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Abstract. Solving quadratic equation efficiently is a real-world challenge 

nowadays, due to its wide applications in the task of determining a product's 

profit, calculating areas or formulating the speed of an object. The general ap-

proach of finding the roots of a quadratic equation is not enough efficient due to 

the requirement of high computation time. Because of the Genetic Algorithm's 

stochastic characteristics and efficiency in solving problems it can be used to 

find roots of quadratic equation precisely. In modern athletics reducing the 

computation time of solving the quadratic equation has been so inevitable 

where using a genetic algorithm can find a quick solution that doesn't violate 

any of the constraints and with high precision also. Optimization has been done 

in the Crossover and Mutation process which has reduced the number of itera-

tions for solving the equation.   It reduces the time complexity of the existing 

approach of solving the quadratic equation and reaches towards the goal effi-

ciently.  

Keywords: Genetic Algorithms, Crossover, Mutation, Chromosomal Fitness, 

Population, Quadratic equation. 

1 Introduction 

The approach we are going to follow to solve 2nd order linear equation is the Genetic 

Algorithm [2]. The Genetic Algorithm [2] is an efficient way to solve both uncon-

strained & constrained optimization problems that are based on natural selection. The 

Genetic Algorithm [2] repeatedly modifies a population of individual solutions. The 

basic features on which the Genetic Algorithm [2] stands are: 

i) Competition in individual populations for resources and mates. 

ii) Successful individuals are allowed to create more offspring.  

iii) The propagation of the gene flows from fittest parent to generation.  

iv) Survival of the fittest. 

The basic outcome of the Genetic Algorithm [2] is a Chromosome and the collection 

of the chromosomes is known as a population. The process of the fitness function is 

applied to chromosomes to check their stability and select them for going to the next 
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stage. With the participation of selected chromosomes in the crossover stage, they 

produce offspring (child chromosomes) combining with the parent's gene. In the later 

stage, few chromosomes will undergo the mutation process. After that selected chro-

mosomes which will shift to the next generation for a repeated procedure which will 

be determined from fitness value that indicates Darwin's theory of evolution [16]. 

After completing several generations following the above steps, the best and precise 

value of the mathematical equality problem can be gained. The whole process can be 

summarized by the following steps: 

1. Initialization of random value to each chromosome 

2. Evaluation of objective function  

3. Selection based on fitness probability  

4. Crossover the chromosomes  

5. Mutation  

We will go through these repeatedly until we get the best value of the chromosome. 

Hence, we find the best solution for each variable of the equation by finding the best 

fittest chromosome using the Genetic Algorithm [2]. 

There exists a local solution of generating two equations from the given quadratic 

equations containing the two roots and solving those which require severely increased 

computation time given a large Datasets and requires further data training. Another 

approach can be found the roots using all the coefficients of variables and constants of 

the equation and which is also inefficient when a root becomes imaginary. So using 

the genetic algorithm can be the best approach to overcome these limitations. 

The sequential arrangement of the following part of this paper is as follows. Section 2 

of the paper contains the background of related works. The proposed Genetic Algo-

rithm model is described in Section 3. Section 4 contains implementation details. And 

section 5 holds our experimental result. Section 6 gives the conclusion and lastly Sec-

tion 7 finishes with all possible future works. Lastly, in section 8 we included all the 

references we used. 

2 Related Works   

We adapted the idea of solving a quadratic equation in Nayak [1] using the Genetic 

Algorithm [2]. In this paper, they have used the generalized Schur form of genetic 

algorithm. To solve the 2nd order linear equation, they were limited to real-valued 

arithmetic & real-valued variables. So in their solutions, the probability to get a cor-

rect answer is high. By using the Hybridized Genetic Algorithm [3], their solution is 

not the most efficient one. 

S.D. Bapon et al. [4] have shown improvement from the existing method using a new 

algorithm about solving a 1st linear equation using a genetic algorithm. In their algo-

rithm, they encoded solutions as chromosomes. It was presented by Roulette Wheel 

[5] in the selection after the process of evaluation. They also worked with the muta-

tion rate to get the optimal solution more quickly.  

Solving a linear equation using the evolutionary algorithm was also discussed in [6]. 

