Effect of Cd_{1-x}Zn_xS Window Layer Incorporation in CdTe Solar Cell by Numerical Simulation

N. K. Das^{1,*}, A. K. Sengupta¹, Mrinmoy Dey¹, K. S. Rahman², M. A. Matin¹ and N. Amin²

¹Department of EEE, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh

²Institute of Sustainable Energy, Universiti Tenaga Nasional (@The National Energy University), Jalan IKRAM-UNITEN,

43000 Kajang, Selangor, Malaysia

*nipudas@cuet.ac.bd

Abstract- CdTe is a very potential binary semiconductor material for solar photovoltaic application due to its superior optoelectronic properties. The overall performances of incorporating Cd1-xZnxS window layer in lieu of CdS layer in CdTe solar cell were investigated by SCAPS-1D simulator. The Cd1-xZnxS is an alloy of CdS and ZnS which increase band gap of window layer from 2.42 eV to 3.7 eV as a function of x (from x=0 to 1). The spectral response of the design Cd_{1-x}Zn_xS/CdTe cell improves in blue region which implies the big improvement of short circuit current density J_{sc} . In addition, in the traditional back contact of CdTe cell a small positive conduction band (ΔEc <0.3 eV) offset is necessary to reduce the forward current J_{θ} as well as the recombination losses at the back contact. To achieve this goal a highly doped ZnTe:Cu extra layer was used as an electron reflector (ER) above back contact. Furthermore, this ER interface allows electron tunnelling by reducing the barrier height of the valence band which in turn leads to an improvement of open circuit voltage and fill factor. The performance of the proposed cell was examined by varying thickness and doping concentration of transparent conducting oxide (TCO) layer, window layer, absorber layer and finally ER layer. The simulated results of the proposed cell had shown that the open circuit voltage (Voc) overcame the 1-volt barrier of CdTe cell with energy conversion efficiencies of 19.93 %.

Index Terms— $Cd_{1-x}Zn_xS$ window layer; CdTe Solar cell; ZnTe:Cu electron reflector; back contact.

I. INTRODUCTION

CdTe solar cell is a leading low cost and efficient thin-film photovoltaic technology for the deployment in the large terrestrial application. The performance limit of CdTe cell and module reaches over 22% and 18% respectively primarily due to the improvement of the photocurrent enhancement [1]. Further, the manufacturing cost of the PV module reduced to \$0.51/W in 2015 and the cost of energy is around 0.0387 \$ kWh [2-3]. CdS (Eg=2.42 eV) has been considered as a suitable hetero partner of CdTe absorber layer for junction formation but it causes high absorption especially in short wavelength region below 510 nm [4-5]. Therefore, to improve the blue response a very thinner CdS window layer is recommended. Reduced CdS window layer leads pinhole and micro shunt related problem with transparent conducting oxide (TCO) which in turn reduce device V_{oc} and fill factor (FF) [6-8]. An additional high resistivity transparent layer is necessary to overcome shunting which also increase device series resistance and fabrication steps. To improve the device performance of CdTe cell especially in the blue region and to reduce window/absorber interface recombination, researchers investigated different window materials. The Cd_{1-x}Zn_xS film has a tuneable direct band gap of 2.42 eV to 3.7 eV with varying x ratio x=Zn/(Zn+Cd), from x=0 to 1 [9-11]. Incorporation of Cd_{1-x}Zn_xS film in CdTe cell structure improves J_{sc} and overall efficiency of the cell [12-13]. There are various fabrication methods in which Cd_{1-x}Zn_xS film are deposited such as metal organic chemical vapor deposition (MOCVD) [9], chemical bath deposition (CBD) [11], atmospheric pressure metal organic chemical vapor deposition (AP-MOCVD) [12], RF sputtering [13] and so on. In this paper, the response of incorporation of Cd_{1-x}Zn_xS window layer in CdTe solar cell has been explored by SCAPS-1D simulator.

II. MODELING AND SIMULATION

The typical structure of CdTe solar cell $(SnO_2/CdS/CdTe/Cu$ doped graphite paste) was modified by the different researchers for improving the device performance [4-5, 8].

