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Abstract— BKZ and its variants are considered as the 
most efficient lattice reduction algorithms compensating 
both the quality and runtime. Progressive approach 
(gradually increasing block size) of this algorithm has 
been attempted in several works for better performance 
but actual analysis of this approach has never been 
reported. In this paper, we plot experimental evidence of 
its complexity over the direct approach. We see that a 
considerable time saving can be achieved if we use the 
output basis of the immediately reduced block as the 
input basis of the current block (with increased block 
size) successively. Then, we attempt to find pseudo -
collision in SWIFFT hash function and show that a 
different set of parameters produces a special shape of 
Gram-Schmidt norms other than the predicted 
Geometric Series Assumptions (GSA) which the 
experiment suggests being more efficient.  

Keywords: Lattice reduction, BKZ, Gram-
Schmidt vectors, SWIFFT.  

I.  INTRODUCTION 
Lattice of our interest is integer or point lattice; 
discrete subgroup of R

n
. It is defined as the integer 

linear combinations of some vectors (b1,..., bd)  of the 

form: ∑=

d

i ii bx
1

. where xi ∈ Z. The vectors (b1,..., 

bd) are linearly independent and called a basis of the 
lattice. The number of vectors d is the lattice 
dimension.  

The goal of lattice reduction is to find good and 
quality bases that include short enough vectors. SVP 
or Shortest Vector Problem is the most common and 
fundamental lattice problem on which many 
cryptosystems rely on. In lattice-based cryptanalysis 
one typically look for an approximate variant of SVP, 
i.e. to obtain a vector ≈ α × λ 1 (L), where d is the 
dimension of lattice L, α ≥1 is the approximation 
factor and λ1 (L) is the first minimum (the length of 
the shortest nonzero vector of L). Other important 
lattice problems are CVP (Closest Vector Problem) 
and SIVP (Shortest Independent Vector Problem). 

 
Lattice problems are considered as a key element in 

many areas of computer science as well as cryptography. 

In particular, public key cryptosystems based on 
knapsack problem, special setting of RSA and DSA 
signatures schemes; encryption schemes based on 
LWE(Learning with error) problems; fully homomorphic 
cryptosystems are the most important.  
Hash function SWIFFT [1], consists of following 
compression function:  

1
.

m

i i
i

a x R
=

∈∑  

where R = Zq[x]/(xn +1) is the ring of polynomial,    ai 

∈ R (∀i) are m fixed multipliers and xi ∈  R (∀i) with 
coefficients ∈{0, 1} are the input of length mn. Other 
parameters of this function include n be a power of 2 
and a prime modulus p>0. The algebraic formulation 
of SWIFFT is equivalent to a lattice of dimension mn 
and the security of such function depends on the 
infeasibility of finding rela tively short vectors in such 
a lattice. Finding a collision in this function means to 
look for a nonzero vector xi ∈ R with coefficients are 

in {−1, 0, 1} such that ∑=

m

i ii xa
1

.  =0 mod p. In other 

words, if we can find a vector by reducing the lattice 
(considering a sublattice of dimension m’n’ ≤

' 
mn will 

be enough) of Euclidean length ,mn≤ then it is a 
pseudo-collision.  

The most efficient (in terms of reduction quality) BKZ 
lattice reduction algorithm can able to find such 

collision in ( )2

2 dO  
time complexity. Both 

theoretically and experimentally we show the variant 
BKZ-Progressive can do so in reduce amount of time. 
Precisely, in section 4 we give a heuristic argument 
that it has enumeration time complexity of nearly 

