
NCICIT 2013: 1st National Conference on Intelligent Computing and Information Technology, 
November 21, CUET, Chittagong-4349, Bangladesh 
 

 

122 
 

A Sequence Alignment Algorithm and Tools for 
Molecular Replacement 

 
 Mohammad Ibrahim Khan, Mehtanin Kabir Rashikh  

Department of Computer Science & Engineering, Chittagong University of Engineering & Technology, Bangladesh 
Email: muhammad_ikhancuet@yahoo.com; the.rashikh@gmail.com

 
 

Abstract—This paper describes a new genetic alignment 
algorithm and software tool for sequences that can be 
used for determination of deletions and substitutions. 
Sequence alignment is one of the most active ongoing 
research problems in the field of computational 
molecular biology. Sequence alignment is important 
because it allows scientists to analyze protein strands 
(such as DNA and RNA) and determine where there are 
overlaps. This overlaps can show commonalities in 
evolution and they also allow scientists to better prepare 
vaccines against viruses, which are made of protein 
strands. The algorithm provides several solutions out of 
which the best one can be chosen on the basis of 
minimization of gaps or other considerations. The 
algorithm does not use similarity tables and it performs 
aspects of both global and local alignment. It is also 
compared with other sequence alignment algorithms. 

Keywords— Sequence Alignment; Genetic 
Algorithms;  Computational Biology; Algorithm 
Complexity 

I. INTRODUCTION 
Sequence alignment refers to the problem of optimally 
aligning sequences of symbols with or without 
intersecting gaps between the symbols. The objective 
is to maximize the number of matching symbols 
between the sequences and also use only minimum 
gap intersection, if gaps are permitted. The sequence 
characters in bioinformatics can be any genic (gene 
sequence protein sequence), structural (morphological) 
or behavioral features of an organism. The DNA 
(deoxyribonucleic acid) sequence is a string of adenine 
(A), guanine (G), cytosine (C) and thiamine (T) bases 
and there are several approaches to the solution to the 
alignment problem of two DNA sequences. In general, 
the alignment we seek is not for all the bases of the 
fragment but rather of various parts of it at different 
locations. We may find different solutions where the 
parts of the fragment have different gaps associated 
with them [1]. Given any number of sequences, 
finding out the degree of similarity between them is 
highly helpful in the field of bioinformatics, because 
similar regions help in deciding structural and 
evolutionary relationship between the sequences.  

When searching in database by strings, the 
problem can be of errors in spellings or variant 
spellings or even systematic errors due to 
misalignment of hands with the keyboard. In such 

cases a similarity matrix between the characters needs 
to be considered. Likewise, there can be alternate 
spellings and representation of heard utterances in a 
variety of ways. In diachronic examination of and 
language the question of alignment must deal with 
changes [2]. In biological memory, fragments may be 
matched by means of indices [3] or by shape [4], 
which are aspects of alignment that go beyond string 
matching topics.  

At present, there are various sequence alignment 
algorithms to find the best alignment between two 
sequences. In general these algorithms perform either 
global or local alignment or a combination of the two. 
Global alignment is generally performed if the 
sequence lengths are comparable whereas local 
alignment is when one is looking for the best fit within 
the larger sequence of the small sequence. The 
Needleman-Wunsch [5] and the Smith-Waterman [6] 
algorithms are well known algorithms for finding the 
best alignment between sequences. These algorithms 
make use of dynamic programming to find the best 
alignment and they use similarity tables. Needleman-
Wunsch performs global optimization, whereas Smith-
Waterman calculates local alignments. For sequences 
of length m and n, the complexity of the two 
algorithms in their basic forms is O(mn). 

II. METHOD 

A. Alignment Algorithms 
The best alignment between any two given sequences 
easily be found by brute force if their lengths are 
small. If the sequence lengths are large, we must 
develop a strategy to minimize the comparisons.  

Basically, alignment methods perform global and 
local alignments. We will explain global alignment 
with an example consisting of two sequences X and Y.  