Fig. 2 Modified CdTe solar cell structure

In this paper, the conventional CdTe solar cells modelled by M. Gloeckler has been considered as a base cell whose performance parameters ($J_{sc} = 24.6 \text{ mA/cm}^2$, $V_{oc} = 0.87 \text{ V}$, FF = 76%, and $\eta = 16.4\%$) at AM 1.5G and T=300 K conditions [14]. The baseline cell model and modified cell structures of CdTe are shown in Fig. 1 and Fig. 2 respectively. In this modified structure, Indium Tin Oxide (ITO) layer is used as a transparent front contact with doping concentration $(10^{17} - 10^{19} \text{ cm}^{-3})$ and Cd_{1-x}Zn_xS ternary alloy is used as a window layer with adjustable material properties. Table I presents the material parameters used in this simulation taken from previous work done by the researchers [14-20]. The Cd_{1-x}Zn_xS window layer improves short-circuit current density J_{sc} of the cell. However, the overall performance of the cell is not good enough due to interface recombination in back contact of CdTe solar cell.

General Device Properties								
		Front	H	Back				
φb [Ev]		<i>\phibn</i> =0.1	φb	<i>\varphibp</i> =0.4				
Se[cm/s]		107		107				
Sh[cm/s]		107		107				
Reflectivity R _f		0.1		0.8				
Layer Properties								
Parameters	ITO	Cd _{0.2} Zn _{0.8} S	CdTe	ZnTe				
W (nm)	300	50	40000	50				
ϵ/ϵ_0	9.4	9	9.4	10.3				
$\mu c (cm^2/Vs)$	30	100	320	70				
$\mu p (cm^2/Vs)$	5	40	40	50				
n, p (cm ⁻³)	n:10 ¹⁸	n:10 ¹⁸	p:2×10 ¹⁴	p:7.5×10 ¹⁹				
Eg (eV)	3.72	3.3	1.45	2.25				
Nc (cm ⁻³)	4.3×10^{20}	2.1×10^{18}	8×10 ¹⁷	7.5×10 ¹⁷				
$Nv (cm^{-3})$	4×10 ¹⁹	1.7×10^{18}	1.8×1 ¹⁹	1.5×10 ¹⁹				
χ (eV)	3.6	4	4.28	3.53				

 TABLE I: MATERIAL PARAMETERS USED IN SIMULATION [14-20]

To reduce the interface recombination at the back contact, a stable ohmic back contact is significantly required for achieving higher performance from the CdTe cell. CdTe has high electron affinity ($\chi = 4.5$) and moderate band gap ($E_g = 1.45eV$). Hence, a metal with a high work function ($\varphi m \ge 5.9 eV$) is required to form an ohmic contact but most metals do not have a sufficiently high work function. Thus, CdTe makes a blocking Schottky back contact with barrier height (φb). Metallic interface is calculated using equation (1) and the metal with higher work function as well as their barrier height (φb) affects CdTe cell performance parameters J_{sc} , V_{oc} and FF are illustrated in Fig. 2.

$$\varphi b = E_{\sigma} q + (\chi - \varphi m) \tag{1}$$

TABLE II METAL WORK FUNCTION WITH BARRIER HEIGHT

Metal	φm	φb		
Wictai	eV	eV		
Al	4.28	1.67		
V	4.3	1.65		
Cr	4.5	1.45		
Sb	4.55	1.4		
Мо	4.6	1.35		
Cu	4.65	1.3		
Ag	4.7	1.25		
Те	4.95	1		
Au	5.1	0.85		
Pd	5.12	0.83		
Ni	5.15	0.8		
Pt	5.65	0.3		

The characteristics equations for evaluating solar cell performance are: Short-circuits current density (J_{sc}) , open-circuit voltage (V_{oc}) and fill factor (FF) is denoted by the given equation (2)-(4). In Fig. 3, it is shown that to maximize the efficiency of CdTe solar cell it is necessary to minimize the forward current.

Short-circuits current density (J_{SC}) :

$$J_{sc} = J_o \left(e^{\frac{qV}{KT}} - 1 \right) - J_L$$
⁽²⁾

Open-circuit voltage (V_{OC}):

$$V_{oc} = \frac{qV}{KT} \ln \left(\frac{J_{sc}}{J_o} + 1 \right)$$
(3)

Fill factor (FF):

$$FF = \frac{v_{oc} - \ln(v_{oc} + 0.72)}{v_{oc}}$$
(4)

Where,
$$v_{oc} = \frac{V_{oc}}{KT/q}$$

Fig. 3 Band diagrams of CdTe cells with different metal work function [2]

As a consequence, highly doped ZnTe:Cu has been used as an ER layer to reduce the barrier height for the hole and allow tunnelling [23-24]. Further, this ER layer makes a forward conduction offset ($\Delta E_c > 0$) which reduce the forward current as well as improve the overall cell performance.