( ) ( )log2O d d O d+  in section 5 we plot experimental 
results to support this proposition and in section 6 we 
provide its average runtime complexity for finding 
pseudo-collision comparing with BKZ. We also 
showed that it can achieve the quality of reduction as 
good as BKZ. 
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II. RELATED WORK 
Lattice reduction technique has been studied from the 
language of quadratic forms (by Hermite in 1850 and 
then by Korkine-Zolotarev in 1873, together combine 
HKZ reduction) to analyze current cryptosystems. But 
it is not seemed to have much improvement since 
Lenstra-Lenstra-Lovász seminal LLL [2] algorithm 
has been published in 1982. This polynomial time 
algorithm is very fast with moderate reduction quality 
to solve shortest vector problem (SVP). In [3], 
Schnorr introduced the block concept of HKZ 
reduction to produce the best reduction algorithm 
(BKZ) in practice until today. This algorithm gets 
much slower when block size increases but can 
achieve approximation ratio (Hermite factor) 
upto≈1.011

n 
while LLL can achieve roughly 

upto≈1.022
n 

according to [4]. The practical BKZ 
algorithm is reported in [5] and has been since widely 
studied by researchers related to this field. Both LLL 
and BKZ is implemented in NTL package [6] and 
usually used as a base of any relevant experiments.  

Quasi-HKZ reduction technique proposed by Ravi 
Kannan [7] is another celebrated work that achieve 
best theoretical bound on enumeration 
procedure(lattice reduction technique often combines 
with enumeration routine, for example in BKZ 
reduction algorithm). An improved analysis of this 
algorithm is reported in [8] by Stehle´and Hanrot. Re-
cent significant improv ement is done by Gama et al. 
in [9] where they introduce extreme pruning concept 
for enumeration. This leads lower success probability 
to find a short enough vector but gain in overall by 
saving considerable time. Gama and Nguyen’s 
experiments done in [4] suggest some actual 
behaviour (output quality v. running time) of lattice 
reduction algorithms to reduce the gap between 
theoretical analysis and practical performance of 
lattice algorithms.  

We believe there are two variants of applying BKZ 
progressively. The first variant uses same lattice basis 
with increasing block sizes to look for a particular 
lattice reduction quality. In [10] Buchmann and 
Lindner used this approach to find sub -lattice collision 
in SWIFFT, similar approach is used in [11] by 
Lindner and Peikert to extrapolate BKZ runtime for 
LWE parameters. The other variant (feed forward 
approach, i.e. the output of current block is used as 
the input of next larger block) that used as a 
preprocessor of the enumeration routine in [12] 
designated as recursive-BKZ. Our definition of 
Progressive BKZ is believed to be substantiated the 
later variant.  

III.  PRELIMINARIES 

A. Gram-Schmidt Orthogonalization 
The purpose of lattice reduction is to search for 
orthonormal basis i.e. look for the unit vectors that are 
pairwise orthogonal in the basis. Gram-Schmidt 
orthogonalization method can always transfer a basis 
B = (b1,..., bd) into orthogonal basis B∗ 

=(b1
∗ ,…, bd

∗) 
as follows:  

∑
>

=

=

ji
jjiii

i

bbb
bb

*
,

*

*
1

µ

  

where * *
, ( , ) / ( , )i j i j j jb b b bµ = for all .ji ≠  We can 

also define the orthogonal Gram-Schmidt vectors as 
)(:*

iii bb π= for all non-negative i≤d, where iπ  
denotes the orthogonal projection over the orthogonal 
supplement of the linear span of b1, ..., bi-1 [see [13] 
for details]. Every lattice reduction algorithm uses this 
process to find the reasonably short lattice vectors.  

B. Input and Output basis 
The basis that is chosen for SWIFFT can be 
represented as the following matrix:  
 

0
.

I
H p I

 
=  
 

B  

 
where the m ∗ n dimensional lattice is symbolized as 
a nmnm ** × matrix. H is a )1(* −× mnn  skew 
circulant matrix in Zp = {0… p−1}; p> 0 is the prime 
for the SWIFFT parameters. I is the 
n∗(m−1)×n∗ (m −1) identity m atrix. R ight bottom  is 
the n × n scalar matrix and right top is a n ∗ (m  − 1) × 
n dimensional zero matrix.  
     According to [9], sufficiently random reduced 
bases except special structure have a typical shape for 
main algorithms like LLL and BKZ and the shape 

depends on the ratio **
1 / ii bbq += of Gram-

Schmidt vectors. This follows Schnorr’s Geometric 
Series Assumption (GSA)[14]. The running time of 
the algorithms depends on q. The BKZ-Progressive 
also produces same shape as BKZ for certain pa-
rameter choice )( mm ≤′ of the input basis. As m 

' 

increases (fixing the n’
'
) the sbi '*  produce a 

constant 1 consistently, i.e. the ratio q is 1 too. 
Seemingly, we can say as long as the basis does not 
produce special structure the shape is typical. From 
the discussion of [11] we predict the q reaches its 
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lower bound 1. Now on we will mention the first case 
as the typical behavior of *

ib  as well as q and the 

second case as special behavior. We discuss both 
cases while analyzing BKZ-Progressive performance 
and SWIFFT in later sections.  
 

