
NCICIT 2013: 1st National Conference on Intelligent Computing and Information Technology,
November 21, CUET, Chittagong-4349, Bangladesh

73

Analysing Progressive-BKZ Lattice Reduction
Algorithm

 Md. Mokammel Haque1,Mohammad Obaidur Rahman2 and Josef Pieprzyk1
 1Department of Computing, Macquarie University, Australia.,
 2Department of Computer Science & Engineering, Chittagong Univ. of Engg. & Tech.,Bangladesh

Email: malin.mokammel-haque@mq.edu.au; obaidur_91@cuet.ac.bd; josef.pieprzyk@mq.edu.au

Abstract— BKZ and its variants are considered as the
most efficient lattice reduction algorithms compensating
both the quality and runtime. Progressive approach
(gradually increasing block size) of this algorithm has
been attempted in several works for better performance
but actual analysis of this approach has never been
reported. In this paper, we plot experimental evidence of
its complexity over the direct approach. We see that a
considerable time saving can be achieved if we use the
output basis of the immediately reduced block as the
input basis of the current block (with increased block
size) successively. Then, we attempt to find pseudo -
collision in SWIFFT hash function and show that a
different set of parameters produces a special shape of
Gram-Schmidt norms other than the predicted
Geometric Series Assumptions (GSA) which the
experiment suggests being more efficient.

Keywords: Lattice reduction, BKZ, Gram-
Schmidt vectors, SWIFFT.

I. INTRODUCTION
Lattice of our interest is integer or point lattice;
discrete subgroup of R

n
. It is defined as the integer

linear combinations of some vectors (b1,..., bd) of the

form: ∑=

d

i ii bx
1

. where xi ∈ Z. The vectors (b1,...,

bd) are linearly independent and called a basis of the
lattice. The number of vectors d is the lattice
dimension.

The goal of lattice reduction is to find good and
quality bases that include short enough vectors. SVP
or Shortest Vector Problem is the most common and
fundamental lattice problem on which many
cryptosystems rely on. In lattice-based cryptanalysis
one typically look for an approximate variant of SVP,
i.e. to obtain a vector ≈ α × λ 1 (L), where d is the
dimension of lattice L, α ≥1 is the approximation
factor and λ1 (L) is the first minimum (the length of
the shortest nonzero vector of L). Other important
lattice problems are CVP (Closest Vector Problem)
and SIVP (Shortest Independent Vector Problem).

Lattice problems are considered as a key element in

many areas of computer science as well as cryptography.

In particular, public key cryptosystems based on
knapsack problem, special setting of RSA and DSA
signatures schemes; encryption schemes based on
LWE(Learning with error) problems; fully homomorphic
cryptosystems are the most important.
Hash function SWIFFT [1], consists of following
compression function:

1
.

m

i i
i

a x R
=

∈∑

where R = Zq[x]/(xn +1) is the ring of polynomial, ai

∈ R (∀i) are m fixed multipliers and xi ∈ R (∀i) with
coefficients ∈{0, 1} are the input of length mn. Other
parameters of this function include n be a power of 2
and a prime modulus p>0. The algebraic formulation
of SWIFFT is equivalent to a lattice of dimension mn
and the security of such function depends on the
infeasibility of finding rela tively short vectors in such
a lattice. Finding a collision in this function means to
look for a nonzero vector xi ∈ R with coefficients are

in {−1, 0, 1} such that ∑=

m

i ii xa
1

. =0 mod p. In other

words, if we can find a vector by reducing the lattice
(considering a sublattice of dimension m’n’ ≤

'
mn will

be enough) of Euclidean length ,mn≤ then it is a
pseudo-collision.

The most efficient (in terms of reduction quality) BKZ
lattice reduction algorithm can able to find such

collision in ()2

2 dO
time complexity. Both

theoretically and experimentally we show the variant
BKZ-Progressive can do so in reduce amount of time.
Precisely, in section 4 we give a heuristic argument
that it has enumeration time complexity of nearly

() ()log2O d d O d+ in section 5 we plot experimental
results to support this proposition and in section 6 we
provide its average runtime complexity for finding
pseudo-collision comparing with BKZ. We also
showed that it can achieve the quality of reduction as
good as BKZ.