III. RESULTS AND DISCUSSION

A. Impact of $Cd_{1-x}Zn_xS$ window layer on cell performance

In this simulation the band gap of the $Cd_{1-x}Zn_xS$ alloys is calculated by equation (5) for x=0.8 [12].

$$E_{g}(x) = E_{g}(CdS) + [E_{g}(ZnS) - E_{g}(CdS) - b]x + bx^{2}$$
(5)

Where, E_g (CdS) = 2.42 eV, E_g (ZnS) = 3.72 eV, and the bowing parameter b = 0.91 eV. The impact of Cd_{0.2}Zn_{0.8}S window layer on cell performance has been evaluated numerically and its characteristics are compared with CdS window layer by varying their thickness from 25 nm to 200 nm and doping concentrations from 10¹⁶ cm⁻³ to 5.1x10¹⁹ cm⁻³. The simulated result is presented in Fig. 4.

Fig. 4 Effect of window layer thickness variation on: (a) *Voc*, (b) *Jsc* (c) FF and (d) efficiency

Fig. 5 Effect of window layer doping concentration on overall efficiency

In the case of CdS widow layer, V_{oc} and J_{sc} are highly sensitive with its thickness and both the properties are decreasing whereas the FF shows opposite nature. On the other hand, Cd_{0.2}Zn_{0.8}S alloy shows less sensitivity with its thickness but the overall performance of the base cell is improved as shown in Fig. 4. Further, when the doping concentration of both widow layers changed then it is found that the overall response of Cd_{0.2}Zn_{0.8}S layer much better than CdS as shown in Fig. 5.

B. Effect of CdTe absorber layer on cell performance

The performance of $ITO/Cd_{0.2}Zn_{0.8}S/CdTe/Au$ cell is further investigated by changing the CdTe absorber material process parameter and the simulated result is shown in Fig. 6.

Fig. 6 Effect of CdTe layer doping concentration variation on ITO/Cd0.2Zn0.8S/CdTe cell parameters without ER layer (a) *Voc*, (b) *Jsc* (c) FF and (d) efficiency

Open circuit voltage V_{oc} of CdTe solar cell almost shows linear response with the increase of hole concentration from 1×10^{13} cm³ to 3×10^{15} cm³ whereas there is gradual decrement of J_{sc} observed. In addition, the improvement of V_{oc} is neutralized by the dramatic fall of *FF* over 9×10^{14} cm³ hole concentration. The decrease of J_{sc} might be the causes of interface recombination at back contact which in turn increase the forward current. The optimum efficiency (17.58 %) for ITO/Cd_{0.2}Zn_{0.8}S/CdTe/Au cell without ER layer is found at a

doping level 1×10^{15} cm³ where $J_{sc}=25.15$ mA/cm², $V_{oc}=1.05$ V and *FF* =66.41. While increasing the thickness of the CdTe absorber layer, it is found that the cell reaches its optimum efficiency limit at 3 µm thickness beyond this any further improvement were not observed.

Fig.7 Effect of CdTe layer thickness variation on $ITO/Cd_{0.2}Zn_{0.8}S/CdTe$ cell parameters without ER layer (a) *Voc*, (b) *Jsc* (c) FF and (d) efficiency

It is evident from Fig.7 that a slightly declining trend of overall efficiency was noticed after 8 μ m. The reduction of efficiency might be due to the increment of the bulk series resistance of the cell beyond 8 μ m thickness. Thus it was fixed at 3 μ m.

C. Incorporation of ZnTe: Cu ER Layer

Finally, a 50 nm Cu doped ZnTe ER layer is inserted with the optimized ITO/Cd_{0.2}Zn_{0.8}S/CdTe/Au solar cell to explore the influence of ZnTe:Cu on cell performance. ZnTe;Cu makes a positive conduction band offset ($\Delta E_c \ge 0.72 \ eV$) by which it reflects electron and reduces forward current as well as reduce interface recombination. On the other hand, a valence band offset ($\Delta E_v \ge 0.5 \ eV$) occurred which impede the flow of hole. As a consequence the ZnTe:Cu layer is doped with degenerately over $1 \times 10^{19} \text{ cm}^{-3}$ for allowing the electron tunnelling at the back-contact interface. In Fig. 8, it is observed that with the incorporation of ZnTe:Cu layer J_{sc} increase to 27.17 mA/cm² and more interestingly it was noticed that the value of J_{sc} was unchanged while the absorber hole concentration increases from $2 \times 10^{14} \text{ cm}^{-3}$ to $3 \times 10^{15} \text{ cm}^{-3}$.

