
International Conference on Electronics, Computer and Communication (ICECC 2008)
University of Rajshahi, Bangladesh

ISBN 984-300-002131-3

An Algorithm For Multilingual Text Compression

Md. Rezwan Salam, Md. Shahidul Islam
Department of Computer Science & Engineering

Chittagong University of Engineering & Technology.
e-mail: tanvircuet03@gmail.com, sicuet@gmail.com

Abstract: Multilingual means use of multiple
languages. A multilingual text contains text from
multiple languages. Multilingual text is essential if
we have to show some text to users of multiple
languages. Multilingual text use Unicode base
character set. Unicode provide unique bit pattern for
every character of all languages. In Unicode the bit
length of each character is 16 bit. So the text size of a
multilingual text increases very much. As a result
when a user wants to send a multilingual text
through some paid channel he has to pay more than
usual. So compression of multilingual text is
essential. This paper proposes an efficient algorithm
for multilingual text compression, so that any
multilingual text can be transferred through any paid
channel reducing the communication cost.

KEY WORDS: Text compression, multilingual,
unicode, paid channel.

1. INTRODUCTION
A text document may contain text from one language
or more than one language. Generally to represent
text in computers, communication equipment, and
other devices that work with text we use 7 bit ASCII
[1] character set which is based on the English
alphabet. But if we want to add text from multiple
languages in the same document we have to identify
every character distinctly which is not possible with
ASCII character set. For this purpose we have to use
Unicode [2] base character set.

Unicode is an internationally standard character set.
It uses 16 bit to identify each character of every
language distinctly. Unicode provides us flexibility
to write multilingual text, but it also increase the text
size a lot which is really costly when we are
transferring this text through some paid channel.

For an example in short messaging service (sms) in
cellular networks we have 160 characters per sms
packet when we use 7 bit ASCII character set. But if
we use unicode for multilingual text we will have
only 70 characters for each sms packet. For this
reason compression of multilingual text is needed.

We found some works on multilingual text
compression. Conley, E.S., Klein, S.T. [3] showed
compression of multilingual aligned text by mapping
one language into another language which will be
much complex while we use more language

simultaneously. We also found some text
compression algorithm like Huffman coding [4],
LZ77 [5] etc. They both build a runtime dictionary
for compression which has to be added with the
compressed text while sending data. These are not
efficient while working with multilingual text and
small text data. We found another approach of
compression which is done by maintaining word
dictionary [6]. But maintaining word dictionary for
every language is not suitable and possible.

In this thesis our vision is to reduce the
communication cost of multilingual text effectively
by designing an efficient algorithm for multilingual
text compression. This proposed algorithm is
designed to handle any unicode base language easily.

2. ALGORITHM
2.1 Compression
The work flow diagram of the proposed multilingual
text compression algorithm is as below:

Figure 1: Flow chart of the proposed compression

algorithm

 Read Text

Language Count

Look
Up
Table

Expandable Header Set

 Common
 Points for all?

Build 2D Data Set

Finding common points

Yes
Combine
Data Set
&
Common
Points

Compressed
text data

No

494

International Conference on Electronics, Computer and Communication (ICECC 2008)
University of Rajshahi, Bangladesh

ISBN 984-300-002131-3

We divide the whole compression procedure in the
following parts:
 2.1.1 Look up Table
 2.1.2 Expandable Header Set
 2.1.3 Common Points Iteration
 2.1.4 Final Compressed Data

2.1.1 Look up Table: This is a table which will
consist the language range. We can easily maintain
this kind of table for all language easily. This look up
table will contain the Unicode number of every
character with their corresponding language range.

2.1.2 Expandable Header Set: An expandable
header set will create with the help of look up table
to distinguish the languages used in the text so that
the receiver can decompress the data.

• Total Language – 4 Fixed bit
• Language IDs – 4 bit each

2.1.3 Common Points Iteration: This is a technique
to reduce the text sometimes to a large extent. We
will generate a 2D table/graph from the numbering of
character set used. From this table we will get a
common point for every adjacent character pair. This
will reduce the text depending on the character
position in the look up table. Now we will have a list
of common points. We can also apply the 2D table
on these common points to find the common points
of the common point. By this we will iterate the
process until we found a grand common point for all
the letters in the block.