 X: GLKATKDNCKSSEBSEFDN  

       |                    |  |  |  |            |  

 Y: GHGFLERNCKSLMRLEDAH  

The alignment is stretched over entire sequence 
lengths to match as many matches possible. Although, 
NCKS is the biggest match that is possible between X 
and Y, G and E are also considered because of the 
match occurrence.  



Mohammad Khan et al. 
 

123 
 

Local Alignment is an alignment that searches for 
segments of two sequences that match really well. 
Local alignment stops at the end of regions of 
similarity. It does not take the entire sequence into 
consideration. It just looks for regions that have more 
similar segments by neglecting regions with less 
similar segments.  

Example for Local Alignment:  

 X: ----------NCKS----------  

                   |  |  |  |   

Y: ----------NCKS----------  

B. Reliable Alignment 
Examination of structural alignments shows that the 
more similar the proteins, the larger the proportion of 
the structure that can be aligned. It follows rather 
obviously that if one only has sequences, then the 
more similar the sequences, the more reliable any 
alignment of those sequences is likely to be. This 
relationship between alignment reliability and 
sequence similarity has been quantified. 
 

 
 

Figure 1. C_ representation of 27 SH2 Domain Structures Aligned 
Using the Program STAMP (Russell & Barton, 1992). 

C. Proposed Algorithm 
Our algorithm can be explained by taking two 
sequences into consideration. We represent our first 
sequence as X and second sequence as Y. Let the 
length of X be m and length of Y be n, In general       
n≤ m. In our example, we take Y to be shorter than X. 

The algorithm works as follows:  

Step 1: Set a=0 

Step 2: Set ct1=0 and ct2=0  

Step 3: If n-a ≠ 1, goto Step 4, Else goto Step 9 

Step 4: Compare (n-a) size substring of Z with (m-
(n-a)) substring of X  

Step 5: If match found, record the positions of Y 
and X where match has occurred 

Step 6: If (n-a) is less than n, Increment ct2, else 
set ct2=0 and goto Step 7 

Step 7: If (m-(n-a)) is less than m, Increment ct1, 
else set ct1=0 and goto Step 8  

Step  8: Increment ‘a’ by one and goto Step 3 

Step 9: Print similarity regions recorded when 
match occurred and rest are filled with gaps(-).  

D. Example 1 
Let us consider X = CTFTALILLAGAG and Y = 
FTALLAAG. The length m of X is 13 and the length 
n of Y is 8 (where m ≥ n). Since Y  is shorter, we 
perform comparison of sequence Y with sequence X. 
      These are the comparisons that occur in the first 
iteration of our program:  
      FTALLAAG is compared with CTFTALIL,        
TFTALILL, FTALILLA, TALILLAG, ALILLAGA 
and LILLAGAG.  
      If match does not occur, a is incremented by one, 
so we perform (n-a) comparison of all possible strings 
in Y with all possible (m-(n-a)) length strings in X.  
      FTALLAA and TALLAAG in sequence Y are 
compared with CTFTALI, TFTALIL, FTALILL, 
TALILLA, ALILLAG, LILLAGA and ILLAGAG in 
sequence X. 
      We perform such comparisons in sequence till (n-
a) becomes 1 or all character in shorter sequence Y 
gets match with sequence X.  
      Finally, we obtain alignment as:  

X: C T F T A L I L L A G A G  
Z:  -  -  F T A L - -  L A – A G  

      The sequences as presented to us may have errors. 
These errors could be of different kind: substitution 
errors, extra characters, dropped characters. Clearly, 
one must correct for errors based on knowledge of the 
database from where the strings have come. The 
matching process can point to likely places of 
substitution, extra characters, and dropped characters.  
      Let us assume we have an error in sequence X. 
Let the actual value of X = CTFTALILLAAG 
obtained after error correction. Now, if we perform 
alignment between X and Y, we might get better 
alignment than what we got before. Likewise there 
could have been an error in the sequence Y. If errors 
are known to have occurred it is important to correct 
these errors.  
      In the above example, if we consider X after error 
correction then we get a better result than that of the 
alignment that we got before.  