Fig. 8 Effect of CdTe layer doping concentration variation on $ITO/Cd_{0.2}Zn_{0.8}S/CdTe/Au$ cell parameters with ZnTe:Cu ER layer (a) *Voc*, (b) *Jsc* (c) FF and (d) efficiency

Finally, the overall efficiency of the proposed cell (ITO/Cd_{0.2}Zn_{0.8}S/CdTe/ZnTe:Cu/Au) shown energy conversion efficiencies over 19 % with higher absorber hole concentration as in Fig. 8 (d). The comparative performance of the modified cell structure with base cell is presented in Table III.

TABLE III PERFORMANCE OF BASE CELL AND MODIFIED CELL

	Voc	J_{sc}	FF	η
Base Cell	0.87	24.6	76	16.4
Modified cell without ER	1.05	25.15	66.41	17.58
Modified cell with ER	1.1	27.18	66.65	19.93

It is clear from Table III that incorporation of $Cd_{I-x}Zn_xS$ window layer in base cell increased *Jsc* and *V*_{oc}. Moreover, application of ZnTe: Cu ER in modified cell further improved all the cell output parameters and overall conversion efficiency.

IV CONCLUSIONS

Incorporation of $Cd_{1-x}Zn_xS$ window in the baseline of CdS/CdTe solar cell improves the performance by enhancing

 $J_{sc} = 6.34\%$ than CdS. In addition, J_{sc} in Cd_{1-x}Zn_xS/CdTe is less sensitive to thickness variation which allows flexibility in fabrication. Meanwhile, the V_{oc} is proportionately increased with CdTe doping densities. However, this beneficial effect was neutralized by the prominent decrement of FF as well as J_{sc} . Furthermore, the addition of Cu doped ZnTe ER mitigates this effect by reducing forward current as well as increased V_{ac} over 1 V. Moreover, ZnTe:Cu maintains the value of J_{sc} and improve FF at a doping concentration of 7×10¹⁴ cm⁻³. However, after this doping concentration, decrease in FF observed. This decreased FF hinders the further improvement of cell performance with ZnTe:Cu ER. As a consequence, it can be concluded that the further improvement of the proposed cell (ITO/Cd_{0.2}Zn_{0.8}S/CdTe/Au) performance is strongly depends on FF enhancement in other way. It was planed that the proposed cell will be fabricated for further investigations. The final decision can be made after the proposed cell fabrication and measurements.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the contribution of Chittagong University of Engineering and Technology (CUET) for research grant through HEQEP CP-3200 and support from the Renewable Energy Laboratory (REL) of the Department of Electrical and Electronic Engineering of CUET.

REFERENCES

- [1] First Solar. First solar technology update, 2016.
- [2] Tao Song, Design strategies for high-efficiency cdte solar cells, Ph. D. thesis, Department of Physics, Colorado State University Fort Collins, Colorado, Spring 2017.
- [3] Tom Bainesa, Guillaume Zoppib, Leon Bowenc, Thomas P. Shalveya, Silvia Mariottia, Ken Durosea, Jonathan D. Major "Incorporation of CdSe layers into CdTe thin film solar cells" Solar Energy Materials and Solar Cells, pp196–204, 2018.
- [4] C.S. Ferekides *, U. Balasubramanian, R. Mamazza, V. Viswanathan, H. Zhao, D.L. More, "CdTe thin film solar cells: device and technology issues," Solar Energy 77 (2004) 823–830 September 2004.
- [5] X. Wu "High-efficiency polycrystalline CdTe thin-film solar cells," Solar Energy 77 (2004) 803–814.
- [6] X. Wu, R.G. Dhere, D.S. Albin, T.A. Gessert, C. DeHart, J.C. Keane, A. Duda, T.J. Coutts, S. Asher, D.H. Levi, H.R. Moutinho, Y. Yan, T. Moriarty, S. Johnston, K. Emery, and P. Sheldon "High-Efficiency CTO/ZTO/CdS/CdTe Polycrystalline Thin-Film Solar Cells," NCPV Program Review Meeting, October 2001, Lakewood, Colorado, USA.
- [7] C.S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, D.L. Morel, "High efficiency CSS CdTe solar cells," Thin Solid Films 361–362 (2000) 520–526.
- [8] A. Bosio, G. Rosa, N. Romeo, "Past, present and future of the thin film CdTe/CdS solar cells," Solar Energy (2018).
- [9] Chu TL, Chu SS, Britt J, Ferekides C, Wu CQ. "Cadmium zinc sulfide films and heterojunctions", Journal of Applied Physics 1991; 70(5): 2688–2693.
- [10] M.E.Rincón M.W.Martínez M.Miranda-Hernández, "Structural, optical and photo electrochemical properties of screen-printed and sintered (CdS)x(ZnS)1-x (0<x<1) films," Solar Energy Materials and Solar Cells, Volume 77, Issue 1, 30 April 2003, Pages 25-40.
- [11] Bhaskar Kumar, "Zinc Cadmium Sulphide And Zinc Sulphide As Alternative Heterojunction Partners For CIGS₂ Solar Cells," M. Sc. Thesis, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, Florida, 2007.
- [12] Giray Kartopu, Andrew J. Clayton, William S.M. Brooks, Simon D. Hodgson, Vincent Barrioz, Alban Maertens, Dan A. Lamb and Stuart J.C. Irvine, "Effect of window layer composition in Cd1xZnxS/CdTe solar cells," Progress in Photovoltaics: Research and Applications Banner, August 2012.
- [13] M.S. Hossain, K.S. Rahman, M.A. Islam, M. Akhtaruzzaman, H. Misran, M.A. Alghoul, N. Amin, "Growth optimization of ZnxCd1-xS films on ITO and FTO coated glass for alternative buffer application in CdTe thin film solar cells," Optical Materials 86 (2018) 270–277.