C. Enumeration:  
Enumeration is a technique that is used alongside 
lattice reduction for most of the major algorithms. If 
we imagine a lattice L as a tree then enumeration 
procedure is simply an exhaustive (depth-first) search 
for integer combination of the nodes (or vectors) 
within a upper bound in λ1(L). This procedure (also 
implemented in NTL) run in exponential time 
opposed to the lattice reduction technique itself 
(which run in polynomial time).  
 

IV.  THEORETICAL MOTIVATION FOR 
BKZ-PROGRESSIVE  

Block-Korkine-Zolotarev reduction a.k.a BKZ 
reduction is the most successful lattice reduction 
algorithm in practice. Schnorr and Euchner [5] 
introduced the following dentition of BKZ reduction.  
 

A. BKZ Reduction 
 Let β be an integer such that 2 ≤ β<d. A lattice (L) 
basis  (b1,..., bd)  is β-reduced if it is size reduced and 
if  (for i =1, ....,d−1)  

)))((,( ),1min(,....,1
*

diii bbLb −+Π≤ βλ  

   Ravi Kannan provides an algorithm that computes 
HKZ reduced bases to solve SVP. The main idea of 
Kannan’s algorithm is to spend more time on pre-
computing a basis of excellent quality before calling 
the enumeration procedure. Our BKZ-Progressive 
approach inspired from Kannan for pre-processing a 
basis of subsequently increasing block size can be 
defined as follows.  

BKZ-Progressive Reduction: Let BKZ (d, β) 
denotes the BKZ algorithm running on a lattice 
dimension d with block size β. Instead of reducing 
BKZ(d, β) in the first place it will reduce the basis 
with smaller block size upto β with BKZ(d, 2), 
BKZ(d, 4), ....., BKZ(d, β).  

B. Heuristic 
 A d-dimensional lattice reducing with BKZ-
Progressive approach requires enumeration 
complexity of approximately 2

O(k log k)
, where k is the 

block size.  

Proof. For BKZ reduction with block size k the recent 
theoretical analysis (see Theorem 2 in [15]) shows 
that  

1
)log(log

~ −
<

k
q γ

 

where kch *≤γ  is the Hermite constant in 
dimension k (for constant ch). The number of BKZ-k 
iterations sufficient to get this log q is 

)/*( 23

~
knc′<  for constant c’ 

'
. Since progressive 

BKZ applies for i =2, 4, ..., k − 2 BKZ(i + 2), on an 
input basis which is the output of BKZ(i), we expect 
the enumeration time for BKZ(i + 2) to be (from the 
heuristic estimation described in [13] for solving SVP 
using enumeration)  

 

q
c(i+2)

2 

=2
log(ch.i)/(i−1).c.(i+2)

2 

=2
c log(ch.i)(i+O(1))  

 
where c is another constant. Since ≤c’*n

3
/ (i + 2)

2 
iter-

ations needed for BKZ (i+2) for i =2, 1,...,,k −2, the 
total enumeration time (T ) for BKZ-Progressive 
would be  

)log.())1()(,log(3

))()(,log(
2

2

2~2..
2

2
)2(

kkOOkkcc

iOiicc

i

h

h

nck
i

ncT

+

+

′≤

+
′≤ ∑

 

 

V.  EXPERIMENTAL RESULTS 
Experiments are done in 2.67 GHz Corei5 (64 bit) 
Intel processor machine. The BKZ algorithm and 
associate enumeration routine is the NTL 
implementations of floating -point version.  

A.  Reduction Quality and Shape of *
ib   

The reduction quality of lattice basis depends on the 
Gram-Schmidt vector *

ib , for a good reduction 

algorithm the value of *
ib  does not decay too fast. 

