall regions relative to the SA model.

Further examination of the model performance is directed tothek+ profiles as portrayed in
Fig. 4. As is evident,k+ is somewhat overpredicted in the near-wall region. This is prob-
ably due to the improper behavior of the Bradshaw–relation employed to evaluatek. Figure
5 exhibits the profiles ofǫ+ from the present computations that provides a maximumǫ+ at
the wall which is more in line with the experimental and DNS data. Nevertheless,ǫ+ is over-
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Figure 6: Turbulent eddy viscosity profiles of channel flow.

predicted/underpredicted in near-wall regions. The observed discrepancy might be due to the
limitation of the proposed near-wall correctionǫw in Eq. (21). Figure 6 shows the turbulent
eddy viscosity profiles. As notable from the figure, both the SA and present models reproduce
the correct near-wall behavior, comparable with the DNS data. However, both model predic-
tions are inaccurate beyondy+ = 50. Surprisingly, this inaccuracy has little impact on the mean
flow and other turbulent parameters since they are reasonably predicted.

4. Conclusions
The present study reconstructs the Baldwin–Barth model to be more consistent with thek–
ǫ models. Contrasting the predicted results with DNS data demonstrates that the new model
returns predictions comparable with the SA model. Comparedwith the SA model, the new
model is additionally sensitized to nonequilibrium and anisotropic effects. In particular, the
present model may be a good choice for engineering applications, since it can easily be extended
to a nonlinear eddy viscosity model.
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Abstract 

       The present study addresses numerical prediction of fully developed two-dimensional laminar flow of viscous 

incompressible fluid through a curved square duct with curvature ranging from 0.001 to 0.5. Numerical calculations are 

carried out over a wide range of the Dean number 60000  Dn with a temperature difference between the vertical 

sidewalls for the Grashof number Gr = 1000, where the outer wall is heated and the inner wall cooled.  Spectral method is 

used as a basic tool to solve the system of non-linear differential equations. First, we investigated steady solutions by using 

Newton-Raphson iterations method. As a result, a complex structure of steady solutions with two- and multi-vortex 

solutions is obtained. Then, in order to investigate the non-linear behavior of the unsteady solutions, time evaluations 

calculations are performed and the transition between two types of solutions is determined by drawing the phase spaces of 

the time evolution solutions. It is found that the unsteady flow undergoes in the scenario ‗steady-state periodic multi-

periodic chaotic, if the Dean number is increased no matter what the curvature is. Secondary flow patterns, axial flow 

distribution and temperature profiles on the flow characteristics are also obtained. 
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Nomenclature 
 

   Dn    : Dean number                                        T      : Temperature                            

    g       : Gravitational acceleration                    u      : Velocity components in the x  direction                                                                     

    Gr     : Grashof number                                   v      : Velocity components in the y  direction 

    h       : Half height of the cross section           w      : Velocity components in the z  direction 

     d       : Half width of the cross section             x      : Horizontal axis 

    L       : Radius of the curvature                       y      : Vertical axis                                   

   Pr      : Prandtl number                                     z      : Axis in the direction of the main flow 

      t      : Time                                                          : Resistance coefficient 

   

Greek letters 

    : Curvature of the duct                              : Kinematic viscosity 

    : Density                                                    : Thermal diffusivity 

    : Sectional stream function                       : Viscosity 
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1. Introduction 
 

           The study of flows and heat transfer through curved ducts and channels has been and continues to be an area of 

paramount interest of many researchers because of the diversity of their practical applications in fluids engineering, such as 

in fluid transportation, turbo machinery, refrigeration, air conditioning systems, heat exchangers, ventilators, centrifugal 

pumps, internal combustion engines and blade-to-blade passage for cooling system in modern gas turbines. The flow 

through curved a duct shows physically interesting features under the action of centrifugal force caused by the curvature of 

the duct. The presence of curvature produces centrifugal forces which acts at right angle to the main flow direction and 

creates secondary flows. Dean [1] was the first who formulated the problem in mathematical terms under the fully 

developed flow conditions and showed the existence of a pair of counter rotating vortices in a curved pipe. The readers are 

referred to Berger et al. [2], Nandakumar and Masliyah [3] and Yanase et al. [4] for some outstanding reviews on curved 

duct flows. 

            Considering the non-linear nature of the Navier-Stokes equation, the existence of multiple solutions does not come 

as a surprise. The solution structure of fully developed flow is commonly present in a bifurcation diagram which consists of 

a number of lines (branches) connecting different possible solutions. These branches can bifurcate and show multiple 

solutions in limit points (Mondal, [5]). An early complete bifurcation study of two-dimensional flow through a curved duct 

of square cross section was conducted by Winters [6]. Wang and Yang [7] performed numerical as well as experimental 

investigations of periodic oscillations for the fully developed flow in a curved square duct. Unsteady flow characteristics 

through a curved rectangular duct were investigated in detail by Yanase et al. [8]. Recently, Mondal et al. [9] performed 

comprehensive numerical study on fully developed bifurcation structure and stability of two-dimensional (2D) flow through 

a curved duct with square cross section and found a close relationship between the unsteady solutions and the bifurcation 

diagram of steady solutions. The flow through a curved duct with differentially heated vertical sidewalls has another aspect 

because secondary flows promote fluid mixing and heat transfer in the fluid. Recently, Mondal et al. [10] performed 

numerical investigations of non-isothermal flows through a curved duct with square cross section, where they studied the 

flow characteristics with the effects of secondary flows on convective heat transfer. 

       In the present study, a numerical result is presented for the fully developed two-dimensional flow of viscous 

incompressible fluid through a curved square duct with various curvatures. Investigating effect of curvature on unsteady 

solutions is an important objective of the present study. 

  

2. Mathematical Formulations 
 

         Consider an incompressible viscous fluid streaming through a curved duct with square cross section whose width or 

height is 2d. The coordinate system with the relevant notations is shown in Fig. 1. It is assumed that the outer wall of the 

duct is heated while the inner one cooled. The temperature of the outer wall is TT 0 and that of the inner wall is 

TT 0 , where 0T . The x , y  and z  axes are taken to be in the horizontal, vertical, and axial directions, respectively. 

It is assumed that the flow is uniform in the axial direction, and that it is driven by a constant pressure gradient G along the 

center-line of the duct, i.e. the main flow in the axial direction as shown in Fig. 1. The variables are non-dimensionalized by 

using the representative length d and the representative velocity dvU 0 . We introduce the non-dimensional variables 

defined as 
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where u , v , and w  are the non-dimensional velocity components in the x , y , and z directions, respectively; t  is the non-

dimensional time, P  the non-dimensional pressure,   the non-dimensional curvature, and temperature is non-

dimensionalized by T . Henceforth, all the variables are nondimensionalized, if not specified. 

 

The sectional stream function   is introduced as 
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Then the basic equations for ,w and T  are derived from the Navier-Stokes equations and the energy equation under the 

Boussinesq approximation as, 
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Fig. 1. Coordinate system of the curved duct 

 

           
2

( , )
(1 ) (1 )

2
( , ) 1 (1 )

w w w w
x D x w wn

t x y x x y x

   
  

 

   
        

     
                                                                        (2) 

            

 

23
2 2 21

( , )1 2
2 21 (1 ) ( , ) 1

y x x xx x t x x y x

   




   

  

        
      

  
     

     

 
 
   

2

2
1

x x y
x

  



 


   




 

                                                 

2 23 2
3 22 1 1

w
w

x x x x yx

    
 

 

   
     

      

,)1(2

2
x

T
xGr




                                     (3)                                                                                               

            
1 ( , ) 1

.
2(1 ) ( , ) Pr 1

T T T
T

t x x y x x

 

 

  
   

    

 
 
 

                                                                                                              (4) 

where  
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The Dean number nD , the Grashof number rG , and the Prandtl number rP , which appear in Eqs. (2) to (4) are defined as 
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where k,,  and g are the viscosity, the coefficient of thermal expansion, the coefficient of thermal diffusivity and the 

gravitational acceleration respectively. 