This paper also solved the equation but not as efficient as the previous method. The 
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even structural improvement in the genetic algorithm was discussed in [7]. These 

improvements assist in reducing complexity. A fixed point is also used in [12].   

In the product recommendation system [8], U. Janjarassuk and S. Puengrusme pro-

vide a method to get the best guess for the crossover to increase efficiency. In this 

paper [9] they solved non-linear equations using a genetic algorithm. Their proposed 

technique is applied to the benchmark problem adopted from Grosan [10]. They have 

made a comparative analysis to substantiate the effectiveness and reliability of the 

proposed method in handling nonlinear systems which involved transcendental func-

tions. Sensitivity analysis was also made to validate the selection of parameters of 

GA. We have also studied some optimization techniques using a genetic algorithm in 

[13-15].   

3 Proposed Methodology 

In most of the cases, we get optimal solutions from the genetic algorithm. It's because 

of some exclusive features of the genetic algorithm like adaptive characteristics. Mu-

tation, crossover, and selection method are behind this algorithm's character. 

3.1 Initial population 

The process begins with the Population which is nothing but a set of an individual. 

Individuals are a solution to the problem we want to solve. An individual is character-

ized by a set of parameters (variables) known as Genes. Genes are joined into a string 

to form a Chromosome (solution). In a genetic algorithm, the individual's set of genes 

is represented, in terms of an alphabet, using a string. Most of the time binary values 

are used (a string of 1s and 0s). First, we encode the gene in a chromosome then we 

decode it before evaluating their fitness. Only the fittest chromosomes move to the 

next generation. 

 
Fig. 1.  Initial Population. 
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3.2 Fitness Evaluation 

Evaluation Function also is known as the Fitness Function finds how close is a given 

solution compared to the optimum solution of the problem. How much fit a solution is 

stated by it. Each of the solutions is generally represented by a chromosome as a 

string of binary numbers in the Genetic Algorithm. We have to test these chromo-

somes and come up with the best solution to solve a given problem. Each of the prob-

lems has its fitness function. The fitness function is used depends on the given prob-

lem. In our problem the fitness function that we have considered is: 

 Func_fit = 
1

1+objective function
 

 
Fig. 2.  The methodology of our proposed system. 

3.3 Cross-over 

Here "par_chromosome" chromosome will be selected as parent chromosome. Here, 

the set of randomized numbers Random [par_chromosome] < ρc will be selected. 

Now, as the crossover rate is set to 35% so randomly taken chromosomes which are 

less than 0.35 are selected for crossover. 

 
Fig. 3. Cross-over [11]. 



5 

3.4 Mutation 

In the mutation process, a significant change in the chromosome has been done.  

Here, Total gene = number of genes in Chromosome × the number of populations. 

The mutation is a process of change and so if the mutation rate or changing rate is 

kept low (in a range of 0.01 to 0.1) than it provides the fittest result. The mutation rate 

12 is defined by ρm. The basic purpose of mutation in GAs is preserving and intro-

ducing diversity. The mutation is done during evolution based on a user-definable 

mutation probability. The probability has to be set low. If it is too high, the search 

would turn into a primitive random search. 

 
Fig. 4.  Mutation. 

 

The Pseudocode for Genetic Algorithm 

 

The parameters of our genetic algorithm are the initial population, Max-Iteration, 

 Best fitness, Max-fitness. 

 

1: Generation =0 

2: Initialize Population 

3: While Generation < Max Generation 

4:   Evaluate fitness of population members 

5:      for i to 1 to elitist 

5.1:   Select best individual 

5.2:    end for 

6:        for i from elites to population_ size 

6.1.1:  for j to 1 from tournament size 

6.1.2:   select best parents 

6.1.3:   end for 

6.1.4:  end for 

6.2.1:  for k from elites to population_size * (1-mutation rate) 

6.2.2:    crossover parents       child  (Just add this tick mark) 

6.3.1:   for k from population_size*(1-mutation rate) to population_size 

6.3.2:   mutant parents        child 

6.3.3:  end for 

6.2:      insert child for next generation’s population 

6.3:   end for 

7:   update current population 

8:   generation ++ 

9: end while  
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4 Implementation Details 

Let, there is a quadratic equation to be like 𝑥2 − 8𝑥 + 15 = 0. Here, the Genetic algo-

rithm is used to find the root of the equation x1 and x2. five steps will be needed such 

as initialization, evaluation, selection, crossing over and mutation to execute the 

whole process. 