The parameter **
1 / ii bbq +=    is the measure of a 

lattice reduction quality. According to [13], for LLL 
reduced basis q ≅ 1:04 (in high dimension) and for 
BKZ-20 reduction the value is equivalent to 1.025. 
The slope of the fitted logarithmic linear curve of 

*
ib   is also a measure of reduction quality. 
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Figure 1.   Reduction quality in BKZ-Progressive  on an average. 

Table 1: Root-Hermite factor that can be achieved 
in BKZ-Progressive reduction with dimension 120. 
 

k  q  δ  
2  1.04154  1.02038  
4  1.03415  1.01678  
20  1.02672  1.01316  
22  1.02637  1.01298  
24  1.02608  1.01284  
26  1.02538  1.01250  
28  1.02453  1.01208  
30  1.02423  1.01194  
32  1.02390  1.01177  

 
In BKZ reduction approach the block size is the 
parameter that controls the reduction quality. Larger 
block size gives better reduction in increase of 
runtime. That means the ratio q should get lower 
when the block size increases. Experiments done by 
Gama and Nguyen in [9] (using CJLOSS lattice) 
found slope = −0.085 for LLL reduction and −0.055 
for BKZ-20 reduction (in dimension 110) 

considering
2*

ib instead of *
ib . Figure 1 show in 

our case, how the log q (the slope) decreases in 
increase of block size. A fitted curve for th e data 
points also satisfy that log q ~ log k/(k −1)  (which 
supports our theoretical assumption for enumeration 
time). 
The better reduction directs us to the closer 
approximation to the shortest vector. The best current 
Hermite factor dd Lvolb )(/( 1=δ  is reported in 

[4] is about 1.0109
d 

for BKZ-28 reduction. As we 
know 

d
d

q δ=
+
2

)1(

 

for lattice dimension d, the relation between 
**

1 / ii bbq += and root-Hermite factor is 

approximately q~δ . Table 1 shows our 
experimental outcomes for BKZ-Progressive re-

duction. The tabulated values are of q, and root-
Hermite factor for different increasing block sizes(k) 
of dimension 120. 

 

 
 

(a) 

(b) 

 
(c) 

 
(d) 
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Figure 2.   Shape of 
*
ib  curve changes as dimension in-

creases. 

It is to be said that the slope of the fitted *
ib curve 

will be independent of lattice dimension. But it is true 
as long as the Gram-Schmidt norms *

ib  behaves 

typically. For our SWIFFT input basis setting we 
performs experiments to see how the actual shape of 

*
ib  looks like after different reduction approach in 

increase of dimension. We want to see in what 
dimension the transition (typical to special case) occur 
and whether the shape of *

ib  changes differently 

when we consider change in input basis vector’s 
order. Figure 2 plots this idea. Let us say i 

' 
is the 

dimension after which a transition from typical to  

special case occurs i.e. *
ib  (for i>i’

'
) becomes 

constant 1. Also, the current input setting (as in 
section 3) is considered as original order of basis vec-
tors and a reverse setting of these vectors is 
considered as reverse order. For original order i 

' 

denotes as i 
' 
and for reverse order .nowi′  

For BKZ-Progressive output, the curves of log 
*
ib v.i are about the same for both orders, and are 

straight line of gradient log (q) for i 
≤ 0log * =′ iold bi  for both orders.  

For LLL output, in the reverse order, log *
ib is 

approximately a straight line with gradient log (q) 
for newii ′≤ , where newi′  

' 
is the value of line for 

which the straight line intersects zero. For 

log,newii ′> *
ib

 
=0 in this order. In case of 

original order, log *
ib is a straight line of gradient 

log (q) for i in the interval oldnew iii ′≤>′
' 
(with same 

values of log (q) and i 
' 
as in reverse order). For 

0log, * =′> iold bii  For *log, inew bii ′≤  is 

roughly a convex curve above the straight line of 
reverse order, intersecting this straight line at 

*
11 1( . .log )newi and i i e b′= = + is approximately 

same for original and reverse orders and log *
ib =0 

for both orders). Also, i 
' 
is about the same for BKZ 

and LLL output (see (c) and (d) of figure 2). 