Xnew = C T F T A L I L L A A G  
Znew =  -  -  F T A L -  - L A A G  



NCICIT 2013: 1st National Conference on Intelligent Computing and Information 
Technology, November 21, CUET, Chittagong-4349, Bangladesh 
 

 

124 
 

      Znew has better alignment than Z after considering 
error correction.  
      If there exists more than one match between any 
two sequences, we must select an alignment that has 
minimal gap amongst them or use other 
considerations related to similarity between 
characters. Here we propose the following method to 
choose the better alignment: Generate all possible 
alignments between sequences and calculate the mean 
and variance for the gaps for each of those 
alignments. An alignment with less gap mean and 
smaller variance, if the means are the same, is the 
optimal alignment.  

E. Example 2 
Let us consider X= 
SNARSENAGCATQRABCRTLJT and Y= 
ARAGCATR. The possible alignments Z that we 
could get are given below:  
 
X:  S N A R S E N A G C A T Q R A B C R T L J T  
Z:  -  -  A R  -  -  -  A G C A T  -  R  -  -  -  -  -  -  -  -   
      -  -  A R  -  -  -  A G C A T  -  -   -  -  -  R -  -  -  -  
 
      In the above example, we have 2 possible 
alignments for Z. The gap variance is computed after 
finding the mean of the gaps which are: 2 and 4 
respectively. The variance values for the gaps are: 1 
and 1 respectively. But still first one has minimum 
number of gaps, Therefore, the first alignment is the 
best one.  
      Some words in English dictionary, which are 
frequently confused with words that sound same, but 
are spelled differently. For example effected and 
affected, to and too, sent and cent, here and hear and 
many more. These words are called as homonyms. 
Same names are spelled in different ways in different 
regions or they are pronounced differently. The 
English “a” has the pronunciation of “ai” in many 
words. If we are able to derive a matrix that tells us 
which letters could be substituted with existing letters 
that could minimize the gaps between sequences, and 
our algorithm could then work significantly better. 

F. Example 3 
X=CGTCTAACTAGGTACAGTAGAG and 
Z=TACTAGGAG, so that m= 22 and n=9. Here are 
the possible alignments our algorithm generates.  
X =C G T C T AA C T A G G T A C A G T A G A G  
Z1= -  -  T  -  -  - A C T A G G  -  -  -  A G  -  -  -  -  -  
Z2= -  -  -   - T  - A C T A G G  -  -  -   -  -   -  -  -  A G  
Z3=  -  -  -   - T -  A C T A G G  - A  -  -  G  -  -  -  -  -  
Z4=  -  -  -  -  T -  A C T A G G  -  -  -  -  -    -  A G -  - 
      There are many possible alignments that can be 
generated, Likewise, our algorithm generates all 
possible alignments and computes variance for all 
alignments. An alignment with less variance could be 
chosen as best alignment.  

      In the above example, mean of Z1, Z2, Z3 and Z4 
is 4.67, 6.33, 3 and 4 respectively. Variances are 5.56, 
14.89, 8.5 and 9.5. As alignment string Z1 has 
minimum variance, Z1 is considered as best alignment 
amongst Z1, Z2 Z3 and Z4. This strategy defines a 
new way of selecting optimal alignment between 
given any number of sequences. When we perform 
alignment between any sequences, our main objective 
is to minimize gaps between them. So we have to 
select optimal alignments by discarding all non-
optimal alignments that would create more gaps. 
When given sequences are long, we need to use 
dynamic programming to calculate best possible 
alignment. But in the beginning, it is also necessary to 
prune bad alignments.  

G. Flow Chart of Software Tool 
The software tool that is developed by Java language 
by using the algorithm, works by following this 
process flow chart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2. Flow Chart of the Process of Developed Software Tool. 

III. COMPLEXITY ANALYSIS 
For sequences X and Y of length m and n 
respectively, the proposed algorithm performs 
following number of comparisons to calculate 
alignment between them where k is an integer that 
ranges from 1 to n, so the complexity of our algorithm 
can be derived by the derivation of following,  

                 
 
=(m-n)*n+((m-n-1)*(n-1))+((m-n-2)*(n-2))+-----+mn 
 
=mn+(n*n)+mn-m-(n*n)-n-n+1+--------------------+mn 

Data Input 

Filtering 
Data 

 
Discard Low Quality 

Reads 

 
Algorithm 

Implementation 

Result 
Output 



Mohammad Khan et al. 
 