The rigid boundary conditions for w  and   are used as 
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and the temperature T  is assumed to be constant on the walls as 

                       xxTyTyT  )1,(,1),1(,1),1( .                                                                                                            (8) 

The upper and lower walls are adiabatic. In the present study, Dn and  are varied while Gr and Pr are fixed as Gr = 1000 

and Pr = 7.0 (water). 
 

3.  Method of numerical calculation 
  

In order to obtain the numerical solutions, spectral method is used. The main objective of the method is to use the 

expansion of the polynomial functions that is the variables are expanded in the series of functions consisting of Chebyshev 

polynomials. The expansion function )(xn  and  )(xn  are expressed as  
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where 1( ) cos( cos ( ))C x n xn
  is the 

thn  order Chebyshev polynomial.    tyxzyxw ,,,,,   and  , ,T x y t  are expanded 

in terms of  xn  and  xn  as  
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where M  and N  are the truncation numbers in the x  and y  directions respectively. The expansion coefficients 

mnmnw , and mnT are then substituted into the basic Eqs. (2), (3) and (4) and the collocation method is applied. As a result, 

the nonlinear algebraic equations for mnmnw ,  and mnT  are obtained. The collocation points are taken to be 
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where 1,..., 1i M   and 1,..., 1j N  . In the present study, numerical calculations are carried out over a wide range of the 

Dean number 60000  Dn and the Grashof number 1000Gr for the square duct of curvatures ranging from  

to . For sufficient accuracy of the solutions, we used M = 20 and N = 20. Steady solutions are obtained by the 

Newton-Raphson iteration method. Finally, to calculate the unsteady solutions, Crank-Nicolson and Adams-Bashforth 

methods together with the function expansion and collocation methods are applied to the equations (2) to (4).  

4. Resistance coefficient 
 

        We use the resistance coefficient   as one of the representative quantities of the flow state. It is also called the 

hydraulic resistance coefficient, and is generally used in fluids engineering, defined as  
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where quantities with an *
1P  be asterisk denote dimensional ones,  stands for the mean over the cross section of the duct 

and     dlddlddh 44/224*   is the hydraulic diameter. The main axial velocity  *w  is calculated by  
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Here,  is related to the mean non-dimensional axial velocity    as    
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where .*/2 wvdw   In this paper,  is used to find the solution structure of the steady solutions and to find the 

unsteady solutions by numerical computations. 

 

5.  Results and Discussion 
 

5.1 Steady Solutions 
 

        With the present numerical calculation, we obtain a single but entangled branch of steady solution for 1000Gr over 

the Dean number 60000  Dn . To obtain the steady solution, we used path continuation technique as discussed by 

Mondal [5]. The solution structure of the steady solution is shown in Fig 2(a). An enlargement of Fig. 2(a) is also shown in 

Fig. 2(b). It is found that the branch starts from point a  ( 0Dn ) and goes to the direction of increasing Dn  and 
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decreasing   up to point b ( 4823Dn  ), where it experiences a smooth turning and goes to the direction of increasing 

  and decreasing Dn  up to point c )3897( Dn . At point c , the branch experiences another interesting turning and goes 

to the direction of increasing Dn  and decreasing   up to point d )4976( Dn , where the branch turns very smoothly and 

goes to the direction of increasing   and decreasing Dn up to point e )3862( Dn and then to point f )4156( Dn , and 

finally extents to increasing Dn through points g and h.  It is found that the branch consists of asymmetric two- and four-

vortex solutions, which are not shown here for brevity.         

 

 

 

 

 

 

 

 

    

 

 

  

                                                    (a)                                                                                 (b) 
 

Fig. 2: (a) Solution structure of the steady solution for 1000Gr and 55000  DnDn at 0.1  (b) An enlargement of 

Fig. 2(a) at .52001180  Dn   
 

5.2 Time evolution of the unsteady solutions 

           In order to study the non-linear behavior of the unsteady solutions, we perform time-evolution calculations of  at 

various Dn for the curvatures ranging from  to  for Gr =1000. However, in this section, we only show the 

results of unsteady solutions for the curvature , and complete unsteady solutions ranging from  to , 

are shown in a phase diagram in the next section.  
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                                          (c) 

                                                T  

                                                  t       27.69       27.74       27.80       27.86       27.91       27.97                                                                                                                                                                                                                                   

Fig.  3: (a) Time evolution of  for 2900Dn and 1000Gr at 1.0 (b) Phase space of the time evolution of   

for 2900Dn and 1000Gr (c) Contours of secondary flow patterns (top) and temperature profile (bottom) for 

one period of oscillation at time 97.2769.27  t . 
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        To investigate the non-linear behavior of unsteady solutions, we studied time evolution of  for 2900Dn and 

1000Gr at 1.0 as shown in Fig. 3(a). Figure 3(a) shows that the unsteady flow at 2900Dn is a periodic solution, 

which is well justified by drawing a phase spaces as shown in Fig. 3(b). We also show typical contours of secondary flow 

patterns and temperature profiles, for one period of oscillation at time 97.2769.27  t , in Fig. 3(c). It is found that the 

unsteady solution at 2900Dn and 1000Gr at 1.0 is an asymmetric two-vortex solution. Then, we studied the time 

evolution of  for 2925Dn as shown in Fig. 4(a). It is found that the unsteady flow at 2925Dn is a multi-periodic 

oscillation. In order to observe the multi-periodic solution more clearly, we draw the phase space as shown in Fig. 4(b). In 

order to view the change of the flow characteristics as time proceeds, typical contours of secondary flow patterns and 

temperature profiles are shown in Fig. 4(c). It is found that the unsteady solution at 2925Dn and 1000Gr is an 

asymmetric two-vortex solution. We studied the time evolution of  for 3000Dn as shown in Fig. 5(a). It is found that the 

flow at 3000Dn is a transitional chaos, which is well justified by drawing the phase space as shown in Fig. 5(b). Then we 

obtained typical contours of secondary flow patterns and temperature profiles as shown in Fig. 5(c). It is found that the 

chaotic oscillation at 3000Dn and 1000Gr is an asymmetric two-vortex solution. 

 
 
 
 

 

 
 

 

  

 

 

 

 

(a)   (b) 
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                                        T  
 
                           
                                 (c)    t       27.50       28.00       28.50        29.00        29.50       30.00 
 

Fig. 4: (a) Time evolution of   for 2925Dn and 1000Gr at 1.0  (b) Phase space of the time evolution of   for 

2925Dn (c) Contours of secondary flow patterns (top) and temperature profiles (bottom) for 2925Dn and 

1000Gr at time 00.3050.27  t . 

 

           

 

 

             

 

           

 

  

                                                          (a)                                                                       (b) 

 



Author name / Procedia Engineering 00 (2012) 000–000 

 

                        

                                                   

           

                                  (c) 

                                         T  
 
  

                                          t       27.60       27.80        28.00         28.20       28.40       28.60 
 

Fig. 5: (a) Time evolution of   for 3000Dn and 1000Gr (b) Phase space of the time evolution of   for 3000Dn (c) 

Contours of secondary flow patterns (top) and temperature profiles (bottom) for 3000Dn and 1000Gr at 

time 60.2860.27  t . 

 

It is found that the unsteady solution at 3450Dn and 1000Gr is an asymmetric two-vortex solution. We studied the 

time evolution of  for 3450Dn as shown in Fig. 6(a). It is found that the flow at 3450Dn is a transitional chaos, which 

is well justified by drawing the phase space as shown in Fig. 6(b). Then we obtained typical contours of secondary flow 

patterns and temperature profiles as shown in Fig. 6(c). It is found that the chaotic oscillation at 3450Dn and 

1000Gr is an asymmetric two-vortex solution. 
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                                                t       16.00       16.20        16.40         16.60       16.80       17.00 
 

Fig. 6: (a) Time evolution of   for 3450Dn and 1000Gr (b) Phase space of the time evolution of   for 3450Dn  

(c) Contours of secondary flow patterns (top) and temperature profiles (bottom) for 3450Dn and 1000Gr at 

time 00.1700.16  t . 
 