 Md. Mokammel Haque et al.

74

II. RELATED WORK
Lattice reduction technique has been studied from the
language of quadratic forms (by Hermite in 1850 and
then by Korkine-Zolotarev in 1873, together combine
HKZ reduction) to analyze current cryptosystems. But
it is not seemed to have much improvement since
Lenstra-Lenstra-Lovász seminal LLL [2] algorithm
has been published in 1982. This polynomial time
algorithm is very fast with moderate reduction quality
to solve shortest vector problem (SVP). In [3],
Schnorr introduced the block concept of HKZ
reduction to produce the best reduction algorithm
(BKZ) in practice until today. This algorithm gets
much slower when block size increases but can
achieve approximation ratio (Hermite factor)
upto≈1.011

n
while LLL can achieve roughly

upto≈1.022
n

according to [4]. The practical BKZ
algorithm is reported in [5] and has been since widely
studied by researchers related to this field. Both LLL
and BKZ is implemented in NTL package [6] and
usually used as a base of any relevant experiments.

Quasi-HKZ reduction technique proposed by Ravi
Kannan [7] is another celebrated work that achieve
best theoretical bound on enumeration
procedure(lattice reduction technique often combines
with enumeration routine, for example in BKZ
reduction algorithm). An improved analysis of this
algorithm is reported in [8] by Stehle´and Hanrot. Re-
cent significant improv ement is done by Gama et al.
in [9] where they introduce extreme pruning concept
for enumeration. This leads lower success probability
to find a short enough vector but gain in overall by
saving considerable time. Gama and Nguyen’s
experiments done in [4] suggest some actual
behaviour (output quality v. running time) of lattice
reduction algorithms to reduce the gap between
theoretical analysis and practical performance of
lattice algorithms.

We believe there are two variants of applying BKZ
progressively. The first variant uses same lattice basis
with increasing block sizes to look for a particular
lattice reduction quality. In [10] Buchmann and
Lindner used this approach to find sub -lattice collision
in SWIFFT, similar approach is used in [11] by
Lindner and Peikert to extrapolate BKZ runtime for
LWE parameters. The other variant (feed forward
approach, i.e. the output of current block is used as
the input of next larger block) that used as a
preprocessor of the enumeration routine in [12]
designated as recursive-BKZ. Our definition of
Progressive BKZ is believed to be substantiated the
later variant.

III. PRELIMINARIES

A. Gram-Schmidt Orthogonalization
The purpose of lattice reduction is to search for
orthonormal basis i.e. look for the unit vectors that are
pairwise orthogonal in the basis. Gram-Schmidt
orthogonalization method can always transfer a basis
B = (b1,..., bd) into orthogonal basis B∗

=(b1
∗ ,…, bd

∗)
as follows:

∑
>

=

=

ji
jjiii

i

bbb
bb

*
,

*

*
1

µ

where * *
, (,) / (,)i j i j j jb b b bµ = for all .ji ≠ We can

also define the orthogonal Gram-Schmidt vectors as
)(:*

iii bb π= for all non-negative i≤d, where iπ
denotes the orthogonal projection over the orthogonal
supplement of the linear span of b1, ..., bi-1 [see [13]
for details]. Every lattice reduction algorithm uses this
process to find the reasonably short lattice vectors.

B. Input and Output basis
The basis that is chosen for SWIFFT can be
represented as the following matrix:

0
.