 

B.   Enumeration Time Analysis  
We know BKZ reduction procedure implemented in 
NTL consists of two main parts; enumeration segment 
which performs exhaustive search in enumeration tree 
and the reduction segment (based calculate the 
enumeration time per iteration or block. For 
progressive approach of BKZ-k reduction, while 
BKZ-2, BKZ-4,...,BKZ-k reduction is performed 
subsequently, we consider the last block’s 
enumeration time (i.e. BKZ-k) to compare with that of 
BKZ only approach. Figure 3 gives a comparison 
graphs for these two approaches. We consider here 
dimension 120 with a Schnorr-Ho¨rner pruning [16] 
parameter 1 to allow larger block sizes.  

Least square fitting for the data points of these 
approaches generate different curve fitting models. In 
case of BKZ, the fitted m odel is f(k)=0.017 ∗ k

2 
− 1.1 

∗ k + 16 with SSE (Sum of Squares due to Error) 
equivalent to 0.98. On the other hand, BKZ-
Progressive fits model f(k)=0.44 ∗  k ∗  ln(k) − 1.8 ∗  
k +5.9 with SSE = 0.25. An alternative model 
f(k)=0.062∗ k ∗ ln(k) − 11.25 also fits quite well with 
SSE only 0.64.  
 

The above models are generated for special case of 
*
ib , for a typical case scenario we get a similar 

model for BKZ-Progressive approach (f(k)=0.61∗ k ∗ 
ln(k) −2.6 ∗ k + 14 with SSE = 0.006). A comparison 
of enumeration time for both cases is listed on the 
Table 4 in Appendix A.  
 

 

Figure 3.   Average enumeration time/block for BKZ and BKZ-
Progressive 

It shows an improvement over the Peikert-Lindner 
work in [11] where they used BKZ with block size k 
directly on LLL reduced basis (default NTL-BKZ 
implementation), hence resulting in expected BKZ 
block enumeration time exponential in k

2
. We pre-
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process the basis before applying BKZ-k by 
progressive BKZ procedure, resulting in a lower on 
the exhaustive search condition) performs either 
Trivial, Non Trivial or No Operations reductions (see 
NTL-BKZ implementation for details). During such a 
search for the short vector, the enumeration segment 
is executed number of times. This is the total number 
of iterations for a BKZ-k reduction. Knowing the total 
time for those iterations for a block size k, we can 
expected BKZ block enumeration time exponential in 

)log(* kk .  

VI.  CRYPTANALYSIS EXPERIMENTS ON 
SWIFFT  

Again, to obtain pseudo-collision we need to find a 
vector of norm 1b  (usually the first vector in the 

reduced basis) sssuch that mnb ≤1 . Following 

[13] we can calculate the value of 1b  for certain 

parameters (d,n,p and q as their usual meaning) as 
follows:  

( )1)( 2/)1(/12/)1(
1

d nddd pqLvolqb ≈≈
 

Where )(Lvol  is the volume of lattice equivalent to 

the determinant of it )( np= . The usual parameters 
choice for SWIFFT are m = 16, n = 64 and p = 257.  

A.  Models for Typical and Special Case  

In typical case the graph of log of 1b  versus i (for i 
= 1, ..., d) is a straight line with gradient log q (that 
depends on the block size k).This means that 

)2(log*)1(loglog 1
* qibbi −−=  

Since we know that 

)3())(log(log
1

* Lvolb
d

i
i =∑

=

 

Substituting (1) in (2) gives us 
( ) )4()log(*/1log*2/)1(log 1 Lvolddb +−=

 
 

This is the relation we have in equation (1). From (4) 
and (2), we can see that the quantity 1/d * log(vol(L)) 

is approximately equal to *
ib  for i ∼ (d −1)/2, i.e. 