 

 

5.3 Phase diagram in the  plane  

       Here, the complete unsteady solutions, obtained by the time evolution computations in the present study, are shown by 

a phase diagram in Fig. 6 in the Dn plane for 60000  Dn and 5.0001.0  for Gr = 1000. In this figure, the circles 

indicate steady-state solutions, crosses periodic solutions and triangles chaotic solutions. As seen in Fig. 6, the steady-state 

solution turns into chaotic solution through periodic or multi-periodic oscillation if Dn is increased, no matter what the 

curvature is.  
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Fig. 6: Distribution of the unsteady solutions in the Dn plane for 60000  Dn and curvature 5.0001.0   

for 1000Gr (o: steady-state solution, : periodic solution and  : chaotic solution).  
 

 

6. Conclusion 

         A comprehensive numerical study is presented for the flow characteristics through a curved square duct. Numerical 

calculations are carried out by using a spectral method and covering a wide range of the Dean numbers 60000  Dn and 

the curvature 5.0001.0  for the Grashof number .1000Gr First a single branch of asymmetric steady solution is 

obtained with two- and four-vortex solution. Then, in order to investigate the non-linear behavior of the unsteady solutions, 

time evaluation calculations as well as their phase space are performed. It is found that the flow becomes steady-state 

for 2900Dn but periodic at 2900Dn , multi-periodic solutions for 30002925  Dn and chaotic solutions for 

3000  Thus the unsteady flow undergoes in the scenario ―steady  periodic  multi-periodicchaotic‖, 

if Dn is increased up to 3450. If the Dean number is increased further, that is, for 3450Dn the unsteady flow undergoes 

through various flow instabilities in the scenario ―periodic  multi-periodic  chaotic periodic  chaotic‖, if Dn is 

increased. Secondary flow patterns and temperature profiles are also obtained and it is found that the secondary flow is a 

two-vortex solution for the unsteady solution.   
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Abstract 

In this research, we numerically investigate the physics of a pulsatile non-Newtonian flow confined within a two-dimensional (2D) 

axisymmetric pipe with an idealized stenosis using the finite volume method. The governing Navier-Stokes equations have been modified 

using the Cartesian curvilinear coordinates to handle the complex geometry, such as, arterial stenosis. The flow is characterized by the 

Reynolds number at 300 which are appropriate for the large arteries.  For the non-Newtonian blood flow, the Cross models is used along 

the Newtonian model. The numerical results are presented in terms of the velocity, pressure distribution, wall shear stress as well as the 

streamlines indicating the recirculation zones at the post stenotic region. 
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Nomenclature 

cf  center frequency  

Re Reynolds number 

Greek symbols 

µ viscosity of fluid  

ρ  density of fluid 

w   wall shear stress 

Subscripts 

D  diameter of artery 

p pressure 

1. Introduction 

         In case of pulsatile flow it remains difficult to measure correctly the arterial wall shear stress (WSS) included by a 

stenosis. According to Ku [1], when WSS is estimated experimentally, errors of 20-50% may occur. Previous studies hardly 

says that the result of non-Newtonian fluid behavior through the vessel (Bharadvaj et al., [2]; Perktold et al., [3], [4]).  On 

the other hand, the assumption of Newtonian behavior of blood is acceptable for large arteries because of high shear rate 

flow. When share rate low (0.1 s
-1

) which is the case of small arteries and the downstream region of the stenosis, the Non-

Newtonian behavior of blood flow is acceptable. It has also marked out that some diseased condition like severe myocardial 
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infarction, cerebrovascular diseases and hypertension, blood exhibits remarkable non-Newtonian properties (Chien, [5]). 

        The existence of a stenosis makes an artery narrowing which makes the recirculating flows through the arteries which 

are reverse to the healthy artery (Deplano et al. [6]). The interaction between the fluid mechanics variables and 

atherosclerotic infection reveals a powerful association amidst reduced WSS, oscillating WSS, intimal condensing and 

plaque formation, while the sites of high WSS are generally freed (Giddens et al., [7]). It has been already proved that 

vascular fluid dynamics play an important role in the development of arterial stenosis, one of the most widespread diseases 

in human beings, which is caused due to the deposits of cholesterol in arterial wall. Many studies have been done so far to 

observe the effect of stenosis when blood flows through the narrowed segment of the artery, considering blood as a 

Newtonian fluid. 

        Blood will be treated as non Newtonian incompressible viscoelastic fluid. According to Berger and Jou [8], if the shear 

rate is greater than 100 s
-1

, the blood behaves like a Newtonian fluid and it’s viscosity approaches as an asymptotic value, µ 

= 3.45×10
-3

 Pa·s. However, if the shear rate of the blood flow falls down this threshold, its viscosity increases and non-

Newtonian fluid behaviors begin to exhibit. The down payments of cholesterol on the arterial wall and expansion of the 

connective tissues in the wail pattern plaques which grow inward and constraint the body-fluid flow. Stenosis has a 

convoluted leverage on body-fluid flow through and beyond the tapered segment of artery. 

        Numerical simulation of arterial stenosis offers a non-invasive entails of getting comprehensive flow patterns 

associated with the disease. It provision information beyond that accessible from untested study. It can furthermore 

characterise the specific function performed by the geometry of the partition, the kind and feature of the flow. Fry [9] first 

postulated that high shear stresses on the arterial wall would injure the vessel wall, and lead to atherogenesis. Atherogenesis 

originated in the low shear regions (Caro et al., [10]). The blood flow in the human body is pulsatile in nature; the temporal 

variety of the shave tension might be significant (Ku et al., [11]). And the spatial variety of the wall shear has furthermore 

been enquired as a likely causative agency by Lie et al. [12]. 

 

2. Formulation of The Problem 

2.1. The Cross Model for the non-Newtonian Viscosity  

        Here   

 

represents the molecular viscosity for non-Newtonian fluid. The value of µ is a function of the norm 

of the shear rate   . In a Newtonian model for the blood viscosity, the value of µ is treated as a constant, usually set to  

31045.3 

  Pa·s. However, for non-Newtonian fluid behavior, Cross proposed a shear rate dependent viscosity 

model (which is often referred to as the Cross model). The Cross model [13] assumes the following functional relation 

between the molecular viscosity and the shear rate:    
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Where  µ0 = 0.0364 Pa·s is the usual molecular blood viscosity at very low shear rates, c = 2.63 s
-1

 is the reference shear 

rate and m = 1.45 is the model constant. Here cross model is using for calculating the molecular viscosity of the non-

Newtonian fluid at the resolved scale. 

 

2.2.  Test Case and Governing Equation: 

        The geometry of 2D pipe is a one-sided cosine-shaped stenosis on the upper wall. Due to the presence of the stenosis, 

the height of the channel, δ, is a variable in the streamwise direction (i.e.,  δ  = δ(x)) Away from the stenosis, the height of 

the pipe is a constant and is represented here using  D  (i.e.,  δ = D  in the region either upstream or downstream of the 

stenosis). The stenosis is centered D5 downstream of the pipe inlet (i.e., the inlet location is 5D  ) and D15  from 

the pipe outlet. The stenosis of the upper wall is centered at x/D= 0.0   and length of the stenosis is D2 . The form of the 

stenosis chosen for this study is 
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Where Dfc   is a parameter that controls the height of the stenosis. In the present study,   is fixed to  43  , which 

results in a 75% reduction of the cross-sectional area at the center of the stenosis. Here we use x and y to represent the 

streamwise and radius respectively. We also use 1  and 2 to represent x and y respectively. The governing equation and 

momentum equations for an incompressible flow take the following forms in the general Cartesian curvilinear coordinate 

system 
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Where  11A  , 12A , 21A and 22A are the elements of the cofactor  matrix,  A of the Jacobian |J| . 