I
H p I

=

B

where the m ∗ n dimensional lattice is symbolized as
a nmnm ** × matrix. H is a)1(* −× mnn skew
circulant matrix in Zp = {0… p−1}; p> 0 is the prime
for the SWIFFT parameters. I is the
n∗(m−1)×n∗ (m −1) identity m atrix. R ight bottom is
the n × n scalar matrix and right top is a n ∗ (m − 1) ×
n dimensional zero matrix.
 According to [9], sufficiently random reduced
bases except special structure have a typical shape for
main algorithms like LLL and BKZ and the shape

depends on the ratio **
1 / ii bbq += of Gram-

Schmidt vectors. This follows Schnorr’s Geometric
Series Assumption (GSA)[14]. The running time of
the algorithms depends on q. The BKZ-Progressive
also produces same shape as BKZ for certain pa-
rameter choice)(mm ≤′ of the input basis. As m

'

increases (fixing the n’
'
) the sbi '* produce a

constant 1 consistently, i.e. the ratio q is 1 too.
Seemingly, we can say as long as the basis does not
produce special structure the shape is typical. From
the discussion of [11] we predict the q reaches its

NCICIT 2013: 1st National Conference on Intelligent Computing and Information
Technology, November 21, CUET, Chittagong-4349, Bangladesh

75

lower bound 1. Now on we will mention the first case
as the typical behavior of *

ib as well as q and the

second case as special behavior. We discuss both
cases while analyzing BKZ-Progressive performance
and SWIFFT in later sections.

C. Enumeration:
Enumeration is a technique that is used alongside
lattice reduction for most of the major algorithms. If
we imagine a lattice L as a tree then enumeration
procedure is simply an exhaustive (depth-first) search
for integer combination of the nodes (or vectors)
within a upper bound in λ1(L). This procedure (also
implemented in NTL) run in exponential time
opposed to the lattice reduction technique itself
(which run in polynomial time).

IV. THEORETICAL MOTIVATION FOR
BKZ-PROGRESSIVE

Block-Korkine-Zolotarev reduction a.k.a BKZ
reduction is the most successful lattice reduction
algorithm in practice. Schnorr and Euchner [5]
introduced the following dentition of BKZ reduction.

A. BKZ Reduction
 Let β be an integer such that 2 ≤ β<d. A lattice (L)
basis (b1,..., bd) is β-reduced if it is size reduced and
if (for i =1,,d−1)

)))((,(),1min(,....,1
*

diii bbLb −+Π≤ βλ

 Ravi Kannan provides an algorithm that computes
HKZ reduced bases to solve SVP. The main idea of
Kannan’s algorithm is to spend more time on pre-
computing a basis of excellent quality before calling
the enumeration procedure. Our BKZ-Progressive
approach inspired from Kannan for pre-processing a
basis of subsequently increasing block size can be
defined as follows.

BKZ-Progressive Reduction: Let BKZ (d, β)
denotes the BKZ algorithm running on a lattice
dimension d with block size β. Instead of reducing
BKZ(d, β) in the first place it will reduce the basis
with smaller block size upto β with BKZ(d, 2),
BKZ(d, 4),, BKZ(d, β).

B. Heuristic
 A d-dimensional lattice reducing with BKZ-
Progressive approach requires enumeration
complexity of approximately 2

O(k log k)
, where k is the

block size.

Proof. For BKZ reduction with block size k the recent
theoretical analysis (see Theorem 2 in [15]) shows
that

1
)log(log

~ −
<

k
q γ

where kch *≤γ is the Hermite constant in
dimension k (for constant ch). The number of BKZ-k
iterations sufficient to get this log q is

)/*(23

~
knc′< for constant c’

'
. Since progressive

BKZ applies for i =2, 4, ..., k − 2 BKZ(i + 2), on an
input basis which is the output of BKZ(i), we expect
the enumeration time for BKZ(i + 2) to be (from the
heuristic estimation described in [13] for solving SVP
using enumeration)

q
c(i+2)

2

=2
log(ch.i)/(i−1).c.(i+2)

2

=2
c log(ch.i)(i+O(1))

where c is another constant. Since ≤c’*n

3
/ (i + 2)

2
iter-

ations needed for BKZ (i+2) for i =2, 1,...,,k −2, the
total enumeration time (T) for BKZ-Progressive
would be

)log.())1()(,log(3

))()(,log(
2

2

2~2..
2

2
)2(

kkOOkkcc

iOiicc

i

h

h

nck
i

ncT

+

+

′≤

+
′≤ ∑

V. EXPERIMENTAL RESULTS
Experiments are done in 2.67 GHz Corei5 (64 bit)
Intel processor machine. The BKZ algorithm and
associate enumeration routine is the NTL
implementations of floating -point version.