125 
 

 
      As the higher order terms are m and n, after 
expansion we get complexity of O(mn).  

IV. COMPARISON WITH EXISTING 
ALGORITHM 

If we consider two sequences X and Y, where X = 
GGCCTAACTAGAATACCGTACAGTACGAAG 
and Y = CACTAGGAA.  
 
Alignment using Needleman Wunsch Algorithm:  
GGCCTAACTAGAATACCGTACAGTACGAAG  
       |  |     |  |  |  |    |                                              |  
      CA -CTAGGA -  - -  - - - -  - - - -  - - - - - -A  
 
Alignment using Smith Waterman Algorithm:  
GGCCTAACTAGAATACCGTACAGTACGAAG  
                              |  |     |  |  |  |   |  
-  - -  - CA - CTAGGAA  - -  - - -  - -  - - -  - - -  - - -   
Alignment generated by our algorithm:  
GGCCTAACTAGAATACCGTACAGTACGAAG  
                  |    |  |  |  |  |                  |    |    |  |  
            - - - - C - ACTAG - - - - - - G - A - A  
 
The developed software tool gives the output as the 
following: 
 

 
 

Figure 3. The output GUI of software tool developed in Java. 

V. CONCLUSION 
In conclusion, the goal of this paper is to describe a 
new alignment algorithm and software tool developed 
in Java for sequences that can be used for 
determination of deletions and substitutions. 
Insertions may also be handled if the order of the 
comparison sequences is switched but it would make 
sense only if the size of the two sequences is 
comparable. Our algorithm provides several solutions 
out of which the best one can be chosen on the basis 
of minimization of gaps or other considerations. 
Statistical consideration related to alignment solutions 
can be studied in a manner similar to those for other 
alignment algorithms. The algorithm and the 
application generates good alignment by finding 
maximum length matches between given sequences. 

Its complexity is of the same order as the Needleman 
Wunsch and Smith Waterman algorithms. The basic 
algorithm can be refined by adding further constraints 
related to character similarity or gap constraint that 
will also make it more efficient. 

ACKNOWLEDGMENT 
Grace to almighty at first for enabling us to complete 
this work. We would like to express our gratitude to 
all who have assistance in our work, analysis 
completion and paper making. We would like to thank 
all the faculty members of department of Computer 
Science and Engineering, CUET, without whom 
nothing these would be possible. We also want to be 
grateful to all of our friends and well-wishers for 
being with us this long time. Finally, we would not 
like to express thanks to someone, rather we would 
like to say they owe us everything we have, they are 
our parents and family. 

REFERENCES 
[1] D. Gusfield, “Algorithms on strings, trees, and 

sequences”, computer science and computational 
Biology, Cambridge University Press, 1997. 

[2] S. Kak, “A frequency analysis of the Indus 
script”, Cryptologia 12:129-143, 1988. 

[3] S. Kak, “The three languages of the brain: 
quantum, reorganizational, and associative”, In: 
K. Pribram and J. King (editors), Learning as 
Self-Organization. Lawrence Erlbaum, Mahwah, 
185 –219, 1996. 

[4] L.S. Swan and L.J. Goldberg, “Biosymbols: 
symbols in life and mind”, Biosemiotics 3: 17-31, 
 2010. 

[5] S.B. Needleman and C.D. Wunsch, “A general 
method applicable to the search for similarities in 
the amino acid sequence of two proteins”, 
Journal of Molecular Biology 48: 443–53, 1970.  

[6] T.F. Smith and M.S. Waterman, “Identification 
of common molecular subsequences”, Journal of 
Molecular Biology 147: 195-197, 1981.  

[7] D. Garg and N. Singla, “String Matching 
Algorithms and their Applicability in various 
Applications”, International Journal of Soft 
Computing and Engineering, Vol-1,    Issue- 6, 
January 2012. 

[8] Ziad A. A., Alqadil M. Aqel, and El Emary I. M. 
M., “Multiple Skip Multiple Pattern Matching 
Algorithm (MSMPMA)”, IAENG International 
Journal of Computer Science, September, 2007. 