the straight line crosses the value 1/d*log(vol(L)) 
approximately in the middle. This means the lowest 
value of the line, log 1b  is about 
1/d∗log(vol(L)) − (d+ 1)/2∗log q. So, the condition for 

the typical case should be that log .0* ≥db  

Then for the special case, log *
ib  falls with a 

gradient 
log q  for i =1, ..., i 

' 
(where i 

' 
<d) and  log *

ib =0  

for i ≥ i 
'
. Then using (3) we get the following relation 

in place of (4)  
log 1b  =( i’ 

' 
− 1)/2 * log q +1/i 

' 
* log(vol(L))     ( 5)  

Similarly to the above, (5) means that log *
ib  =0= 

1/i 
'
∗ log(vol(L) − (I ’ 

 
− 1)/2 ∗ log q, which is 

quadratic equation in i’
' 
as a function of log q and 

vol(L). By solving this equation we get a model for i’
'
. 

These have been used to find the pseudo-collision in 
following section.  

B.  Pseudo-Collision Parameters  
Micciancio and Regev in [17] first observed 
experimentally that shortest vector of length  

δloglog22 pnl = can be obtained for a optimal 

dimension δlog/log pnd = . Based on this 
idea, in our case we can only satisfy the condition of 
pseudo-collision for much smaller n 

' 
(n = 20). The 

other parameters we consider are δ =1.0117 and p = 
257 fixed in our case. For larger n, a successful 
collision is not possible if we restrict these 
parameters. A smaller choice of parameter p and δ can 
obviously find collision for larger n (as well as d). In 
fact, in [10] a smaller choice of modulus p has been 
actually considered for pseudo-collision (see section 
6.2) estimate.  

We certainly cannot decrease the value of δ as it is 
reported from [4] as optimum for current best 
algorithms and also our experiments (in table 1) 
support this. However, it  
 
Table 2: Choice of parameters for finding pseudo-

collision in special case.  
 

D m’ n' P k q 
1b  1b ’ 

96 6 16 257 4 1.03415 11.54 9.70 
108 6 18 257 10 1.03081 11.60 10.10 
120 6 20 257 12 1.02946 12.52 10.58 
140 7 20 257 14 1.02934 12.53 11.57 
151 7 22 257 18 1.02811 13.55 12.28 
168 7 24 257 22 1.02637 13.89 12.85 
175 7 25 257 21 1.02608 11.19 13.22 
182 7 26 257 28 1.02538 15.60 12.20 
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Figure 4.   Average runtime for pseudo-collision. 

 
would be somewhat different if we considered the 
special case shape of *

ib  and extract gradient log q 

from this shape instead of straight line model. But a 
close investigation reveals that a situation like special 
case happens when the input vectors are smaller in 
length (i.e. for larger m and smaller n’ 

'
) in the basis.  

Experimental estimate of pseudo-collision is listed 
in table 2 where eight different instances can launch 
successful attack in feasible time. We plot 
experimentally derived norm of shortest vector value 
in column 1b ’, 1b entries are for theoretically 

derived shortest vector value. It is calculated by the i' 
' 

<d from experimental data and then plugging into the 
model for special case (section 6.1). We see that the 
experimental result is better than the theoretical one. 
We can reach upto n = 27 within the time around 9.5 
hours. We record the runtime to obtain pseudo-
collision in both BKZ and BKZ-Progressive 
approach. Figure 4 shows the comparison graph.  

C.  Pseudo-Collision in Typical case of *
ib  

However, it might be interesting to see what 
experiment can achieve in perfect typical case 
condition.We found the following entries (in table 3) 
that satisfy the pseudo-collision constraint. To derive 
the value of q for corresponding larger  
 
Table 3: Choice of parameters for finding pseudo-

collision in typical case.  
 

d m’ n' P k q 
90 5 18 257 26 1.02538 
100 1 25 79 28 1.02153 
114 3 38 29 44 1.02210 
120 3 40 29 50 1.02120 

 
 
value of k we used linear extrapolation. In this case, it 

is hard to get a pseudo-collision as we cannot able to 
increase the value of mm ≤'  much (as its give shape 
like special case) and if we increase n we rarely find a 
short vector as volume of lattice jumps high. Again, in 
this particular situation we need to decrease modulus 
p to become successful.  
The runtime for first two instances (d = 90 and 100) of 
BKZ reduction requires approximately 185 and 1170 
seconds on average. On the other hand, BKZ-
Progressive can reduce the instances for 92 and 575 
seconds respectively on an average. So, the time 
improvement is about a factor of two. For other 
instances, as the block size and dimension both 
become increasingly high it is unexpected to get colli-
sion in feasible time.  