A. Reduction Quality and Shape of *
ib

The reduction quality of lattice basis depends on the
Gram-Schmidt vector *

ib , for a good reduction

algorithm the value of *
ib does not decay too fast.

The parameter **
1 / ii bbq += is the measure of a

lattice reduction quality. According to [13], for LLL
reduced basis q ≅ 1:04 (in high dimension) and for
BKZ-20 reduction the value is equivalent to 1.025.
The slope of the fitted logarithmic linear curve of

*
ib is also a measure of reduction quality.

 Md. Mokammel Haque et al.

76

Figure 1. Reduction quality in BKZ-Progressive on an average.

Table 1: Root-Hermite factor that can be achieved
in BKZ-Progressive reduction with dimension 120.

k q δ
2 1.04154 1.02038
4 1.03415 1.01678
20 1.02672 1.01316
22 1.02637 1.01298
24 1.02608 1.01284
26 1.02538 1.01250
28 1.02453 1.01208
30 1.02423 1.01194
32 1.02390 1.01177

In BKZ reduction approach the block size is the
parameter that controls the reduction quality. Larger
block size gives better reduction in increase of
runtime. That means the ratio q should get lower
when the block size increases. Experiments done by
Gama and Nguyen in [9] (using CJLOSS lattice)
found slope = −0.085 for LLL reduction and −0.055
for BKZ-20 reduction (in dimension 110)

considering
2*

ib instead of *
ib . Figure 1 show in

our case, how the log q (the slope) decreases in
increase of block size. A fitted curve for th e data
points also satisfy that log q ~ log k/(k −1) (which
supports our theoretical assumption for enumeration
time).
The better reduction directs us to the closer
approximation to the shortest vector. The best current
Hermite factor dd Lvolb)(/(1=δ is reported in

[4] is about 1.0109
d

for BKZ-28 reduction. As we
know

d
d

q δ=
+
2

)1(

for lattice dimension d, the relation between
**

1 / ii bbq += and root-Hermite factor is

approximately q~δ . Table 1 shows our
experimental outcomes for BKZ-Progressive re-

duction. The tabulated values are of q, and root-
Hermite factor for different increasing block sizes(k)
of dimension 120.

(a)

(b)

(c)

(d)

NCICIT 2013: 1st National Conference on Intelligent Computing and Information
Technology, November 21, CUET, Chittagong-4349, Bangladesh

77

Figure 2. Shape of
*
ib curve changes as dimension in-

creases.

It is to be said that the slope of the fitted *
ib curve

will be independent of lattice dimension. But it is true
as long as the Gram-Schmidt norms *

ib behaves

typically. For our SWIFFT input basis setting we
performs experiments to see how the actual shape of

*
ib looks like after different reduction approach in

increase of dimension. We want to see in what
dimension the transition (typical to special case) occur
and whether the shape of *

ib changes differently

when we consider change in input basis vector’s
order. Figure 2 plots this idea. Let us say i

'
is the

dimension after which a transition from typical to

special case occurs i.e. *
ib (for i>i’

'
) becomes

constant 1. Also, the current input setting (as in
section 3) is considered as original order of basis vec-
tors and a reverse setting of these vectors is
considered as reverse order. For original order i

'

denotes as i
'
and for reverse order .nowi′

For BKZ-Progressive output, the curves of log
*
ib v.i are about the same for both orders, and are

straight line of gradient log (q) for i
≤ 0log * =′ iold bi for both orders.