2.3. Numerical procedures: 

         The governing filtered equations (2-5) in Cartesian coordinates are transformed into curvilinear coordinates system 

and the finite volume approaches are used to discretised the partial differential equations to yield a system of linear 

algebraic equations. To discretise the spatial derivatives in eqns. (2-3), the standard second order accurate central difference 

scheme is used, expert for the convective terms in the momentum equations (3) for which an energy conserving 

discretisation scheme. Using the above mentioned pressure correction algorithm the computed pressure and the velocity 

components are stored at the center of a control volume according to the collocated grid arrangement. The Poisson like 

pressure correction equation is discretised by using the pressure smoothing approach, which prevents the even-odd node 

uncoupling in the pressure and velocity fields. A BI-CGSTAB [14] solver is used for solving the matrix of velocity vectors, 

while for the Poisson like pressure correction equation a ICCG [15] solver is applied due to its symmetric and positive 

definite nature. Overall the code is second order accurate in both time and space, which is in-house, developed. 

 

3. Results and Discussion 

 

The term stenosis can mention to an abnormal constriction of an artery, generally of a discrete segment. In the case of 

an artery, stenosis most commonly happens in large circulating arteries for example coronary, renal, cerebral, iliac and 
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femoral arteries. The narrowing commonly occurs from a chronic infection method - atherosclerosis. Sometimes a vessel 

can become acutely stenotic due to focal vasospasm. In general, stenosis takes place from chronic vascular disease. The 

term "critical stenosis" mentions to a critical narrowing of an artery (stenosis) that outcomes in an important decrease in 

maximal flow capability in a distal vascular bed. Critical stenosis normally is considered of in periods of a 60-75% decrease 

in the diameter of the large circulating artery. Fig.1 shows the schematic diagram of arterial stenosis in terms of 75% 

reduction of diameter. Here the diameter of artery is D and the length of stenosis region is 2D. 

 

                        
Fig1: Schematic diagram for the model arterial stenosis 

 

        Fig. 2(a) describes the wall pressure distribution. In this section, we are going to make you familiar with how pressure 

behaviour for pre and post stenotic region including the result of the stenotic point too. Here, the dotted line refers to non-

Newtonian and the solid line refers to Newtonian case. As we see the graph from pre stenotic region to post stenotic region, 

we find a sudden acute drop at stenotic point for both cases. The Newtonian flow has a slightly larger drop than the non- 

Newtonian flow. When it starts reaching the downstream, it tries to recover from there. As a result, we can notice that it 

goes high quickly just after the peak drop point. In the Newtonian case, the flow fluctuates rapidly where as the non-

Newtonian increases a moderate amount in the starting of the downstream region and then it goes steadily in a decreasing 

manner. 
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Fig 2: (a) Wall pressure, p/U

2
 and  (b)  wall shear stress, τw/U

2
 for the Newtonian and non-Newtonian blood. 

 

         As we have seen earlier that wall pressure drop becomes high at the point of stenosis but different phenomena occur in 

case of wall shear stress distribution. Wall shear stress, another quantity of considerable physiological interest, is shown in 

Fig.2 (b). Where the dotted line corresponds to Non- Newtonian and the solid line corresponds to Newtonian cases. 

Furthermore, at the centre of the stenosis, the wall stress is maximum for both the Newtonian and Non-Newtonian cases. 

However, from the graph we can noticeably see that non- Newtonian wall share stress is very higher than Newtonian case at 

the stenosis place. However, both the figures show that when it goes far from stenosis non-Newtonian, wall share stress is 

steady and it gives a fixed value of wall share stress. On the other hand, Newtonian wall share stress fluctuates slightly. In 

this region, the wall stress increases sharply to reach a peak value and then from the point of the maximum it decreases 

rapidly in the reverse direction for the non- Newtonian case. Furthermore, Newtonian case shows a different result and it 

does not go as high as non Newtonian in this region; rather it moves slightly upstream and then behaves almost like a 

constant behaviour for rest of the region. Finally, it can be concluded that, the wall shear stress is significantly larger in the 

non-Newtonian case than the Newtonian case, which is an important factor in the medical issue. 

 

         In Fig 3(a)-(f), here we can observe the velocity of the Newtonian and non-Newtonian cases for six different axial 

locations. We start our simulation starting from the inlet (x/D = -5) and end with the outlet ( x/D = 15) of the arterial 

segment. In between, we took four locations and those are velocities at position x/D (= 0, 2, 4, 6) which show the result in 
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Fig. 4(b), (c), (d) and (e) respectively. Fig 3 (a) is for inlet and (b) is for outlet. At the inlet of the artery, the velocity of both 

the cases seems to be same which has a nice parabolic shape and is symmetric about the axis of pipe. At inlet of artery the 

centre line velocity or pick velocity is approximately 2.7 but when it reaches the stenosis point, it increases significantly. In 

this position, the peak value is 11.6 approximately. Where the inlet peak was only 2.7 and Newtonian has a slightly greater  
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Fig 3: Streamwise velocity u/U, at the different axial position (a) inlet (b) h/D = 0.0, (c) h/D = 2.0, (d) h/D = 4.0,  

(e) h/D = 6.0 and (f) outlet at the time period t/T =10.25. 

 

 
Fig.4: Streamlines for the non-Newtonian blood flow at the different pulsatile phase (a) t/T = 9.0, (b) t/T = 9.3, 

(c) t/T = 9.6 and (d) t/T = 9.9 

 

value than Non-Newtonian fluid case. However, it still maintains its symmetric pattern. Phenomena start changing when the 

fluid enters to the post stenotic region. It loses its symmetric pattern and in Newtonian case does it quickly than Non-

Newtonian case. This may happen because when the fluid passes through the stenotic point, there creates high vorticity and 
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then flow may becomes transitional. As a result, the frames (c) and (d) show a more chaotic result than the others. This state 

of velocity profile may call transient state because these two states can be distinguished easily from other states and from 

where it goes from one state to another. Frame (d) shows that Non-Newtonian figure is symmetric whereas the Newtonian 

figure is non symmetric because of Newtonian case, which carries high velocity than the Non-Newtonian.  At the end, it 

passes the transient state to get back its steady and symmetric laminar velocity again by getting far from the stenosis. 

 

            
Fig. 5: Streamlines for the Newtonian blood flow at the different pulsatile phase (a) t/T = 9.0, (b) t/T = 9.3, 

(c) t/T = 9.6 and (d) t/T = 9.9. 

 

         Fig.4 (a) to (d) shows the streamlines for four different pulsatile phase for the Non-Newtonian case. Naturally, blood 

flow is unsteady due to heart pump and blood flows in a sinusoidal cyclic nature. The heart ejects and fills with blood in 

alternating cycles called systole and diastole. That is why these streamline diagrams drawn based on sinusoidal cycle and 

the each cycle range is from 0 to 2π. The 10th cycle of the simulation pulse is divided into four parts and presents some 

results by streamline at the different phase t/T (= 9.0, 9.3, 9.6 and 9.9) in Fig.4 (a)-(d), respectively. Whereas Fig. 5(a)-(d) 

represent same phase streamlines for the Newtonian case. In addition, if we pay attention to Fig. 5, we can examine the 

differences of vortex creation between (a) to (d). First of all, vortex creates a little bit far from the stenosis. Then it comes 

closer and increase a little as well. In the third part we find vortex stronger than others and at the end, it looks like the first 

situation in a stronger way. On the other hand, due to less viscous effect, transitional flow takes places quickly after stenosis 

in Newtonian phenomena. For the Newtonian case, the creation of vortex cell is higher than the Non-Newtonian case, 

because velocity of blood flow is very high in Newtonian case rather than Non-Newtonian case. in addition to this abnormal 

vortex is harmful in the point of pathological issue. Because of this vortex blood cannot flow properly and it takes time to 

reach its ultimate destination and this is the main reason of heart attack and brain stroke. Therefore, if we compare between 

Non-Newtonian and Newtonian case we can easily state that Newtonian case is very harmful for its high velocity. 