- [14] M. Gloeckler, A.L. Fahrenbruch, and J.R. Site, "Numerical Modeling of CIGS and CdTe Solar Cells: Setting the Baseline," 3rd World Conference on Photovoltaic Energy Conversion, Osokn. Japan, May 2003.
- [15] Md. Sharafat Hossaina, Nowshad Amin, Takhir Razykov, "Prospects Of Back Contacts With Back Surface Fields In High Efficiency ZnxCd1-xS /CdTe Solar Cells From Numerical Modeling," Chalcogenide Letters Vol. 8, No. 3, March 2011, p. 187 – 198.
- [16] M.A. Matin, M. Mannir Aliyu, Abrar H. Quadery, Nowshad Amin, "Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis," Solar Energy Materials & Solar Cells 94 (2010) 1496–1500.
- [17] Mrinmoy Dey, M. A. Matin, Nipu Kumar Das and Maitry Dey, "Germanium telluride as a ER material for high efficiency ultra-thin CdTe solar cell," International Forum on Strategic Technology (IFOST-2014), October, 2014, Cox's Bazar, Bangladesh.
- [18] Mrinmoy Dey, Maitry Dey, M. A. Matin, Nowshad Amin, "Design of high efficient and stable ultra-thin CdTe solar cells with ZnTe as a potential ER," International conference on Green Energy and Technology (ICGET-2015), September 2015, Dhaka, Bangladesh.
- [19] M Dey, M Dey, NK Das, AKS Gupta, MA Matin, N Amin, "Performance improvement of highly stable molybdenum telluride solar cells with CZT ER," International Conference on Electrical, Computer and Communication Engineering (ECCE-2017),February 2017, Cox's Bazar, Bangladesh.
- [20] Mrinmoy Dey, Rishita Chakma, Nazia Rahman, Maitry Dey, NK Das, AK Sen Gupta, MA Matin, Nowshad Amin, "Study of ultra-thin and stable AlSb solar cell with potential copper telluride ER," IEEE Region 10 Humanitarian Technology Conference (R10-HTC-2017), December 2017 Dhaka, Bangladesh.
- [21] Vijay Viswanathan, "Study of Cu free back contacts to thin flm CdTe solar cells," Ph. D. thesis, Department of Electrical Engineering, University of South Florida Florida, February 2, 2004.
- [22] Samuel H. Demtsu, "Impact of back-contact materials on performance and stability of cds/cdte solar cells," Ph. D. thesis, Department of Physics, Colorado State University Fort Collins, Colorado Summer 2006.
- [23] Colin A. Wolden, Ali Abbas, Jiaojiao Li, David R. Diercks, Daniel M. Meysing, Timothy R. Ohno, Joseph D. Beach, Teresa M. Barnes, John M. Walls, "The roles of ZnTe buffer layers on CdTe solar cell performance," Solar Energy Materials & Solar Cells 147 (2016) 203–210.
- [24] A. Bosio, R. Ciprian, A. Lamperti, I. Rago, B. Ressel, G. Rosa, M. Stupar, E. Weschke, "Interface phenomena between CdTe and ZnTe:Cu back contact," Solar Energy 176 (2018) 186–193.