
International Conference on Electronics, Computer and Communication (ICECC 2008)
University of Rajshahi, Bangladesh

Current Mobile Message Editing Analysis and Adopting Customizing Facility in SMS

Mohammad Shamsul Arefin1, Rezaul Karim2, Galib Bin Aziz1, Sheikh Md. Zakaria1
1Computer Science and Engineering Department, Chittagong University of Engineering & Technology, Bangladesh

2School of Computer Science and Engineering, University of Information Technology and Science, Bangladesh
e-mail: sarefin@cuet.ac.bd, galib02@yahoo.com, smzakaria@yahoo.com and pinnsele_of_success@yahoo.com

Abstract: Modern days of mobile communication
acquainted us with a technology of Short Messaging
Service or shortly SMS. It helps the users to interact
with other mobile subscriber using short message.
This built in technology is not so efficient and offers
limited options. The research area in this regard is to
make it more efficient and flexible. In case of sending
SMS, we do not have the opportunity to customize
our message using different font styles. In this paper,
the customizing facility has been introduced in case
of SMS. The objective is to provide the user a
freedom to select different types of font style. This
application is very simple to install in every Java
supported mobile handsets. The application takes
about 200-250 KB storage, which is small enough to
store in any java enabled mobile or other hand held
devices. It can be regarded that this project work will
create a new dimension in SMS service.

Key Words: SMS, J2ME, mobile communication

1. INTRODUCTION

The Short Messaging Service (SMS) allows a
handled device to generate and receive short
messages. It was introduced in Europe in 1991 and
became an instant hit. The Global System for Mobile
Communications (GSM)—formerly the European,
Standard for digital wireless- has supported SMS
from the beginning. In USA, SMS was available
initially on digital wireless networks built by
BellSouth Mobility, PrimeCo and Nexttel among
others. Short Messaging Service is an industry
standard packet based wireless service that enables
the transmission of alphanumeric messages between
mobile subscribers and systems such as electronic
mail, paging and voice mail systems.

In case of sending SMS there is no opportunity to
customize the message using different font styles. In
this paper a technique has been proposed to adopt
this technique in SMS. The objective is to provide
the user a freedom to select new types of font style
such as Monotype Corsiva or Times New Roman etc.
This package is very simple to install in every Java
supported mobile handsets. The application takes
about 200-250 KB spaces, which is small enough to
store in any java enabled mobile or other hand held
devices.

2. BACKGROUNDS AND PRESENT
 STATE

In SMS up to now there has been small
improvement. As it is a new technology it needs
some time to be established. But due to its endless
popularity researches are going on to make it more
efficient flexible and more users friendly. New
attachments that have been added in this system have
given this technology a boost. Today’s wireless
mobile communications devices offers text
messaging services that enable short textual
messages to be sent to the devices from any device
that access to the service. There is no doubt that this
service has provided a lot of convenience to us. SMS
type of messaging is capable of sending a maximum
of 160 characters on the control channel of a cellular
telephone network.

The implementation of J2ME [2, 3, 4] in various
mobile and hand held devices has successfully brings
manifold advantages and flexibility to the mobile
users. Day by day thousands of applications are
being invented and are successfully implemented in
different mobile sets. Some example of these types of
applications includes survival dictionary, Download
assistant, mobile safe, mp3 encoder (used in Nokia
3G sets), 3D phonebook etc. The motive behind
these types of implementations is to provide support
of multimedia facilities in such small devices. The
small devices naturally contains very small amount
of memory and thus supports very small amount of
Java options. Therefore these types of packages are
available as very small types of jar and jad files. All
java supported mobile sets contain the built in
compiler to run the corresponding jar and jad files.

The multimedia message service (provided by
different mobile users) is the initial step to provide
multimedia services to the mobile subscribers. But in
our country this service is quite expensive and so, not
so much popular yet.