REFERENCES  
[1]  V. Lyubashevsky, D. Micciancio, C. Peikert and A. Rosen. 

SWIFFT: A Modest Proposal for FFT Hashing. In Fast Soft-
ware Encryption(FSE) 2008, LNCS, pp. 54-72. Springer-
Verlag, 2008.  

[2]  A. K. Lenstra, H. W. Lenstra, Jr., and L. Lova´sz. Factoring 
polynomials with rational coefficient s. Math. Ann., 261(4): 
515-534, 1982.  

[3]  C.-P. Schnorr. A hierarchy of polynomial time lattice basis 
reduction algorithms. Theoretical Computer Science, 53(2-3): 
201-224, 1987.  

[4]  N. Gama and P. Q. Nguyen.  Predicting lattice 
reduction. In EUROCRYPT, 2008, LNCS 4965, pp. 31-51. 
Springer, 2008.  

[5]  C.-P. Schnorr and M. Euchner. Lattice basis reduction: im-
proved practical algorithms and solving subset sum problems. 
Math. Programming, 66:181-199, 1994.  

[6]  V. Shoup. NTL: A library for doing number theory. Available 
at http://www.shoup.net/ntl/.  

[7]  R. Kannan. Improved algorithms for integer programming 
and related lattice problems. In Proc. of 15th ACM Symp. on 
Theory of Computing (STOC), pp. 193-206. ACM, 1983.  

[8]  G. Hanrot, D. Stehle´. Improved Analysis of Kannan’s 
Shortest Lattice Vector Algorithm. In CRYPTO 2007, LNCS 
4622, pp. 170-186, 2007.  

[9]  N. Gama, P. Q. Nguyen, O. Regev. Lattice enumeration using 
Extreme Pruning. In EUROCRYPT, 2010, LNCS, Springer-
Verlag, 2010.  

[10] J. Buchmann and R. Lindner. Secure Parameters for SWIFFT. 
In INDOCRYPT’09, pp. 1-17, 2009. [11] R. Lindner and C. 
Peikert. Better key sizes (and attacks) for LWE-based 
encryption. In Proc. of the 11th international conference on 
Topics in cryptology, CT-RSA’11, pp. 319-339, Springer-
Verlag, 2011.  

[12] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better Lattice Security 
Estimates. In ASIACRYPT’11, LNCS 7073, pp. 1-20.IACR, 
2011.  

[13] P. Q. Nguyen and V. Brigitte. The LLL Algorithm: survey and 



 Md. Mokammel Haque et al. 
 

80 
 

application. Chapter-2 (Hermites Constant and Lattice 
Algorithms). ISBN 978-3-642-02294-4, 2010.  

[14] C.-P. Schnorr. Lattice reduction by random sampling and 
birthday methods. In STACS’03, LNCS, vol. 
2607, pp. 145,156. Springer, 2003.  

[15] G. Hanrot, X. Pujol and D. Stehle´. Analyzing Blockwise 
Lattice Algorithms using Dynamical Systems. Accepted to 
CRYPTO 2011.  

[16] C.-P.  Schnorr and H. H. Ho¨rner. Attacking the Chor-Rivest 
cryptosystem by improved lattice reduction. In EURO-
CRYPT95, LNCS 921, pp. 1-12,Springer-Verlag, 1995.  

[17] D. Micciancio and O. Regev. Post Quantum Cryptography. 
Chapter Lattice based Cryptography. Springer-Verlag, 2009.  

APPENDIX A 
 

Table 4: Average enumeration time/block 
comparison for typical and special case (BKZ-

Progressive Reduction, Prune = 1).  
  

 Enumeration Time(ms) 
Block Size(k) Typical case Special case 

34 0.086 0.033 
38 0.16 0.06 
42 0.41 0.27 
46 1.36 0.50 
50 5.26 2.35 
54 23.33 7.62 
58 145 48 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


