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Abstract— Construction of optimal schedule for airline 
crew-scheduling requires high computation time. The 
main objective to create this optimal schedule is to 
assign all the crews to available flights in a minimum 
amount of time. This is a highly constrained 
optimization problem. In this paper, we implement co-
evolutionary genetic algorithm in order to solve this 
problem. Co-evolutionary genetic algorithms are 
inherently parallel in nature and they require high 
computation time. This high computation time can be 
reduced by exploiting the parallel architecture of 
graphics processing units (GPU). In this paper, compute 
unified device architecture (CUDA) provided for 
NVIDIA GPU is used. Experimental results demonstrate 
that computation time can significantly be reduced and 
the algorithm is capable to find some good solutions in a 
feasible time bound.  

Keywords: GPU;CUDA; Co-evolutionary genetic 
algorithm; Crew-scheduling; Min-max optimization. 

I.  INTRODUCTION  
The scheduling of resources in the transportation 
industry is very complex and is a time consuming 
process. For instance, the airline industry faces largest 
scheduling problems in its daily operations [1]. The 
main problem every airline must solve is to construct 
an optimal schedule with the most efficient use of 
aircraft and crew resources in the timetable at a 
minimum cost to achieve maximum revenue. It is a 
real time optimization problem which should be solved 
in a given time to prevent any propagation of the 
disruption [2]. Therefore, these difficult optimization 
problems deserve a great deal of attention. However, 
these problems can be effectively solved by 
formulating min-max optimization problems.  

Min-max optimization problems are found in 
different areas, for instance, in game theory, 
scheduling applications, network design, mechanical 
engineering, constrained optimization and function 
optimization [3]. These problems are considered 
difficult to solve deterministically in polynomial time 
bound.  However, co-evolutionary genetic algorithms 
are found to be reliable to solve min-max optimization 
problems [4]. Co-evolutionary genetic algorithms 
usually operate on two or more populations of 

individuals. The populations evolve independently, 
but they are coupled together through fitness 
evaluation. The fitness of an individual in one 
population is evaluated on its performance against the 
individuals in the other population [5]. 

 
Using co-evolutionary genetic approach to solve 

min-max optimization problems requires high 
computation time to evaluate fitness of the individuals 
of each population [6]. Let us consider two 
populations each containing n individuals. The 
number of objective function calls required to 
evaluate each population is n2. The individuals of one 
population must be evaluated against all the 
individuals with the other population. The evaluation 
of population needs to be performed in a number of 
times during the optimization process which is the 
most time consuming process [7]. Hence, this 
approach suffers from scalability problems if n is 
large or the objective function is complex. However, 
this scalability can be improved by exploiting the 
parallelism of GPU. In the proposed approach, fitness 
evaluation of each individual of one population 
against every individual in the other population is 
done in parallel. As a result, we can achieve a 
significant reduction in the computation time.  

 
The remainder of the paper is organized as follows: 

in Section 2, the basic definition of min-max 
optimization problem is discussed. Section 3, 
describes the problem definition and co-evolutionary 
genetic algorithm. In Section 4, the implementation of 
the algorithm in CUDA architecture to solve the crew-
scheduling problem has been discussed. Section 5 
presents the experimental results and Section 6 
concludes the paper. 

II. LITERATURE REVIEW 
Min-Max optimization problems allow one to find 
solutions by using scenarios to structure uncertainty 
[8]. In general, it can be defined as follows. Let’s 
consider X is a set of all solutions and S is the set of all 
possible scenarios. If F(x,s) is considered to be the cost 
of a solution x ϵ X in a scenario s ϵ S, then the task is to 
find some solutions which can minimize this cost over 
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some scenarios. This is same as minimizing the 
maximum cost. According to this, the problem can be 
defined as follows: 

),(maxmin sxF
SsXx ∈∈

 (1) 

From [9], we find that the min-max problems were 
originally formulated by game theorists, which can be 
seen as an antagonist game where two players have a 
set of options. The player trying to find the solution x, 
tries to minimize the cost, while the player 
determining the scenario s, tries to maximize the cost. 
Later, these min-max problems were studied 
mathematically by many researchers. However, this 
problem is well suited with co-evolutionary genetic 
algorithms, since we can generate two different 
populations for x & s from two different search spaces. 