For LLL output, in the reverse order, log *
ib is

approximately a straight line with gradient log (q)
for newii ′≤ , where newi′

'
is the value of line for

which the straight line intersects zero. For

log,newii ′> *
ib

=0 in this order. In case of

original order, log *
ib is a straight line of gradient

log (q) for i in the interval oldnew iii ′≤>′
'
(with same

values of log (q) and i
'
as in reverse order). For

0log, * =′> iold bii For *log, inew bii ′≤ is

roughly a convex curve above the straight line of
reverse order, intersecting this straight line at

*
11 1(. .log)newi and i i e b′= = + is approximately

same for original and reverse orders and log *
ib =0

for both orders). Also, i
'
is about the same for BKZ

and LLL output (see (c) and (d) of figure 2).

B. Enumeration Time Analysis
We know BKZ reduction procedure implemented in
NTL consists of two main parts; enumeration segment
which performs exhaustive search in enumeration tree
and the reduction segment (based calculate the
enumeration time per iteration or block. For
progressive approach of BKZ-k reduction, while
BKZ-2, BKZ-4,...,BKZ-k reduction is performed
subsequently, we consider the last block’s
enumeration time (i.e. BKZ-k) to compare with that of
BKZ only approach. Figure 3 gives a comparison
graphs for these two approaches. We consider here
dimension 120 with a Schnorr-Ho¨rner pruning [16]
parameter 1 to allow larger block sizes.

Least square fitting for the data points of these
approaches generate different curve fitting models. In
case of BKZ, the fitted m odel is f(k)=0.017 ∗ k

2
− 1.1

∗ k + 16 with SSE (Sum of Squares due to Error)
equivalent to 0.98. On the other hand, BKZ-
Progressive fits model f(k)=0.44 ∗ k ∗ ln(k) − 1.8 ∗
k +5.9 with SSE = 0.25. An alternative model
f(k)=0.062∗ k ∗ ln(k) − 11.25 also fits quite well with
SSE only 0.64.

The above models are generated for special case of
*
ib , for a typical case scenario we get a similar

model for BKZ-Progressive approach (f(k)=0.61∗ k ∗
ln(k) −2.6 ∗ k + 14 with SSE = 0.006). A comparison
of enumeration time for both cases is listed on the
Table 4 in Appendix A.

Figure 3. Average enumeration time/block for BKZ and BKZ-
Progressive

It shows an improvement over the Peikert-Lindner
work in [11] where they used BKZ with block size k
directly on LLL reduced basis (default NTL-BKZ
implementation), hence resulting in expected BKZ
block enumeration time exponential in k

2
. We pre-

 Md. Mokammel Haque et al.

78

process the basis before applying BKZ-k by
progressive BKZ procedure, resulting in a lower on
the exhaustive search condition) performs either
Trivial, Non Trivial or No Operations reductions (see
NTL-BKZ implementation for details). During such a
search for the short vector, the enumeration segment
is executed number of times. This is the total number
of iterations for a BKZ-k reduction. Knowing the total
time for those iterations for a block size k, we can
expected BKZ block enumeration time exponential in

)log(* kk .

VI. CRYPTANALYSIS EXPERIMENTS ON
SWIFFT

Again, to obtain pseudo-collision we need to find a
vector of norm 1b (usually the first vector in the

reduced basis) sssuch that mnb ≤1 . Following

[13] we can calculate the value of 1b for certain

parameters (d,n,p and q as their usual meaning) as
follows:

()1)(2/)1(/12/)1(
1

d nddd pqLvolqb ≈≈

Where)(Lvol is the volume of lattice equivalent to

the determinant of it)(np= . The usual parameters
choice for SWIFFT are m = 16, n = 64 and p = 257.