4.1 Initialization 

At first, we take the total number of 6 chromosomes as the initial population. Then, 

we initialize the random values of gene x1 in each chromosome. 

Chromo [1] = [x1] = [ 00000010 ] 

Chromo [2] = [x1] = [ 00000100 ] 

Chromo [3] = [x1] = [ 00000110 ] 

Chromo [4] = [x1] = [ 00000111 ] 

Chromo [5] = [x1] = [ 00001001 ] 

Chromo [6] = [x1] = [ 00001000 ] 

 It can be decoded as follows:  

    Chromo [1] = [x1] = [2] 

Chromo [2] = [x1] = [4] 

Chromo [3] = [x1] = [6] 

Chromo [4] = [x1] = [7] 

Chromo [5] = [x1] = [9] 

Chromo [6] = [x1] = [8] 

4.2 Evaluation 

In this step of evaluation, the value of the objective function for each chromosome is 

computed. 

Func_Objective[1]= Abs(22 − 2 ∗ 8 + 15)=3 

Func_Objective[2]= Abs(42 − 4 ∗ 8 + 15)=1 

Func_Objective[3]= Abs(62 − 6 ∗ 8 + 15)=3 

Func_Objective[4]= Abs(72 − 7 ∗ 8 + 15)=8 

Func_Objective[5]= Abs(92 − 9 ∗ 8 + 15)=24 

Func_Objective[6]= Abs(82 − 8 ∗ 8 + 15)=15 

In the next generation, the fittest chromosomes with higher probability will get select-

ed. To determine fitness probability at first, we determine the fitness function of each 

chromosome. Then, 1 will be divided by (the objective function of each chromo-

some+1) to get the fitness probability. 

    Func_Fit [1] = 1 / (1+Func_ objective [1]) = 1/4 = .25 

Func_Fit [2] = 1 / (1+Func_ objective [2]) = 1/2 = .5 

Func_Fit [3] = 1 / (1+Func_ objective [3]) = 1/4 = .25 

Func_Fit [4] = 1 / (1+Func_ objective [4]) = 1/9 = .11 
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Func_Fit [5] = 1 / (1+Func_ objective [5]) = 1/25 = .04 

Func_Fit [6] = 1 / (1+Func_ objective [6]) = 1/16 = .0625 

 Total = 1.212 

The rule for determining probability of each chromosome is: 

    Probability[i] = Func_Fit[i] / Total 

Probability [1] = .25 / 1.212 = .206      Probability [4] = .11/ 1.212 = .090 

Probability [2] = .5/ 1.212 = .412           Probability [5] = .04 / 1.212 = .033 

Probability [3] = .25 / 1.212= .206      Probability [6] = 0.0625 / 1.212 = .0515 

Seeing the above probabilities, it is seen that Chromo [2] has the highest probability 
of going to the next generation. A roulette wheel is used for this selection procedure. 
For the computation in the roulette wheel, we should compute the values of cumula-
tive probability. 
     C_Probability [1] = .206 

 C_Probability [2] = 0.206+.412 = .618 

 C_Probability [3] = 0.206+.412 +.206= .824 

 C_Probability[4]  0.206+.412 +.206+.090 = .914 

 C_Probability[5]= 0.206+.412 +.206+.090 +.033 = .947 

 C_Probability[6]= 0.206+.412 +.206+.090 +.033 +.0515 = .9985 
By calculating the cumulative probability of selection step using roulette wheel can 

be done to generate random number Random which range is in between 0-1 as given 
below- 

 Random [1] = .822  Random [4] = 0.943 

 Random [2] = 0.912  Random [5] = 0.201 

 Random [3] = 0.823  Random [6] = 0.610 

If for example generated a random number is greater than C_Probability [1] and 

smaller than C_Probability [3] then select Chromo [3] as a chromosome for next gen-

eration in the existing population. 