III. PROBLEM DEFINITION & ALGORITHM  

A. Crew-Scheduling Problem Definition 
Given a set of trips that an agency must manage, the 
crew scheduling problem is to assign the trips to each 
crew in such a way that no trips are left unassigned in 
a given time. Let {T1, T2, T3, …….. Tn} be the set of trips. 
Each trip Ti has a minimum processing time pi  and a 
maximum processing time qi where 0 < pi  < qi . There 
are m crews C1, C2, C3, …….. Cm . We consider decision 
binary variables xik  where, 

xik = 1 [if Ti is assigned to crew Ck ] 
xik = 0 [if Ti is not assigned to crew Ck ] 

An assignment x is a feasible assignment (solution) if, 
for each trip Ti ,  

∑
=

=
m

k
ikx

1

1 (2) 

Let X be the set of all possible solutions. A scenario 
s is the combination of processing times. Thus s = 
(p1

s…… pn
s ). For each trip Ti , pi ≤ pi

s ≤ qi  , S is the set 
of all possible scenarios. F(x,s) is the time or cost of a 
solution x in scenario s. The cost is the maximum 
processing time to assign a trip to crew. Thus, we can 
define it as follows: 
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Now the problem is to minimize this cost which can 
be formulated as min-max problems discussed earlier: 

),(maxmin sxF
SsXx ∈∈

 (4) 

We use co-evolutionary genetic algorithm to solve 
this problem. 

B. Co-evolutionary genetic algorithm 
The co-evolutionary genetic algorithm maintains two 
populations. The basic steps of the algorithm are 
illustrated below: 

1. Initialize population A and population B at  
t = 0 /* Initialize Populations */ 

/* for i=1 to Maxitetrations */  
   /* for j=1 to Maxgeneration1 */  

2. For each individual x ϵ A(t), we evaluate  
h(x) = max(F(x,s): s ϵ B(t)) 
 /* fitness evaluation */ 

3. Create new generation A(t+1) by 
reproduction, crossover and mutation 
/* end of Maxgeneration1 for loop */ 

           /* for k=1 to Maxgeneration2 */  
4. For each individual s ϵ B(t), we evaluate  

g(s) = min(F(x,s): x ϵ A(t)) 
/* fitness evaluation */ 

5. Create new generation B(t+1) by 
reproduction, crossover and mutation 

  /* end of Maxgeneration2 for loop */ 
6. t = t+1, Unless t equals the maximum 

number of iterations go to step 2 
/* end for loop of Maxiterations */ 

7. Return the best solutions 
From the Algorithm, we can observe that the 

number of evaluations of populations is 
Maxiterations(Maxgeneration1 + Maxgeneration2). 
Considering n individuals in both populations, the 
number of evaluations of the objective function per 
populations is n2. This evaluation is done in 
conventional CPU, which is also known as sequential 
evaluation. The formulation can be written as 
following: 

)21( 22 nMaxgennMaxgenMaxitEval seq ∗+∗=  (5) 
For instance, if we consider Maxiterations = 100, 
Maxgeneration1 = 10, Maxgeneration2 = 10, n = 50, 
we have Evalseq = 5000000. This computation is 
inevitable, but it is possible to evaluate the fitness of 
all n individuals in parallel. For this case, we can 
write the formulation as following: 

)21( nMaxgennMaxgenMaxitEval parl ∗+∗=  (6) 
Considering the same parameters we have Evalparl = 
100000, which shows a clear advantage over 
sequential evaluation. Hence, we can obtain a 
significant reduction in computation by exploiting the 
parallel advantage of GPU. 

IV. IMPLEMENTATION OF THE 
ALGORITHM USING CUDA  

A. Basic Concepts of GPU & CUDA 
The Graphics Processing Unit (GPU) has emerged as 
a powerful computing device in this era of 
technology. The operational speed of GPU is much 
faster than the CPU (Central Unit Processing) [11]. 
The CPU mainly concentrates on arbitrary operations 
whereas on-the-other side GPU mainly concentrates 
on performance optimization related tasks. NVIDIA 
developed a software platform named compute 
unified device architecture (CUDA) for programmers 
to code in GPU. The language syntax consists of 
extensions of basic C-Language [10]. The depiction of 
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basic CUDA architecture has been illustrated in Fig. 
1. To support the parallelism of a program:   threads, 
blocks and grids are used. In CUDA the functions are 
grouped into three categories: The host functions, 
which are called and executed only by the CPU. 
These functions are similar to those implemented in 
C. The kernel functions are only executed by the GPU 
device and called by the CPU. We have to use the 
qualifier, __global__, for this type of function. The 
return type of this type of functions is always void. 
Finally, there are device functions, which are both 
called and executed only by the GPU device. The 
qualifier, __device__, precedes the function definition 
for this type of functions. In case of device functions, 
it is allowed to return any type of value [11]. 
 

