Abstract:
In this paper it is aimed to describe the modeling and numerical analysis of thermal treatment of granulated
porous particles by induction plasma. To investigate the heat exchange dynamics between plasma and articles during the flight of granulated porous particles through the hot plasma, a plasma-particle interactive flow model has been developed. This model solves the conservation equations to predict the temperature and flow fields of plasma, under local thermal equilibrium (LTE) conditions, and then computes the injected particles trajectories, temperature and size histories, and the particle source terms to incorporate the particle loading effects. It is found that the size and dose of injected particles greatly affect the particle trajectory and temperature, and hence the heat transfer to particles at higher powder feed-rate