 

3.   Conclusion  

        

         Many studies have been undertaken experimentally and theoretically treating blood as Newtonian fluid. In this paper, 

blood is considered as Newtonian and non-Newtonian fluid and the simulation is done for Re = 300. Our main purpose is to 

find out how blood behaves in arterial stenosis when it is assumed as Newtonian and non-Newtonian fluid. For both the 

cases we found different results for different distribution like pressure, wall shear stress, velocity etc. In the case of shear 

stress and pressure, we found how pressure drops at stenosis and how its stress increases suddenly at the centre of the 

stenosis. In the case of Non-Newtonian blood the flow is always laminar whether a transient flow is observed in the post 

stenotic region in the Newtonian case. Also, at the centre of the stenosis the wall shear stress is very high which is harmful 

for the inner side of the arterial wall and at the post stenotic region the flow recirculation created due to the adverse pressure 

gradient. 
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Appendix 

. In this paper governing Navier-Stokes equations have been modified using the Cartesian curvilinear coordinates to 

handle the complex geometry such as arterial stenosis. For this reason we use Jacobian matrix to simplify our complex 

geometry.  
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Abstract 

The aim of this paper is to study the fluid flow behavior around a wedge shaped body with different wedge angles placed in a channel 

using Lattice-Boltzmann Method (LBM). The LBM has built up on the D2Q9 model and the single relaxation time method called the 

Lattice-BGK (Bhatnagar-Gross-Krook) model. The influence of the gap ratio G*=G/H, where H is the distance between two parallel 

walls, G is the gap between body and wall, on the flow field is illustrated. The gap ratio, G*, depends on the angle of wedge-shaped body 

(00 < θ <1800). Streamlines, vorticity contours and pressure contours are provided to analyze the important characteristics of the flow field 

for a wide range of non dimensional parameters namely the Reynolds number (Re), Strouhal number (St) and the gap ratio(G*). However, 

it is seen that the flow can be characterized by three regions: (i) large gap ratio, 0.44 <G* < 0.50, with 00 < θ <550, (ii) intermediate gap 

ratio, 0.20 ≤ G*  0.44, with 550 ≤ θ ≤ 1200 and (iii) small gap ratio, 0 < G* < 0.20, with 1200 < θ <1800. The simulation results are 

compared with experimental data and other numerical models and found to be very reasonable and satisfactory.  

 

© 2012 The authors, Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Bangladesh Society 

of Mechanical Engineers 
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Nomenclature 

Cp Specific heat at constant pressure (J.kg
-2

 K
-1

) 

Cs Speed of sound (m.s
-1

) 

c CFL  number 

ei  Discrete particle velocity vector (m s
-1

) 

Fi Discrete particle distribution function 

Fi
eq

 Discrete particle distribution function 

f Shedding frequency  

G Gap between body and wall (m) 

G* Gap ratio 

H Channel height (m) 

L Channel length (m) 

Re Reynolds number 
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St Strouhal number  

U Characteristic velocity (m.s
-1

) 

u, v  Fluid  velocity in x and y direction respectively(m.s
-1

) 

wi Weighting factor 

Greek symbols 

 Relaxation parameter for momentum  

 Density of the fluid (kg m
-3

) 

 Viscosity of the fluid (kg m
-1 

s
-1

) 

β Coefficient of wedge angle 

ν Kinematic viscosity (m
2
 s

-1
) 

ω  Relaxation parameter 

θ Wedge angle 

Abbreviations 

BGK Bhatnagar-Gross-Krook 

CFD Computational fluid dynamics 

CFL Courant-Friedriehs- Lewy  

D2Q9 2D-9 velocities 

LBM Lattice-Boltzmann Method 

N-S Navier-Stokes 

PDF Particle distribution function 

1. Introduction 

In the past years, the Lattice Boltzmann Method (LBM) has attracted much attention as a novel alternative to traditional 

computational fluid dynamics(CFD) methods for numerically solving the Navier–Stokes (N-S) equations. Actually the LBM 

originated from the Lattice Gas Automata (LGA) method, which can be considered as a fictitious molecular dynamics (MD) 

in which space, time and particle velocities are all discrete. Lattice gas models with an appropriate choice of the lattice 

symmetry in fact represent numerical solutions of the Navier-Stokes equations and therefore able to describe the 

hydrodynamics problems have been discussed by McNamara et .al [1] and Wei et al. [2]. Due to the sampling of the particle 

velocities around zero velocity, LBM is limited to the low Mach number (nearly incompressible flow) flow simulation. It is 

commonly recognized that the LBM can faithfully be used to simulated the incompressible Navier-Stokes (N-S) equations 

with high accuracy and this lattice BGK (LBGK) model, the local equilibrium distribution has been chosen to recover the 

N-S macroscopic equations by different authors [3-5]. It is found that the simulation results from LBM are in good 

quantitative agreement with experimental results. However, He   and Luo [6] shown that the lattice Boltzmann equation is 

directly derived form the Boltzmann equation with various approximations by discretization in both space and time. In their 

study, they demonstrated that simulation results from LBM are in good quantitative agreement with experimental results. 

An overview of LBM, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and also for 

incorporating additional physical complexities have been discussed by Chen and Doolen [7]. Taher and Lee [8] have 

investigated numerically the suppression of fluid forces acting on a bluff body with different control bodies. It is found that the fluid 

forces acting on the main bluff body are effectively suppressed if the control body (a thin plate or a small circular cylinder) is placed at a 

suitable position with proper height or diameter. Moreover,LBM has several advantages over other conventional CFD methods, 

especially in dealing with complex boundaries, incorporating of microscopic interactions, and parallelization of the 

algorithm that are described in the excellent books by authors [9-12]. The viscous flow past a bluff body and the resulting 

separated region behind it has been focus on numerous experimental and numerical investigations. There is no doubt that an 

enormous corpus of literature on the subject of bluff body wakes has developed since the pioneering work of Strouhal and 

Von Karman. This flow situation is popular not only because of its academic attractiveness but also owing to its related 

technical problems associated with energy conservation and structural design. This type of flow is of relevance for many 

practical applications, e.g. vortex flow meter, buildings, bridge, towers, masts and wires. A laminar vortex shedding region 

is known to occur for the Reynolds number range extending approximately from 50-80 and the universal relationship 

between Reynolds and Strouhal numbers around a circular cylinder have been studied by and Williamson [13]. Actually 

many authors have been studied the vortex shedding frequency behind a circular cylinder or square cylinder or two 

cylinders for different cases both in numerically and experimentally However, in this paper, the present authors want to 

study the fluid flow behaviors around wedge-shaped using lattice Boltzmann method (LBM).As far we know, the problem 

has not been considered before. The objective of this paper is to numerically study of fluid flow behavior around wedge-

shaped body using LBM where flow can be driven with the pressure (density) gradients. Computations are carried out for 

various wedge angles ranging from 0
0
 to 180

0
 and the Reynolds number ranging from 0 to 397, based on the characteristic 

length of the channel, the maximum incoming flow velocity (less than 0.1 lu) and also the nature of fluid transport 
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properties. Here we have focused our attention on the evolution of streamlines, vorticity contours, pressure contours as well 

as velocity profiles and vortex shedding frequency, to investigate the important characteristics of the flow field around wed-

shaped body for a wide range of non-dimensional parameters that present in our simulation namely Reynolds number (Re), 

Strouhal number (St) and Gap ratio (G*). Throughout our calculation, we use Lattice-Boltzmann units. 