 
Figure 1.  Basic CUDA Architecture 

B. Problem Formulation 
To evaluate the performance of this algorithm, first 
we try to find the worst-case scenario. For a solution, 
one of the worst-case scenarios is the one when all the 
trip assignments require maximum processing time. 
Thus, if we can reduce this worst-case scenario as 
much as we can, then we can create an optimal 
schedule. We define a lower bound on this algorithm. 
It is defined as follows: 

∑
=

=
n

i
iq

m
L

1

1  (7) 

where q is the maximum processing time required for 
m crews. In addition, we formulate some problem sets 
to evaluate the performance of the algorithm. We 
consider two variables α1 & α2 to govern the 
processing time. The minimum processing time pi is 
selected from a uniform distribution with the range [5, 
20 α1], where we set some arbitrary values for α1. The 
maximum delay time di is selected from a uniform 
distribution with the range [0, α2 pi], where we set 
some arbitrary values for α2. Hence, the maximum 

processing time is qi = pi + di. We try to find some 
good solutions closer to the lower bound as mentioned 
in Eq. (1).  

C. Implementation of the Algorithm in CUDA 
The main objective of this work is to minimize the 
processing time and generate an optimal schedule. In 
order to observe the robustness, we implement this 
algorithm in both sequential (CPU) and parallel 
(GPU) environment. The coding structure for these 
two environments is similar except the fitness 
evaluation and population generation part. Hence, in 
this section we discuss about these two parts 
regarding to GPU by which we can achieve 
parallelism. The algorithm first initializes the 
populations and then calculates the fitness in both 
randomly initialized populations. To note, we 
consider processing time as Population A and solution 
as Population B. Fig. 2 depicts the code which is 
responsible for invoking the kernel fitness function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Sample CUDA code for Kernel Fitness Function 

The computation is done in parallel to calculate the 
fitness for each individual of populations A and B. 
Here each block indexed by blockIdx calculates the 
fitness of the individual in its corresponding threads 
indexed by threadIdx. This evaluation is done in two 
populations concurrently. However, there is some 

Fitness<<<nPop,nPop>>>(oldPopA,oldPop
B,nPop,nPar); 
………………………………… 
__global__ void Fitness(population A, 
population B, int nPop, int nPar){ 
     __shared__ float fitness[NPOP];     
    int popAid = blockIdx.x; 
    int i;     
    int popBid = threadIdx.x; 
    float fit2 = mp( A[popAid].s, 
B[popBid].g); 
    fitness[popBid] = fit2; 
        __syncthreads(); 
    if(popBid==0){ 
 float min = 100000; 
 for(i=0; i<nPop; i++){ 
     if(fitness[i]<min){ 
  min = fitness[i]; 
     } 
 } 
 B[popAid].fit=min; 
    }else if(popBid==1){ 
 float max = -100000; 
 for(i=0; i<nPop; i++){ 
     if(fitness[i]>max){ 
  max = fitness[i]; 
     } 
 } 
  A[popAid].fit=max; 
        } 
} 
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redundancy in calculations. This is because; each 
evaluation is done twice since shared memory is 
block-wise. We avoid this redundancy by utilizing 
global memory. Fig. 3 shows the corresponding 
CUDA code which is responsible for the generation of 
the new individuals of a population. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Sample CUDA code for Kernel generation Function 

The kernel function responsible for Population A 
generation and Population B is similar. Here, we 
represent for the case: Population A. The crossover 
needs an array to store the individuals to perform the 
operation and they are stored in the array named 

trialvector. This is generated by the host and indexed 
using the threadId. After mutation and picking the 
trial solutions the most fit values are stored in the 
required processing time by calling the device 
function proctime(). In this way, we can utilize the 
advantage of GPU for co-evolutionary genetic 
algorithm to ensure parallelism. 

V. EXPERIMENTAL RESULTS 

A. Experimental Environment 
To evaluate the algorithm performance we have 
carried out our simulations for sequential and parallel 
cases. To perform parallel evaluation we carried our 
experiment on linux server using NVIDIA GeForce 
GTX 580 driver which supports the CUDA compiler. 
The system specifications of the driver are listed in 
Table 1. To perform sequential evaluation we carried 
our experiment on Intel Pentium G620 processor 
working at 2.60 GHz clock speed. We adjust our 
machine to operate at 32-bit operating system 
including 8GB RAM memory. 
 

Table 1. System Specifications for Parallel 
Evaluation 

 
Table 2, lists the parameters considered for co-
evolutionary genetic algorithm.  
 