New_Chromo[1] = Chromo[3]  New_Chromo[4] = Chromo[5] 

New_Chromo[2] = Chromo[4]  New_Chromo[5] = Chromo[1] 

New_Chromo[3] = Chromo[3]  New_Chromo[6] = Chromo[2] 

Now, the existing chromosomes in the population look like given be-

low:  Chromo [1] = [6]   Chromo [4] = [9] 

    Chromo [2] = [7]   Chromo [5] = [2] 

    Chromo [3] = [6]  Chromo [6] = [4] 

4.3 Cross-over 

The crossover process generally helps to cut a chromosome by selecting a cutting 

point randomly and joining another chromosome at that point. This process is re-

strained by using a parameter called crossover-rate which is expressed by ρc. 

Here “par_chromosome” chromosome will be selected as parent chromosome. Here, 

the set of randomized numbers Random [par_chromosome] < ρc will be selected. 
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Now, the crossover rate will be set to 35%.  Now the process will be initialized as 

follows. 

At first,a random number Random is generated as the number of population 

Random [1] = 0.069 

Random [2] = 0.172 

Random [3] = 0.679 

Random [4] = 0.437 

Random [5] = 0.312 

Random [6] = 0.826 

Now it is clear that, as Random [1], Random [2], Random [5] have the values less 

than ρc. So, Chromo [1], Chromo [2] and Chromo [5] are selected for crossing over 

process. 
Chromo [1] >< Chromo [2] 

Chromo [2] >< Chromo [5] 

Chromo [5] >< Chromo [1] 

Now three crossover constants will be selected randomly for three cutting point of 

three chromosomes. So, 

Cut_point [1] = 0 

Cut_point [2] = 0 

Cut_point [3] = 0 

Then for crossover, crossover, parent’s gens will be cut at gen number 1, e.g. 

Chromo [1] >< Chromo [2] = [6] >< [7] = [7] 

Chromo [2] >< Chromo [5] = [7] >< [2] = [2] 

Chromo [5] >< Chromo [1] = [2] >< [6] = [6] 

After crossover process, the chromosomes are, 

Chromo [1] = [7] 

Chromo [2] = [2] 

Chromo [3] = [6] 

Chromo [4] = [9] 

Chromo [5] = [6] 

Chromo [6] = [4] 

4.4 Mutation 

In the mutation process, a significant change in the chromosome has been done. 

Total gene = number of genes in Chromosome * the number of populations = 1*6 = 6 

The mutation is a process of change and so if the mutation rate or changing rate is 

kept low (in a range of 0.01 to 0.1) than it provides the fittest result. The mutation rate 

is defined by ρm. Here mutation rate is defined 10% (0.1). So, 10% of the total gen 

will be mutated. So, number of mutations will be = 0.10 * 6 = .6 ≈1 

So, after mutation in the 3rd chromosome which was randomly chosen, the chromo-

somes will look like this,  
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Chromo [1] = [7]  Chromo [4] = [9] 

Chromo [2] = [2]  Chromo [5] = [6] 

Chromo [3] = [1]  Chromo [6] = [4] 

After mutation, the objective function will be again evaluated by following, 

For Chromo [1] = [7], 

Func_ objective [1] = Abs (72 − 8 ∗ 7 + 15) = 8 

For Chromo [2] = [2] 

Func_ objective [2] = Abs (22 − 8 ∗ 2 + 15) = 3 

For Chromo [3] = [1] 

Func_ objective [3] = Abs (12 − 8 ∗ 1 + 15) = 8 

For Chromo [4] = [9] 

Func_ objective [4] = Abs (92 − 8 ∗ 9 + 15) = 24 

For Chromo [5] = [6] 

Func_ objective [6] = Abs (62 − 8 ∗ 6 + 15) = 3 

For Chromo [6] = [4] 

Func_ objective [5] = Abs (42 − 8 ∗ 4 + 15) = 1 

From this evaluation is clear that the objective functions are decreasing in some cases 

and the lowest value of an objective function will be considered much fitter. 