2. Formulation of the problem 

The computational domain is to consider as a rectangular region L×H, where H is the height and L= 4H is the length of 

the channel. A wedge-shaped body having wedge angle θ placed symmetrically between parallel walls as shown in Fig.1 

 

 

 

 

 

 

 

 

 

Fig.1. Physical model and coordinate systems. 

 

The wedge angle is defined by θ = πβ, 0 ≤ β ≤1. It is noted that, in the case of β equal to zero corresponds to flow over a 

horizontal flat plate while β equal to 1.0 corresponds to flow over a vertical flat plate. So the angle measurement is very 

important in this analysis. If G is the gap between wall and the body then G
*
 = G/H is defined as a gap ratio. It is noted that 

if the value of β increase, then G
*
 decreases. For convenient, it has been discussed in the present study of the following three 

different cases. 
 

                                           Table 1. The different cases of wedge-shaped body: 

 

   G*(=G/H) 

Case 1 0.25 450 0.45 

Case 2 0.50 900 0.375 

Case 3 0.75 1350 0.20 

 

In an incompressible flow, Reynolds number is the only parameter that controls the flow field and is define by Re=UD 

/, where U and D are the characteristic velocity and the length respectively. In fluid dynamics, vorticity is the circulation 

per unit area at a point in the flow field.  Mathematically, it is defined as,  uw


 , where  u


 is the fluid velocity. The 

non dimensional shedding frequency, the Strouhal number, is defined as: St = fD/U, where f is the vortex shedding 

frequency. This relation is believed to be accurate to ±1% in the Reynolds number. In this section, it is assumed that, ∆x = 

1lu = 1.2710
-6 

m, ∆t = 1 ts = 2.4410
-9

s. The fluid properties are taken to air properties. The kinematic viscosity ν 

=15.636 10
-6 

m
2
/s, which corresponds to 0.024 lattice unit. All reported data are obtained on our calculation domain 320 

80 (lattice node). Thus the physical domain of simulation is 400 m 100 m. For accurate solution, the Mach number, Ma, 

should be kept as small as possible. In general, the maximum incoming fluid velocity U is considered in the LBM in order 

of 0.2 or 0.1 or less. Therefore, the Reynolds number should be chosen very carefully. 

In order to simulate a fully developed laminar channel flow upstream of the wedge-shaped body, a parabolic velocity 

profile can be used with a maximum velocity U at the midpoint of the channel. This velocity is chosen to be lower than 10% 

of the speed of sound for LBM simulations to avoid significant compressibility effects. In our simulation, we use Zou-He 

Boundary condition to implement Dirichlet boundaries on inlet/outlet. At the top and bottom wall, no slip boundary 

conditions were imposed by the standard bounce back treatment. In LBM, the movement of the fluid particles is modeled 

instead of directly solving the macroscopic fluid quantities like the velocity and the pressure. It is known as mesoscopic 

simulation model, which is based on the Boltzmann equation. Neglecting external forces, the Boltzmann equation (BE) with 

BGK approximation can be written as 

 

)(
1

.
eq

ii
i

i
i

i FF
x

F
e

t

F












  ,    i = 0,1,2,3........, q-1 (1) 

Where, ),( txFi


is the discrete particle distribution function and

eq
iF is the discrete equilibrium distribution function at lattice 
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The lattice weighting factors, wi, depend on the lattice model.  For D2Q9 model, each node of the lattice has three kinds of 

particle: a rest particle that resides in the node, particles that move in the co-ordinate directions and the particles that move 

in the diagonal directions. So the total number of discrete velocities (ei) on each node in D2Q9 model is 9.  
 

                              Table 2. D2Q9 lattice velocities. 

 

e0 = (0, 0) e1 = (c, 0) e2 = (0, c) e3 = (-c,0) e4 = (0,-c) 

e5 = (c, c) e6 = (-c, c) e7 = (-c,-c) e8 = (-c, c)  

 

Here c is called the Courant-Friedrichs- Lewy (CFL) number and is proportional to x/t, where x and t are the lattice 

space and the time steps respectively. Therefore the discrete form of equation (1) is called the Lattice- Boltzmann equation 

(LBE) and can be defined as 

)(
1

),(),(
eq

iiiii FFtxFttetxF 



,    i = 0,1,2,----------,8 (3) 

The relaxation parameter, ω =1/τ, depends on the local macroscopic variables ρ and u


 .These variables should satisfy the 

following laws of conservation: 


i

iF   ,  
i

ii Feu


  (4) 

The above expressions describe the relationships between the microscaled quantities and the macro scaled physical 

quantities. Using the Chapman-Enskog expansion, i.e. multi-scale analysis, it is mathematically provable that the LBM 

equation (3) can recover the N-S equation to the second order of accuracy in the limit of low Mach number [5], if the 

pressure and the kinetic viscosity are defined by P = Cs
2   

and   = (-1/2) Cs
2
t. 

3. Results and discussions 

In this problem, equation (3) is an algebraic equation. In conventional CFD methods for incompressible N-S equations, 

we need to solve the Poisson equation for the pressure, while in LBM, solving the equation (3) we get all information that 

we interested to our study. In Fig.2, we compare our result with analytical solution for Re =100, 200 in a channel in order to 

assess the accuracy of our method. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Verify LBM with analytical result for different Reynolds numbers 

 

The solid lines are the analytical solution and the dashed lines are the data results obtained from the simulation. This 

figure shows that the velocity profile in the channel is parabolic and the maximum value at the middle position of the 

channel. It is obviously as we consider the fully developed laminar parabolic flow and it is seen that our results are in 

excellent agreement with analytical solution. This confirms the accuracy of our present simulation. One important quantity 

taken into account in the present study is the Strouhal number(St = fh/U)), computed from the height (h) of the bluff body, 
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the vortex shedding frequency (f) and the velocity of the incoming fluid. The dimensionless shedding frequency with 

Reynolds number along the wake centerline downstream of the wedge-shaped body is shown in Fig.3 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.Variation of dimensionless shedding frequency with Reynolds number 

 

It is noted that the flow velocity profile, the position, shape of the bluff (barrier) and the ratio of the cross section area of 

the bluff to the wall affect the Strouhal number(St) for the given Reynolds number(Re) of the flow regime. As the 

dimensionless vortex frequency increases when the gap ratio decreases with the Reynolds number in the range 45-275 and 

consequently the Strouhal number also increases within this range. The higher frequency means that the process of vortex 

shedding is faster. Therefore, the nature of the vortex shedding is a strong function of the Re. In order to gain further insight 

into the evolution of vortex shedding in the near-weak region, the patterns of the vorticity contours for Re=100, 200 and 300 

with different gap ratios are plotted in Figs. 4-6. 

 
Re=100(a)

 

Re=100(a)

 
Re=200(b)

 

Re=200(b)

 
Re=300(c)

 

Re=300(c)

 
 

Fig.4.Vorticity distribution for   = 450 with Re 

 

Fig.5.Vorticity distribution for   = 900 with Re 

 

Re=100(a)

 

Re=200(b)

 
Re=300(c)

 
 

Fig.6.Vorticity distribution for   =1350 with Re 

 

For small wedge angle, higher gap ratio, it is seen that a pair of vortices with same strength and size are formed behind 

the body; a positive vortex (anticlockwise) appears on the lower part of the body and a negative vortex (clockwise) on the 
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upper part of the body. Further, It is observed that for low wedge angles (< 55
0
), the flow patterns are almost symmetrical 

for all Reynolds number within the range up to 300. However, for large wedge angles, an unsymmetrical flow patterns have 

been seen around the body as shown in the Fig.5-6. For, θ = 90
0 
with Re < 195, the fluid flow behaviors is almost symmetric. 