Table 2. Parameters Considered for Co-
evolutionary Genetic Algorithm 

 

Parameter Values 
CUDA version 4.2 

Global memory 3 GB 

Local memory 48KB 

Warp size 32 

Maximum number of 
threads per block 

1024 

Maximum size of each 
Dimension of a block 

1024x1024x64 

GPU clock speed 1.54 GHz 

Parameter Values 
Maximum number of 
Iterations 

100 

Maximum number of 
allowable generations 

100 

Population size 50 

Number of bits required by a string to 
represent an individual 

64 

Number of genes in a  
String 

16 

Number of bits restriced for 
a gene 

4 

Crossover rate 0.7 

Mutation rate 0.003 

generateA<<<nPop,nPop>>>(newPopA, 
oldPopA, oldPopB, cudaShuffle, nPop, 
nPar, RAND, mut_rate, cross_rate, 
bound, nRes); 
…………………………………………………….. 
__global__ void generateA(population 
newPopA, population oldPopA, 
population oldPopB, int* shuffled, 
int nPop, int nPar, float* RAND, 
float mut_rate, float cross_rate, 
float *bound, int nRes){ 
    individual trialVector; 
    int i, r1, r2, r3, j; 
    __shared__ float fitness[NPOP];     
    i = blockIdx.x; 
    j = threadIdx.x; 
    // uniform crossover    
    if(j==0){ 
 
Crossover(oldPopA,newPopA,&trialVecto
r,i,nPar cross_rate, RAND); 
……………… 
    } 
    // mutation 
    mutation(shuffled, nPop, &r1, 
&r2, &r3, RAND); 
    
makeTrial(oldPopA,&trialVector,r1,r2,
r3, mut_rate,nPar);  
        __syncthreads(); 
    fitness[j]=proctime(newPopA[i].s, 
oldPopB[j].g); 
    __syncthreads(); 
    int k; 
    float max = -100000; 
    for(k=0; k<nPop; k++){ 
 if(fitness[k]>max){ 
     max = fitness[k]; 
 } 
    } 
    newPopA[i].fit = max; 
 
    if (oldPopA[i].fit < 
newPopA[i].fit){ 
 
 copyIndividual(&oldPopA[i],&ne
wPopA[i],nPar,nRes); 
    } 
} 
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Recall that the main objective of this work is to 
minimize the computation time by exploiting the GPU 
parallelism. Hence, we calculate the algorithm 
execution time in both CPU and GPU environments to 
observe the speedup. It is an indication of how much 
faster a parallel processing is over its counterpart, i.e., 
sequential processing [12]. The speed up is calculated 
by the following equation within the defined time 
bound. 

parl

seq

T
T

Speedup =  (8) 

Here Tseq and Tparl are the total time taken by the 
sequential processing and parallel processing of the 
algorithm. 

B. Experimental Results 
To evaluate the algorithm, we compare our solutions 
to the lower bound as we defined earlier. In addition, 
the algorithm is able to create an optimal schedule by 
satisfying the requirements. In order to address this 
issue, we devise a schedule as illustrated in Table 3. 
In this schedule, we assume a normalized value to 1 to 
observe the performance of the algorithm. If the 
solutions can achieve closer to 1 then we can state that 
the algorithm have a good lower bound, and it can 
generate good solutions. 
 
Table 3. Results for the Crew-Scheduling Problem 

 
From Table 3, we can observe that the algorithm 
performs well when it is performed in parallel situation 
rather than sequential evaluation. Here, we consider 
one problem set in which 10 instances are considered. 
In 1 instance, we consider a set of crews those are 
being assigned to their available trips in the processing 
time. The objective can be achieved by finding good 
lower bounds for the algorithm. Here, the values those 
are closer to the normalized value 1, are considered as 
good solutions. Hence, we can achieve an optimal 

schedule by minimizing the maximum processing time 
which exploits the parallel advantage of GPU.  

   The speed up achieved by the parallel evaluation is 
compared with sequential evaluation. To conduct this 
task, we fix every parameter except varying the 
generations. The results are depicted in Table 4. From 
Table 4, we can observe that, the computation time 
can be reduced significantly with parallel 
implementation to achieve robust solutions.  
 

Table 4. Algorithm Execution Comparison 
 

 
 
 
 
 
 

 

 
From Table 4, we can observe a reduction in speedup 
while we increase the generations. This is because; 
the search space increases while we increase the 
number of generations, which affects the algorithm 
execution time. The algorithm execution time is 
lower, when it creates an optimal schedule by finding 
good solutions in less number of generations 
compared to higher number of generations. Overall, 
the approach helps us to achieve our goal. 