The use of J2ME has made different kinds of
multimedia service packages to be custom built by
any Java programmers. Sometimes programmers use
some tricky methods to reduce the cost while sending
a multimedia message to the other end. This type of
work is recently done by a group of students of
Bangladesh University of Engineering and

ISBN 984-300-002131-3 154

International Conference on Electronics, Computer and Communication (ICECC 2008)
University of Rajshahi, Bangladesh

Technology, which perform the encoding of Bangla
fonts and to be sent just like any other normal SMS.
The package is currently available in Internet and is
only available to the AKTEL users.
In this paper, the same strategy has been employed
but propose more flexibility to the mobile users in
message editing. As it is known that J2ME does not
support any kind of font styles the strategy of
encoding the image fonts has been adopted.

3. METHODOLOGY

Due to the limitations of font styles in J2me
programming and CLDC configurations we will
represent different fonts in discrete .jpeg picture
format to the user display only. But it is inefficient to
send the pictures directly as it will use the MMS
technology that will cost more than SMS. Therefore
we have assigned a unique value for each of these
pictures and send those values as normal text. The
receiver inbox will receive these values, evaluate
them and places appropriate picture fonts
corresponding to those values. Thus the receiver is
totally unknown of the techniques applied and will
only receive the modified fonts that the sender
intended to send him.
The sender has to write a message in the editor
available in his mobile set after installing the jar and
jad file. Then he can choose the fonts supported in
that application from the menu. Fig.1 shows basic
construction of this application.

Fig. 1: Block Diagram of the Implementation

4. IMPLEMENTATION
4.1 Writing SMS

To write any message a form including a textfield
has been declared. The Textfield will be used to
write message in character and the form will be used
to display it. For this
newTextField("","",159,TextField.ANY+TextField.IN
ITIAL_CAPS_SENTENCE) used. And other
command like save command, back command also
used in this form. Finally using
display.setCurrent(messageForm) the has been
displayed.

4.2 Getting message String

messageField.getString() has been used to get the
string that has been written into the textfield. In order
to display the written message in the form of changed
font style the constructor of canvas class Preview has
been called new Preview(this, display,
messaField.getString()). Here the string of the
message has been passed to the Preview class as a
parameter. This message string will be used in the
Preview class. Before sending this string to the
Preview class an identifying character is enclosed at
the end of the string length. It might be ‘*’ or ‘#’ or
any character.

4.3 Sending Message String

First the string is taken into a variable say sms1 then
it has been converted into the string object using
sendMessage.setPayloadText(sms1). Finally the
string message is sent using the connection
msgConnection.send(sendMessage).

4.4 Displaying Message in different font styles

In the Preview class all the images of the font styles
is loaded into an array. After the creation of the
images these are atored in the slides[] array. Preview
class gets the string parameter and copies it into
another string. st.getChars(0,st.length(),sms3,0).
Now it is easy for this class to break this string into
string array. Now this array is divided and stored in
an array. For each and every character a value is
determined as a index for the array slides. It is done
by using a simple equation asc=ch-65 where ‘ch’ is
the ascii value.

4.5 Receiving SMS

For receiving and displaying the short message
accordingly i.e, with appropriate font styles selected
by the sender we have constructed mainly three
classes. The classes are named SMSreceive,
receivedSMS and Prevr which perform the the
smsport connection establishment, displaying module
initializing and placing the Font pictures to their
appropriate coordinates.

4.6 Message Port Connection
First we define a helper method that returns a
MessageConnection. For creating a client Message
connection we just call Connector.open(), passing a
URL that specifies a valid WMA messaging
protocol. In this particular application we have used
the specific smsport which is retrieved by the
getAppProperty() method. The MessageListener
implements the Listener design pattern for receiving
Message objects asynchronously; that is, without
blocking while waiting for messages.

ISBN 984-300-002131-3 155

International Conference on Electronics, Computer and Communication (ICECC 2008)
University of Rajshahi, Bangladesh

4.7 Initializing the display of the incoming
message

The ReceivedSMS class is constructed to initialize
the Prevr class. It is also used for passing the
mainscreen parameter to the Prevr class to return to
the Main Screen.