57 58 59 60 61 62 63 64
49 50 51 52 53 54 55 56
41 42 43 44 45 46 47 48
33 34 35 36 37 38 39 40
25 26 27 28 29 30 31 32
17 18 19 20 21 22 23 24
9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8

 1 2 3 4 5 6 7 8
Table 1: 2D table for 8 characters

This common point is surely a very big number but
this number will be represented by fewer bits then
the actual numbers. Sometimes this decrement will
be very much.

Figure 2: Building Common Points

The efficiency of the common point technique
depends on the design of the look up table.

2.1.4 Final Compressed Data: We will now merge
the data in following order to achieve the final
compressed text:

• Header Set
• Common point

o Block Length
o Depth of Iteration
o Data Block

2.2 Decompression
The receiver of the compressed data has a
decompression algorithm to display the text to the
receiver. The work flow diagram of the proposed
multilingual text decompression algorithm is as
below:

Figure 3: Flow chart of the proposed compression

algorithm

We divide the whole compression procedure in the
following parts:

2.2.1 Look up Table
2.2.2 Header Set Read
2.2.3 Block recovery

 Read Text

Read Header Set

Read Iteration Length of a Block

Iteration
length <= 0

Build 2D Data Set

Finding marginal values

Yes
Replace
Character
from
Look up
Table

Original text
data

No

 Iteration - 1

495

International Conference on Electronics, Computer and Communication (ICECC 2008)
University of Rajshahi, Bangladesh

ISBN 984-300-002131-3

2.2.1 Look up Table: It is similar to the compression
technique. The sender and the receiver must have the
same look up table.

2.2.2 Header Set Read: Here we will collect the
header set to know the languages used in the text and
to make the 2D table/graph.

2.2.2 Block Recovery: The block recovery stage will
use the backward iteration technique to find the
marginal values from the common points until the
depth of iteration of the block is reached.

Figure 4: Recovering Marginal Values

We will perform this block recovery state to all
blocks. Then we will simply replace the numbers
with the characters from the look up table to have the
original text.

3. RESULTS

We use java language to simulate this algorithm and
got following results. We use two language Bangla &
English for the simulation.

Multilingual Text Comparative size

Original Size: 2048 bit
128charcter(16bit/charac)
Compress Size: 498 bit

Multilingual text is a
text contains more than
one language in the
same content.
��������
����� ������
������ �����
����� ����

Compression Ratio: 76 %

Original Size: : 2048 bit
128charcter(16bit/charac)

����� � ������
���� ���� ���
������
�������
������� ���

Compress Size: 454 bit

����� �� �����
���� �����
���� ���� ���
���� ����
������ ��� ���
���

Compression Ratio: 78%

Table 2: Simulation Result

From the result set we get from the simulation
software we found that in average case the
compression is more than 70%.
From some more results we found the compression
ratio like this:

 Compression Ratio
Best Case Above 80%
Average Case Above 70%
Worst Case Above 20%

Table 3: Comparison table

Here we consider the worst case as if we are using all
the characters of all the languages supported by the
Unicode in the same text document.

4. CONCLUSIONS
The algorithm for multilingual text compression
proposed here compresses the text significantly and
make it suitable for sending the text data through any
paid channel. As this algorithm does not depend on
any dictionary or any semantic analysis or any partial
text matching technique, this algorithm can work
similar to all the language independently.
We work on some small data set specially intended
for reducing the size of the packet data sending
through paid channel, this algorithm also handle for
large text.
This algorithm can also be used for multilingual
encryption-decryption technique by improving the
2D data set used in the proposed algorithm for
finding the common points.

References

[1] www.en.wikipedia.org/wiki/ASCII
[2] www.unicode.org
[3] Conley E.S., Klein S.T. ”Compression of
multilingual aligned texts”, Proceedings of the
Data Compression Conference, 2006.
[4] D.A. Huffman, “A Method for the
Construction of Minimum-Redundancy Codes”,
Proceedings of the I.R.E., September 1952, pp
1098-1102

496

International Conference on Electronics, Computer and Communication (ICECC 2008)
University of Rajshahi, Bangladesh

ISBN 984-300-002131-3

[5] Ziv, J. and Lempel, A. “A universal
algorithm for sequential data compression”
IEEE; Trans. On inf. Th., IT-23:337-343, 1977.
[6] Jeehong Yang, Serap A. Savari. “Dictionary-
based English text compression using word
endings”, Proceedings of the Data Compression
Conference, 2007, Page 410.

497