A. Models for Typical and Special Case

In typical case the graph of log of 1b versus i (for i
= 1, ..., d) is a straight line with gradient log q (that
depends on the block size k).This means that

)2(log*)1(loglog 1
* qibbi −−=

Since we know that

)3())(log(log
1

* Lvolb
d

i
i =∑

=

Substituting (1) in (2) gives us
())4()log(*/1log*2/)1(log 1 Lvolddb +−=

This is the relation we have in equation (1). From (4)
and (2), we can see that the quantity 1/d * log(vol(L))

is approximately equal to *
ib for i ∼ (d −1)/2, i.e.

the straight line crosses the value 1/d*log(vol(L))
approximately in the middle. This means the lowest
value of the line, log 1b is about
1/d∗log(vol(L)) − (d+ 1)/2∗log q. So, the condition for

the typical case should be that log .0* ≥db

Then for the special case, log *
ib falls with a

gradient
log q for i =1, ..., i

'
(where i

'
<d) and log *

ib =0

for i ≥ i
'
. Then using (3) we get the following relation

in place of (4)
log 1b =(i’

'
− 1)/2 * log q +1/i

'
* log(vol(L)) (5)

Similarly to the above, (5) means that log *
ib =0=

1/i
'
∗ log(vol(L) − (I ’

− 1)/2 ∗ log q, which is

quadratic equation in i’
'
as a function of log q and

vol(L). By solving this equation we get a model for i’
'
.

These have been used to find the pseudo-collision in
following section.

B. Pseudo-Collision Parameters
Micciancio and Regev in [17] first observed
experimentally that shortest vector of length

δloglog22 pnl = can be obtained for a optimal

dimension δlog/log pnd = . Based on this
idea, in our case we can only satisfy the condition of
pseudo-collision for much smaller n

'
(n = 20). The

other parameters we consider are δ =1.0117 and p =
257 fixed in our case. For larger n, a successful
collision is not possible if we restrict these
parameters. A smaller choice of parameter p and δ can
obviously find collision for larger n (as well as d). In
fact, in [10] a smaller choice of modulus p has been
actually considered for pseudo-collision (see section
6.2) estimate.

We certainly cannot decrease the value of δ as it is
reported from [4] as optimum for current best
algorithms and also our experiments (in table 1)
support this. However, it

Table 2: Choice of parameters for finding pseudo-

collision in special case.

D m’ n' P k q
1b 1b ’

96 6 16 257 4 1.03415 11.54 9.70
108 6 18 257 10 1.03081 11.60 10.10
120 6 20 257 12 1.02946 12.52 10.58
140 7 20 257 14 1.02934 12.53 11.57
151 7 22 257 18 1.02811 13.55 12.28
168 7 24 257 22 1.02637 13.89 12.85
175 7 25 257 21 1.02608 11.19 13.22
182 7 26 257 28 1.02538 15.60 12.20

NCICIT 2013: 1st National Conference on Intelligent Computing and Information
Technology, November 21, CUET, Chittagong-4349, Bangladesh

79

Figure 4. Average runtime for pseudo-collision.

would be somewhat different if we considered the
special case shape of *

ib and extract gradient log q

from this shape instead of straight line model. But a
close investigation reveals that a situation like special
case happens when the input vectors are smaller in
length (i.e. for larger m and smaller n’

'
) in the basis.

Experimental estimate of pseudo-collision is listed
in table 2 where eight different instances can launch
successful attack in feasible time. We plot
experimentally derived norm of shortest vector value
in column 1b ’, 1b entries are for theoretically

derived shortest vector value. It is calculated by the i'
'

<d from experimental data and then plugging into the
model for special case (section 6.1). We see that the
experimental result is better than the theoretical one.
We can reach upto n = 27 within the time around 9.5
hours. We record the runtime to obtain pseudo-
collision in both BKZ and BKZ-Progressive
approach. Figure 4 shows the comparison graph.

C. Pseudo-Collision in Typical case of *
ib

However, it might be interesting to see what
experiment can achieve in perfect typical case
condition.We found the following entries (in table 3)
that satisfy the pseudo-collision constraint. To derive
the value of q for corresponding larger

Table 3: Choice of parameters for finding pseudo-

collision in typical case.

d m’ n' P k q
90 5 18 257 26 1.02538
100 1 25 79 28 1.02153
114 3 38 29 44 1.02210
120 3 40 29 50 1.02120

value of k we used linear extrapolation. In this case, it

is hard to get a pseudo-collision as we cannot able to
increase the value of mm ≤' much (as its give shape
like special case) and if we increase n we rarely find a
short vector as volume of lattice jumps high. Again, in
this particular situation we need to decrease modulus
p to become successful.
The runtime for first two instances (d = 90 and 100) of
BKZ reduction requires approximately 185 and 1170
seconds on average. On the other hand, BKZ-
Progressive can reduce the instances for 92 and 575
seconds respectively on an average. So, the time
improvement is about a factor of two. For other
instances, as the block size and dimension both
become increasingly high it is unexpected to get colli-
sion in feasible time.