Hereafter 1st iteration fitter Chromosome is: Chromo [6] = [4] 

And this fitter chromosome will undergo the same process of this algorithm. After the 

next iteration, the value of fitness function will be decreased and after running 6 gen-

erations, the fittest chromosome will be obtained for which related objective function 

becomes 0. So fittest chromosome is: Chromo = [5] 

After decoding the answer, the result will be transformed like as follows  

       Chromo= [00000101] 

It is expressed that x1=5 

Now if the value of x is put in the equation  

x1+x2= -b/a (Where a & b are coefficients of x
2
 & x) 

or, 5 + x2 = 8 (as b= -8 and a =1) 

or, x2=3 

Now, (x1, x2)=(5,3) 

For justification F(x)= 𝑥2 − 8𝑥 + 15 

Then F(5)= 52 − 8 ∗ 5 + 15=0 

         F(3)= 32 − 8 ∗ 3 + 15=0 

So it is clear that the value of these variables generated by GA satisfies the mathemat-

ical equality. 

5 Experimental Result & Complexity Analysis 

5.1 Execution Time Comparison 

Results obtained by implementing our proposed algorithm are shown in Table 1. Ta-

ble 1 shows variations in runtime when ran for three consecutive times. 

 

 



10 

 

Table 1. Data table for execution time. 

Equations Execution 

Time 1st 

run(second) 

Execution 

Time 2nd  

run(second) 

Execution 

Time 3rd  

run(second) 

𝑥2 − 8𝑥 + 15 0.92 3.277 1.028 

𝑥2 − 7𝑥 + 12 0.934 2.857 1.011 

𝑥2 − 2.5𝑥 + 1 2.014 2.995 2.012 

𝑥2 − 3𝑥 + 2 1.384 3.055 1.023 

𝑥2 − 𝑥 − 2 0.873 3.265 2.995 

 

The total number of generations depends on the number of randomly taken chromo-

somes. In our implementation, the results we found are shown in Table 2. This table 

shows changes in generations which are depending on the number of random values.  

 

Table 2. Data table for generations. 

 

 

 

 

 

 

As the genetic algorithm moves towards the solution by consecutive crossovers and 

mutations among the chromosomes so it shows variable execution time for a fixed 

code, the execution time can be much lower or much higher when we run a single 

time. So as genetic algorithm code has no specific execution time therefore the effi-

ciency of using the algorithm cannot be compared with other existing methods [Fig. 

5]. 

 

 
Fig. 5. Graphical representation for given data. 

 

Number of random values Generations 

6 6 

8 8 

5 5 

4 4 

3 3 
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As total no of generation= number of genes in Chromosome * number of populations, 

a total number of generations and the number of initial population was found the same 

in our implementation. 

5.2 Complexity Analysis 

The time complexity of Genetic algorithm depends on three parameters-  

1. Fitness function.  

2. Selection operator.  

3. Variation operator  

Among the three parameters, it mainly depends on the fitness function. If the time 

complexity of GA is evaluated with Big O notation, then it can be O (NG), where N is 

the size of population and G stands for the number of iterations. On the other hand, if 

we assume N be the size of the population and L be the length of the genotypes, then 

for a simple Rastrigin function, the time complexity for the evaluation of the whole 

generation will be O(NL). If the selection is stochastic then it is needed to sort the 

population. In this case, time complexity will be O(NlogN), while for tournament 

selection it will be O(N). If the population is transformed with a crossover and muta-

tion operator, then time complexity will be O(NL). 

5.3 Best and Worst-Case Complexity 

In Table 1, we have taken several equations and found their computation time. We 

can see for 𝑥2 − 8𝑥 + 15 = 0 equation on 1
st
 Run the computation time was least. 

The reason behind it was the requirement of a few steps of the crossover and mutation 

process to find out the required root. 

On the other hand, in Table 1, for the same equation’s 2
nd

 run, the computation time 

was highest. The only reason was it took a lot of steps in the crossover and mutation 

process to find the final roots. These were the best and worst time complexity for this 

implementation. 

6 Conclusion 

To find an efficient solution of a quadratic equation within acceptable time form was 

our primary focus of this work. We compared our proposed genetic algorithm ap-

proach with an existing method of solving equations. After numerous analysis, we 

have to come in the conclusion that GAs has an upper-hand for obtaining a solution.  

After further considering the obtained result and CPU times and comparing them with 

other based known existing solutions of solving a quadratic equation it can be stated 

that the GA based proposed approach performs well and much more efficiently. 
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7 Future Work 

In the future, there is a scope for working on crossing over rate. We were not getting 

expected outcome when both of the roots are imaginary, negative or fractional. So the 

future recommendation is to implement the solving technique of second and higher-

order equations using GA considering these things also. 
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