Moreover, a significant changed in the flow is observed when Re  195. In Fig. 5(b)-(c), the Von Karman Street is seen, 

which is consists of vortices in a regular arrangement. For Re=200, the width of the vortex street behind the body is 

narrower compare to the Re = 300. The width is increasing with the increasing of Reynolds number. When Re  230, the 

strong vortices are observed i.e. the width of the vortex street and the numbers of vortices are remarkably changed. There 

are seven vortices are seen in Fig.5(c) within the considered wake region for Re=300. This kind of flow behaviors are 

observed with the wedge angles in the range of 55
0
     120

0
. Further, the  increases in the wedge angle (Fig.6) correspond 

to very low gap ratio, a pair of vortices are formed just behind the body, and in addition, the wall proximity effects are seen 

to give rise to reverse Von Karman Street. 

 
t=20000 ts(a)

 

t=20500 ts(b)

 
t=21000 ts(c)

 

t=21500 ts(d)

 
 

Fig.7. Streamlines plot for different time steps with Re = 260 and  = 900. 

A detailed view of flow field behind the wedge-shaped body and changes in the vortex shedding pattern with different 

time steps are shown in Fig.7. The flow is developed until 20,000 time steps. In Fig.7 (a), a new vortex is forming on the top 

of the body but the lower one is pulled away from the body. The formation of the upper vortex is completed at 20,500 time 

steps and consequently another new vortex on the bottom is forming and it is observed that the vortices are shed alternately 

with different time steps. Finally, the last plot, at time steps t = 21500, is nearly identical with the Fig.7 (a). This 

evolutionary process is repeated approximately every 1500 time steps. This time period is strongly depends on the Reynolds 

number. If the Reynolds number increases, the time period becomes shorter. It is investigated that for Re=300, the time 

period is approximately 1000 time steps. The same phenomenon has been seen that for flow over an airfoil at -90 degrees 

angles of attack documented by Rogers and Kwak [14]. 

 
t=5,000 ts(a)

 

t=10,000 ts(b)

 
t=15,000 ts(c)

 
 

Fig.8. Streamlines plot for different time steps with Re=300,  =1350 

 

Typical examples of instantaneous flow fields are presented in terms of vorticity for various time steps with wedge 

angle, θ =135
0
, corresponding to the gap ratio G

*
= 0.20. This is easily understood by examining streamlines shown in Figs.8 

(a)-(c). At  t = 5,000 time steps, two opposite vortices with almost similar size and shape are seen just behind the body and 

simultaneously three stationary vortices are  seen on the top wall  whereas two  vortices are seen on the bottom wall of the 

channel. The recirculation regions on the bottom wall are much larger than those of top wall. In Fig.8 (b), the upper vortex 

just behind the body a little extended and the two stationary vortices on the top wall far from the body are merging but the 

one (near the body) is still observed. However, the two vortices at the bottom wall have shown to tendency to become a 

large one. Finally, at t = 15,000, the two vortices on the bottom wall converted to one big size vortex with same center.   

After t =15,000 times steps, there is no changed of the flow field. Thus it is concluded that, for higher wedge angle, small 

gap ratios, the change of flow field occurred until approximately 15,000 time steps. However, the flow separation on the 

wall is observed in this case. This phenomenon is observed when Re  130. 
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Fig. 9. Pressure fields for different wedge angles  

 

Apart from the velocity profile, pressure distribution is important to understand the flow field behavior around the bluff 

body. Fig.8 shows the pressure contours with Reynolds number Re=300 for different angles θ = 45
0
, 90

0
 and 135

0
. In all 

cases, the pressure contour at the frontal stagnation point has maximum value where as just behind the body has minimum. 

Fig.9 (a), for large gap ratio, the variations of the pressure contours are not significant because the recirculation regions as 

well as the flow in the wake are fully developed. However, if the wedge angle increases, Figs.9 (b), the pressure contours 

becomes more complicated patterns and many recirculation regions are observed. The pressure contours indicate the 

location of vortex contours, where the pressure has a local minimum value. Further increased the wedge angle, Fig.9(c), 

corresponds to very low gap ratio, the wall effects are considerable. Therefore, there exist a little recirculation region and 

the variation of pressure contours are not significant at the far from the body. The same characteristic has found in Fig.6. 

4. Conclusions 

In this study, the flow can be characterized by three regions: (i) large gap ratio, 0.44< G* <0.50, with 0
0
< θ <55

0
, (ii) 

intermediate gap ratio, 0.20 ≤ G* 0.44, with 55
0
 ≤ θ ≤120

0
 and (iii) small gap ratio, 0< G* <0.20, with 120

0
< θ <180

0
. The 

investigations of these regions are as follows: 

●For case 1, θ = 45
0
, the flow is almost symmetrical.  

●For case 2, θ = 90
0
, the flow behind the body is characterized by a Karman vortex street when Re 195 and the vortices 

become stronger with increasing the Reynolds number. The formation and the shedding of vortices are repeated during a 

time period. This time period becomes shorter with increasing the Reynolds numbers. For Re=260, the time period is 

approximately 1500 times steps (lattice unit) where as for Re=300, it is seen approximately 1000 time steps. This kind of 

flow behaviors are observed with the wedge angles in the range of 55
0 
≤ θ ≤120

0
. 

●For case 3, θ =135
0
, the wall proximity effects are observed to give rise to reverse Von Karman street and consequently a 

packet of vortices are created on the both channel walls and it is observed when Re  130. 
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Abstract 

This paper presents a numerical study of an investigation of a fluid flow through a rotating rectangular straight duct in the 

presence of magnetic field. The straight duct of rectangular cross-section rotates at a constant angular velocity about the 

centre of the duct cross-section is same as the axis of the magnetic field along the positive direction in the stream wise 

direction of the flows. Numerical calculation is based on the Magneto hydrodynamics incompressible viscous steady fluid 

model whereas Spectral method is applied as a main tool. Flow depends on the Magnetic parameter, Dean number and 

Taylor number. One of the interesting phenomena of the fluid flow is the solution curve and the flow structures in case of 

rotation of the duct axis. The calculation are carried out for 500005  gM , 10000050  rT , nD 500, 1000, 1500 and 

2000 where the aspect ratio  3.0. The maximum axial flow will be shifted to the centre from the wall and turn into the 

ring shape under the effects of high magnetic parameter and large Taylor number whereas the fluid particles strength is 

weak. 
 

Keywords: Magnetic parameter, Taylor number, Dean number and aspect ratio 

Nomenclature 

  Aspect ratio 

gM  Magnetic parameter 

nD   Dean number 

rT  Taylor number 

Q         Dimensional total flow 

Q          Non-Dimensional Total flow 

 

1. Introduction 

    Fluid flows in a straight duct are of great importance. It has large applications in chemical and mechanical engineering. 

The purpose of this paper is to make some numerical calculations on the fluid flow through a rotating rectangular straight 

duct in the presence of magnetic field which has been interested to the engineering communication. The results of this 
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investigation may not have direct practical applications but are relevant to the problems mentioned above. The fluid flows 

through a rectangular straight duct to rotate at a constant angular velocity about an axis normal to a plane. Such rotation 

passages are used in cooling systems for conductors of electric generators. The earliest work on the flow in rotating straight 

pipe was carried out for the asymptotic limits of weak and strong rotations by Barua [2]. Benton and Baltimore [3] used a 

perturbation expansion to the Hagen-Poiseuille flow. Ito and Nanbu [4] and Alam, et al. [1] have used spectral method to 

describe the flow through a rotating straight pipe with large aspect ratio. MHD flow in an insulating rectangular duct under 

a non-uniform magnetic field is studied by [5]. Numerical simulations of MHD flows past obstacles in a duct under 

externally applied magnetic field is studied by [6]. [7] Investigates the study of surface and bulk instabilities in MHD duct 

flow with imitation of insulator coating imperfection. [8] Investigates the natural convective flow phenomena under the 

influence of magnetic field. [9] studied the rotational MHD flow field of unity magnetic Prandtl number in the effects of 

regional magnetic field. [10] has been observed the stability of viscous flow between rotating cylinders in the presence of a 

magnetic field.  

    Hence our aim is to study through the direct numerical simulation, the response of the magnetic effects on the fluid flow 

through a rotating rectangular straight duct with large aspect ratio.  