REFERENCES
[1] V. Lyubashevsky, D. Micciancio, C. Peikert and A. Rosen.

SWIFFT: A Modest Proposal for FFT Hashing. In Fast Soft-
ware Encryption(FSE) 2008, LNCS, pp. 54-72. Springer-
Verlag, 2008.

[2] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lova´sz. Factoring
polynomials with rational coefficient s. Math. Ann., 261(4):
515-534, 1982.

[3] C.-P. Schnorr. A hierarchy of polynomial time lattice basis
reduction algorithms. Theoretical Computer Science, 53(2-3):
201-224, 1987.

[4] N. Gama and P. Q. Nguyen. Predicting lattice
reduction. In EUROCRYPT, 2008, LNCS 4965, pp. 31-51.
Springer, 2008.

[5] C.-P. Schnorr and M. Euchner. Lattice basis reduction: im-
proved practical algorithms and solving subset sum problems.
Math. Programming, 66:181-199, 1994.

[6] V. Shoup. NTL: A library for doing number theory. Available
at http://www.shoup.net/ntl/.

[7] R. Kannan. Improved algorithms for integer programming
and related lattice problems. In Proc. of 15th ACM Symp. on
Theory of Computing (STOC), pp. 193-206. ACM, 1983.

[8] G. Hanrot, D. Stehle´. Improved Analysis of Kannan’s
Shortest Lattice Vector Algorithm. In CRYPTO 2007, LNCS
4622, pp. 170-186, 2007.

[9] N. Gama, P. Q. Nguyen, O. Regev. Lattice enumeration using
Extreme Pruning. In EUROCRYPT, 2010, LNCS, Springer-
Verlag, 2010.

[10] J. Buchmann and R. Lindner. Secure Parameters for SWIFFT.
In INDOCRYPT’09, pp. 1-17, 2009. [11] R. Lindner and C.
Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Proc. of the 11th international conference on
Topics in cryptology, CT-RSA’11, pp. 319-339, Springer-
Verlag, 2011.

[12] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better Lattice Security
Estimates. In ASIACRYPT’11, LNCS 7073, pp. 1-20.IACR,
2011.

[13] P. Q. Nguyen and V. Brigitte. The LLL Algorithm: survey and

 Md. Mokammel Haque et al.

80

application. Chapter-2 (Hermites Constant and Lattice
Algorithms). ISBN 978-3-642-02294-4, 2010.

[14] C.-P. Schnorr. Lattice reduction by random sampling and
birthday methods. In STACS’03, LNCS, vol.
2607, pp. 145,156. Springer, 2003.

[15] G. Hanrot, X. Pujol and D. Stehle´. Analyzing Blockwise
Lattice Algorithms using Dynamical Systems. Accepted to
CRYPTO 2011.

[16] C.-P. Schnorr and H. H. Ho¨rner. Attacking the Chor-Rivest
cryptosystem by improved lattice reduction. In EURO-
CRYPT95, LNCS 921, pp. 1-12,Springer-Verlag, 1995.

[17] D. Micciancio and O. Regev. Post Quantum Cryptography.
Chapter Lattice based Cryptography. Springer-Verlag, 2009.

APPENDIX A

Table 4: Average enumeration time/block
comparison for typical and special case (BKZ-

Progressive Reduction, Prune = 1).

 Enumeration Time(ms)
Block Size(k) Typical case Special case

34 0.086 0.033
38 0.16 0.06
42 0.41 0.27
46 1.36 0.50
50 5.26 2.35
54 23.33 7.62
58 145 48