VI. CONCLUSION  
This paper presents a co-evolutionary genetic 
algorithm to solve crew-scheduling problem by 
formulating min-max optimization problems. The 
main time consuming area of the co-evolutionary 
genetic algorithm is fitness evaluation of the 
individuals. In case of serial implementation, the 
evaluation of fitness function requires O(n2) time. The 
parallel evaluation of the fitness of the individuals 
brings down this time to O(n). Finally, we can state 
that, the highly constrained real world optimization 
problems can be solved easily by inheriting the 
parallel advantage of GPU. 

 

REFERENCES  
[1] X. Chen, X. Chin, and X. Zhang, “Crew scheduling models in 

airline disruption management”, In Proceedings of the 17th 
IEEE International Conference on Industrial Engineering and 
Engineering Management (IE & EM), pp. 1032-1037, 2010. 
(Conference) 

[2] T. H. Yunes, A.V. Moura, and C. C. d. Souza, “Solving very 
large crew scheduling problems to optimality”, In Proceedings 
of the ACM symposium on Applied computing, pp. 446-451, 
2000. (Conference) 

[3] T.  Alamo, D. M. de la paena, and E. F. Camacho, “An 
Efficient Maximization Algorithm with implications in Min-

Values considered 
for governing the 
processing time 

Algorithm 
Performance 
for Sequential 

Evaluation 
(CPU) 

Algorithm 
Performance 
for Parallel 
Evaluation 

(GPU) 

α1  = 0.2 
 

α2  = 0.6 
 

1.12 1.00 

1.15 1.01 

1.09 1.00 

1.08 1.03 

1.01 1.02 

1.07 1.03 

1.09 1.05 

1.02 1.00 

1.03 1.00 

1.10 1.02 

Number of 
generations 

Tseq[CPU (s)] Tparl[GPU 
(s)] 

Speedu
p 

20 6.721 0.099 67.88x 

40 7.821 0.212 36.89x 

60 10.38 0.582 17.83x 

80 12.17 0.841 14.47x 

100 14.69 1.061 13.84x 



Md. Hasan Furhad et al. 
 

25 
 

Max Predictive Control,” IEEE Transactions on Automatic 
Control, vol. 53, no. 09, pp. 2192-2197, 2008. (Journal) 

[4] K. Deb, S. Gupta, J. Dutta, and B. Ranjan, “Solving dual 
problems using a coevolutionary optimization algorithm,” 
Journal of Global Optimization, 2012. (Journal) 

[5] A. M. Cramer, S. D. Sudhoff, and E. L. Zivi, “Evolutionary 
Algorithms for Minimax Problems in Robust Design,” IEEE 
Transactions on Evolutionary Computation, vol. 13, no. 02, 
pp. 444-453, 2009. (Journal) 

[6] L. P. Veronese, and R. A. Krohling, “Differential evolution 
algorithm on the GPU with C-CUDA,” In Proceedings of the 
IEEE International Conference on Evolutionary Computation, 
pp. 18-23, 2010. (Conference) 

[7] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential 
Evolution Algorithm With Strategy Adaptation for Global 
Numerical Optimization,” IEEE Transactions on Evolutionary 
Computation, vol. 13, no. 02, pp. 398-417, 2009. (Journal) 

[8] L. Liu, and Y. Zhang, “Gemetic Algorithm design of the Min-
max weighted distance problem,” In Proceedings of IEEE 

International Conference on Computer Application and 
System Modeling (ICCASM), pp. 620-623, 2010. 
(Conference) 

[9] K. Masuda, K. Kurihara, and E. Aiyoshi, “A novel method for 
solving min-max problems by using a modified particle 
swarm optimization,” In Proceedings of the IEEE 
International Conference on Systems, Man, and Cybernatics 
(SMC), pp. 2113-2120, 2011. (Conference) 

[10] NVIDIA Homepage. Available: http://www.nvidia.com (link) 
[11] C. C. Boyer, M. Meng, J. Tarjan, S. Sheafler, and K. Skadron, 

“A performance study of general-purpose applications on 
graphics processors using CUDA,” Journal of Parallel and 
Distributed Computing, vol. 68, no. 10, pp. 1370-1380, 2008. 
(Journal) 

[12] J. Verdu, A. Pauelo, and M. Valero, “The Problem of 
Evaluating CPU-GPU Systems with 3D Visualization 
Applications,” IEEE Micro, vol. 32, no. 06, pp. 17-27, 2012. 
(Journal)

 
 