2. Governing Equations 

    The fully developed laminar flow of an incompressible viscous fluid in a straight duct that is subjected to a steady 

rotation Ω with rectangular cross-section in the presence of magnetic field has been considered. Let a2 be the width of the 

duct cross-section and b2 its height. Cartesian co-ordinate system ),,( zyx   has been considered to describe the motion of 

the fluid particles in the duct with the center O  at the centralism of the rectangular cross-section duct as illustrated in Figure 

1. The system rotates at a constant angular velocity  0,,0 Ω  around the 

y axis. The flow is derived by the pressure gradient G
z

p







 
along the centerline of 

the duct in the presence of magnetic field. wvu  ,, are the dimensional velocity 

components along zyx  ,, direction respectively and wvu ,,  are the dimensionless 

velocity along zyx  ,, direction respectively. p is the modified pressure which 

includes gravitational and centrifugal force.  

The assumption of fully developed flow means that except for the pressure derivatives 

z  are all set to zero. The dependent and independent variables are non dimension- 

lized as follows: 

u
a

u


 ;   xax  ;   p
a

p 


2

2

  ;  v
a

v


 ;   ayy  ;    w
a

w


 ;      

0z , 

where the variables with prime are dimensional quantities and ""a be the half width of the cross section of the duct.  

Under the above assumption, the governing equations are; 
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where, Taylor number 
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 Dean number 
2

3



Ga
Dn   and equation of continuity 0










y
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The boundary condition is that the velocities are zero at 1x and 







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a

b
y (aspect ratio).  

The new variable 
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satisfies the continuity equation  The basic equations (1)-(3) become  for  and w as: 
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The boundary conditions for  and w are given by 

       0,11,,1  yxwyw   
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Flux through the Straight Duct  

The dimensional total flux Q  through the duct is QaydxdwQ

b

b

a

a
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 

   
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 







1

1

ywdxdQ is the non- dimension  flux. 

3. Calculation Technique  

    The simulations are based on the Spectral method is used as a numerical technique to obtain the solution. It is necessary 

to discuss the method briefly. The basic ideas of the Spectral and collocation methods are given below. The expansion by 

polynomial functions is utilized to obtain steady or unsteady solution. The series of the Chebyshev polynomial is used in the 

yx and  directions where, yxand are coordinate variables. Assuming the flow is symmetric along the axial direction. 

The expansion function )(and)( xx nn   are expressed as ; 

)()1()( 2 xTxx nn                                                                                                     (6) 

)()1()( 22 xTxx nn                                                                                                                 (7) 

where, ))(coscos()( 1 xnxTn

 is the Chebyshev polynomial. 

The functions ),(and),( yxyxw  are expanded as;  
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where, NM and are the truncation numbers in the yxand directions respectively. The collocation method (Gottlieb and 
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Orszag [5]) applied in yxand directions yields a set of nonlinear differential equations for mnmnw and . The collocation 

points are taken as ),( ji yx
 





















2
1cos

M

i
xi     1,........,2,1  Mi

                                                                               
(10) 





















2
1cos

N

j
y j     1,,.........2,1  Nj

                                                                                
(11) 

The details calculation technique and arc-length method for critical calculations are not shown for brevity. 

4. Results and Discussion:  

    The steady solution has been obtained by the graphical representation of the total flux  Q  versus Taylor number  rT  at 

Magnetic parameter )( gM 5000, corresponding Dean number )( nD 500, 1000, 1500 and 2000 respectively where the 

aspect ratio 0.3 . The steady solution curves have been drawn by the path continuation technique in the 

range 10000050  rT . The graphical representation has shown in Figure 2 for the total flux  Q versus Taylor number 

 rT  in the range 3200050  rT . For sufficient accuracy,  10M  and 30N  in the numerical calculations have been 

considered. The steady solution curves have been obtained for aspect ratio   0.3 and gM 5000 in the 

range 3200050  rT . These solution curves denoted by 321 ,, ttt and 
4t at the Dean number )( nD 500, 1000, 1500 and 

2000 respectively for graph of the total flux  Q  versus Taylor number  rT .  For brevity, plots of the flow pattern are not 

shown in actual format. The flow pattern of the secondary flow and contours plot of the axial flow at several Taylor 

numbers  rT  on the solution curve for constant  and w are shown in Figures (3)-(6). We look the figures from the 

upstream. Therefore in these figures, the structures of the secondary flow and the axial flow can be understood. 

rT (500,2500, 5000, 6000, 9000 , 16000) on 
1t curve (see Figure 3); rT (500, 2500, 3000, 6000, 7500 14300, 16000) on 

2t curve (see Figure 4); rT (500, 1500, 3000, 4300, 9700, 16000) on 3t curve (see Figure 5); rT (500, 1500, 3000, 

4300, 9700, 16000) on 8g curve (see Figure 6) have been taken where the stream lines of the secondary flow (top) and the 

contour plots of the axial flow (bottom) in each row from left to right with the increment  0.045, 0.075, 0.070, 0.10 

and w 6.0, 10.0, 10.0, 20.0 at Dean number )( nD 500, 1000, 1500 and 2000 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

In Figures (3)-(6), the secondary flow, )0(  in the upper region of the duct  is the clock  wise direction and  counter clock 

wise in the lower part when )0(  . We have observed that the symmetric solution obtained in the range 3200050  rT . 

The stream lines of the secondary flow are shown at various Taylor number  rT  in the development of the vortex. 3-vortex, 
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4-vortex, 5-vortex and 6-vortex solution have been found in the secondary flow which is depend on the Taylor numbers  rT  

and Magnetic parameter ( gM ). The contour plots of the axial flow has been formed the ring shape which are either single or 

double ring shape that appeared depends on the variation of Taylor number  rT as well as Magnetic parameter )( gM . 

  
 

 

 

 

 

 

  

 

 

 

 

Figure 3: Stream lines of the Secondary Flow (top) 

and contours plot of Axial flow (bottom) in each 

row at Dean number 500)( nD and 

5000gM for Flux )(Q versus Taylor number 

)( rT at rT  500 , 2500 , 5000 , 6500 , 9000 and 

16000 . 

 

Figure 4: Stream lines of the Secondary Flow (top) 

and contours plot of Axial flow (bottom) in each 

row at Dean number 1000)( nD and 

5000gM for Flux )(Q versus Taylor number 

)( rT at rT  500 , 2500 , 3000 , 6000 ,14000 and 

16000 . 

 

Figure 5: Stream lines of the Secondary Flow (top) 

and contours plot of Axial flow (bottom) in each 

row at Dean number 1500)( nD and 

5000gM for Flux )(Q versus Taylor number 

)( rT at rT  500, 1500,  3000, 4300, 9700 and 

16000. 

 

Figure 6: Stream lines of the Secondary Flow (top) 

and contours plot of Axial flow (bottom) in each 

row at Dean number 2000)( nD and 

5000gM for Flux )(Q versus Taylor number 

)( rT at rT  500, 2000, 4000, 6000, 10000 and 

16000. 
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5. Conclusion 

     According to the results, we have obtained the following important view: 

 

1. For Magnetic parameter )( gM and Taylor number )( rT in both cases at high Dean number )( nD , steady solution 

has been obtained. 

2. Anomalous vortices solution has been found for the maximum secondary flow pattern which depends on the 

Magnetic parameter )( gM  and Taylor number )( rT .  

3. The symmetric flow structures at the maximum total flow region show almost the same flow behaviour in the range 

of 500005  gM . The strength of the secondary flows are decreases with the gradually increases of magnetic 

parameter )( gM . 

4. Tendency of the axial flow structures to turn into the single, double and triple ring shape that appeared of course 

depends on the various Taylor number
 

)( rT at Dean number
 

)( nD 500, 1000, 1500 and 2000 and Magnetic 

parameter
 

)( gM . 
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