4.8 Displaying the message in the Canvas class

The operation of this class is almost the same like the
Preview class defined for the sending preview
purposes.

5. EEPERIMENTAL RESULT
5.1 Environmental setup

From the Toolkit first package of the software must
be created. Which will produce the required .jar and
.jad file of the package. This option will first compile
the whole MIDlet, saves the project settings and then
create the required application files.

5.2 Installation of the application
In the second step we need to install this newly
created .jar and .jad file in the simulation tool kit. For
this several steps are to be followed and when
installation is finished applications settings is needed
to be changed. Fig. 2, Fig. 3 and Fig. 4 depict the
installation processes. Fig. 5 shows how to change
the application settings not to interrupt the
application at any condition.

Fig. 2: Install
application

5.3 Launching the software:
After finishing the installation we can launch the
software from the menu. Fig. 6 shows the launching
process.

Fig. 6: Launching the software

5.4 Software interface:

In the main screen there are several options. From
the create new options new message writing window
comes out. Fig. 7 shows how to change the font
styles or to save the message. Fig. 8 displays the
canvas after changing the font styles.

Fig. 7: Write
new message

5.5 Recipient phone number entry:

Fig. 8: Message displayed in
[sending mobile] Monotype
font [sending mobile]

To send new message from the menu send needs to
be selected. A form will appear inquiring the
receivers from number. Which is in this case
+5550000. Fig. 9 shows the recipient phone number
entry interface.

 Fig. 3: Installing
application (Cont.) Fig. 9: Receivers phone no [sending mobile]

5.6 Receiving Procedure:

In the receiving end to receive this message the
receiver needs to select the receive options. Fig. 10
depicts the receiving interface available in the
receivers mobile. Fig. 11 shows the canvas with the
corresponding font style sent by the sender. Fig. 4: Installing .jad

file
Fig. 5: Changing
Application settings

ISBN 984-300-002131-3 156

International Conference on Electronics, Computer and Communication (ICECC 2008)
University of Rajshahi, Bangladesh

 Fig. 10:
 option selected

6. CONCLUSION

In this paper we proposed a new way to transmit
SMS using different types of font style. For this
elementary approach we have tried to keep things
simple and small. Finally we have been succeeded to
send SMS in two types of font style Monotype
Corsiva and in Comic Sans. For these two types of
font styles anyone can send SMS in the cost of the
regular SMS. It is only a preliminary step in
changing the font styles in mobile. Definitely
following this path more works on this field can be
done.
To provide large amount of font support we need to
do some improvement here. We may need to draw
them instead of using the picture. We will try to give
a boost to install new type of font styles in its next
version. We hope to give a new dimension in sending
SMS by introducing animated SMS. Now we are

providing limited font support. In our work we would
try to include new properties that will support
installing new type of font styles. We are also
thinking about different blinking messages that are
available now days as MMS/picture format. These
types of formats can be easily converted to SMS
format by adding some check bits in appropriate
places, the strategy we have followed in this
application. Furthermore, the user can modify the
application to change the font sizes willingly. In
summary, the package can be developed as any other
text editing software available to use in our personal
computers.

receive

Fig. 11: Message received in
changed [Receiving mobile]
font style [Receiving mobile]

REFERENCES
[1] J. Keogh, The complete Reference, Tata
 McGraw-Hill, 2003
[2] K. Topley, J2me in a Nutshell, O’Reilly,
 March 2002
[3] M. Morrison, Wireless Java with J2me,
 Prentice Hall, 2003.
[4] V. Piroumian, Wireless J2ME™ Platform
 Programming, Mcgraw Hill, 2004.
[5] Sun Java, www.prenhall.com/deitel.com
[6] OsborneLimited, http://www.osborne.com

ISBN 984-300-002131-3 157

http://www.prenhall.com/deitel.com

